Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technique
  • Published:

Using an intravenous catheter to carry out abdominal lavage in the gerbil

Abstract

Abdominal lavage is used in laboratory rodents for a variety of applications but carries an inherent risk of abdominal organ laceration; therefore, personnel carrying out this procedure must have considerable expertise. In this paper, the authors describe an improved method for delivering sterile media to and collecting peritoneal fluids from dark-clawed Mongolian gerbils (Meriones unguiculatus) that had been peritoneally infected with filarial nematode parasites (genus Brugia). To carry out this gravity-assisted technique, the authors used a catheter to introduce sterile media into the peritoneal cavity of each gerbil and then to passively drain peritoneal fluid and larval worms for collection. Average fluid recovery was consistently greater when using this gravity-assisted method than when using aspiration. Larval parasites were recovered by both methods. To recover large volumes of fluid using the standard method of abdominal lavage, personnel typically must euthanize rodents. This gravity-assisted technique allows researchers to collect large numbers of parasite larvae without euthanizing gerbils.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anesthetized gerbil in left lateral recumbency, resting on the support bag.

References

  1. Denham, D.A., Suswillo, R.R. & Chusattayanond, W. Parasitological observations on Meriones unguiculatus singly or multiply infected with Brugia pahangi. Parasitology 88, 295–301 (1984).

    PubMed  Google Scholar 

  2. Fujii, H., Kamiyama, T. & Hagiwara, T. Species and strain differences in sensitivity to Toxoplasma infection among laboratory rodents. Jpn. J. Med. Sci. Biol. 36, 343–346 (1983).

    Article  CAS  Google Scholar 

  3. Kamiyama, T. & Hagiwara, T. Augmented followed by suppressed levels of natural cell-mediated cytotoxicity in mice infected with Toxoplasma gondii. Infect. Immun. 36, 628–636 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Langley, R.J. & Gray, J.S. Non-specific resistance to Babesia divergens in the Mongolian gerbil (Meriones unguiculatus). Int. J. Parasitol. 19, 265–269 (1989).

    Article  CAS  Google Scholar 

  5. Surin, J. & Denham, D.A. Comparative susceptibility to anthelmintics of Brugia pahangi in jirds infected by different methods. J. Helminthol. 64, 232–238 (1990).

    Article  CAS  Google Scholar 

  6. McCall, J.W., Malone, J.B., Hyong-Sun, A. & Thompson, P.E. Mongolian jirds (Meriones unguiculatus) infected with Brugia pahangi by the intraperitoneal route: a rich source of developing larvae, adult filariae, and microfilariae. J. Parasitol. 59, 436 (1973).

    Article  CAS  Google Scholar 

  7. Vincent, A.L., Ash, L.R., Rodrick, G.E. & Sodeman, W.A. Jr. The lymphatic pathology of Brugia pahangi in the Mongolian jird. J. Parasitol. 66, 613–620 (1980).

    Article  CAS  Google Scholar 

  8. Vincent, A.L., Frommes, S.P. & Ash, L.R. Brugia malayi, Brugia pahangi, and Brugia patei: pulmonary pathology in jirds, Meriones unguiculatus. Exp. Parasitol. 40, 330–354 (1976).

    Article  CAS  Google Scholar 

  9. Kinnamon, K.E. et al. Filariasis testing in a jird model: new drug leads from some old standbys. Am. J. Trop. Med. Hyg. 51, 791–796 (1994).

    Article  CAS  Google Scholar 

  10. Field, K.L. & Sibold, A.L. The Laboratory Hamster and Gerbil (ed. Suckow, M.A.) (CRC, Boca Raton, FL, 1999).

    Google Scholar 

  11. Johnson, E.M., Price, R.E., Rivera, B. & Cody, D.D. Intraperitoneal administration of an iodine-based contrast agent to improve abdominal micro-computed tomography imaging in mice. Contemp. Top. Lab. Anim. Sci. 44, 20–27 (2005).

    CAS  PubMed  Google Scholar 

  12. Pekow, C.A. & Baumans, V. Common Nonsurgical Techniques and Procedures. in Handbook of Laboratory Animal Science 2nd edn (eds. Hau, J. & Van Hoosier, G.J.) 351–390 (CRC, Boca Raton, FL, 2003).

    Google Scholar 

  13. Suckow, M.A., Danneman, P. & Brayton, C. The Laboratory Mouse (CRC, Boca Raton, FL, 2001).

    Google Scholar 

  14. Douglas, E.G., Hamada, Y. & McKearn, T.J. Ascites production in 9 rat strains. J. Immunol. Methods 26, 69–74 (1979).

    Article  CAS  Google Scholar 

  15. Goding, J.W. Antibody production by hybridomas. J. Immunol. Methods 39, 285–308 (1980).

    Article  CAS  Google Scholar 

  16. Ho, V.W. & Sly, L.M. Derivation and characterization of murine alternatively activated (M2) macrophages. Methods Mol. Biol. 531, 173–185 (2009).

    Article  CAS  Google Scholar 

  17. Waynforth, H.B. & Flecknell, P.A. Administration of substances. in Experimental and Surgical Techniques in the Rat 2nd edn. 1–26 (Academic, New York, 1992).

    Google Scholar 

  18. Doerning, B.J., Cohen, B.J. & Chrisp, C.E. Iatrogenic puncture of enlarged seminal vesicles in aged C57BL/6 mice. Lab. Anim. Sci. 39, 161–162 (1989).

    CAS  PubMed  Google Scholar 

  19. Griffiths, K.G. et al. Use of microarray hybridization to identify Brugia genes involved in mosquito infectivity. Parasitol. Res. 106, 227–235 (2009).

    Article  Google Scholar 

  20. Chandrashekar, R., Rao, U.R., Rajasekariah, G.R. & Subrahmanyam, D. Separation of viable microfilariae free of blood cells on Percoll gradients. J. Helminthol. 58, 69–70 (1984).

    Article  CAS  Google Scholar 

  21. Köhler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

    Article  Google Scholar 

  22. Peterson, N.C. Behavioral, clinical, and physiologic analysis of mice used for ascites monoclonal antibody production. Comp. Med. 50, 516–526 (2000).

    CAS  PubMed  Google Scholar 

  23. Hoover-Plow, J., Hart, E., Gong, Y., Shchurin, A. & Schneeman, T. A physiological function for apolipoprotein(a): a natural regulator of the inflammatory response. Exp. Biol. Med. 234, 28–34 (2009).

    Article  CAS  Google Scholar 

  24. Murphey, E.D. & Traber, D.L. Protective effect of tumor necrosis factor-alpha against subsequent endotoxemia in mice is mediated, in part, by interleukin-10. Crit. Care Med. 29, 1761–1766 (2001).

    Article  CAS  Google Scholar 

  25. Ajuebor, M.N. et al. Endogenous monocyte chemoattractant protein-1 recruits monocytes in the zymosan peritonitis model. J. Leukoc. Biol. 63, 108–116 (1998).

    Article  CAS  Google Scholar 

  26. Hoover-Plow, J.L. et al. Strain and model dependent differences in inflammatory cell recruitment in mice. Inflamm. Res. 57, 457–463 (2008).

    Article  CAS  Google Scholar 

  27. Ploplis, V.A., French, E.L., Carmeliet, P., Collen, D. & Plow, E.F. Plasminogen deficiency differentially affects recruitment of inflammatory cell populations in mice. Blood 91, 2005–2009 (1998).

    CAS  PubMed  Google Scholar 

  28. Pizzoferrato, A., Vespucci, A., Ciapetti, G., Stea, S. & Tarabusi, C. The effect of injection of powdered biomaterials on mouse peritoneal cell populations. J. Biomed. Mater. Res. 21, 419–428 (1987).

    Article  CAS  Google Scholar 

  29. Bondar, V.M., Rago, C., Cottone, F.J., Wilkerson, D.K. & Riggs, J. Chlorhexidine lavage in the treatment of experimental intra-abdominal infection. Arch. Surg. 135, 309–314 (2000).

    Article  CAS  Google Scholar 

  30. Stehle, J.R. Jr, Willingham, M.C., Lin, K. & Cui, Z. A nonterminal method for frequent collection of mouse circulating proteins by peritoneal lavage. Anal. Biochem. 349, 162–164 (2006).

    Article  CAS  Google Scholar 

  31. Woodward, G. Principles in Drug Administration. in Methods of Animal Experimentation (ed. Gay, W.I.) 343–349 (Academic, New York, 1965).

    Chapter  Google Scholar 

  32. Arioli, V. & Rossi, E. Errors related to different techniques of intraperitoneal injection in mice. Appl. Microbiol. 19, 704–705 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Miner, N.A., Koehler, J. & Greenaway, L. Intraperitoneal injection of mice. Appl. Microbiol. 17, 250–251 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Steward, J.P., Ornellas, E.P., Beernink, K.D. & Northway, W.H. Errors in the technique of intraperitoneal injection of mice. Appl. Microbiol. 16, 1418–1419 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Coria-Avila, G.A., Gavrila, A.M., Ménard, S., Ismail, N. & Pfaus, J.G. Cecum location in rats and the implications for intraperitoneal injections. Lab. Anim. (NY) 36, 25–30 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Marthina Greer for technical advice and assistance with animal handling techniques. The Filariasis Research Reagent Repository Center at the University of Georgia supplied the microfilaraemic blood samples and infected gerbils. This project was funded by National Institutes of Health Grant R15AI067295-01A1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle L. Michalski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffiths, K., Alworth, L., Harvey, S. et al. Using an intravenous catheter to carry out abdominal lavage in the gerbil. Lab Anim 39, 143–148 (2010). https://doi.org/10.1038/laban0510-143

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/laban0510-143

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing