Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Ethical considerations in hibernation research

Abstract

Ethical research practices are a key component of scientific integrity and of public support for research. Hibernation research presents specific ethical issues in regard to animal welfare. In this article, the authors apply the '3Rs' principles of humane experimental technique (replacement, reduction and refinement) to hibernation research. They provide recommendations for hibernation researchers and suggest future directions for addressing issues specific to hibernation research. They discuss the use of appropriate behavioral and physiological monitoring procedures, the development of species-specific brain atlases for placement of brain probes, the provision of environmental enrichment and the management of studies involving pharmacological induction of torpor. Addressing these issues in hibernation research will lead to improvements in research outcomes and in welfare of hibernating species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Arctic ground squirrels.
Figure 2: The number of hibernation studies published each year has increased from 1962 to 2011.

Similar content being viewed by others

References

  1. Drew, K.L. et al. Central nervous system regulation of mammalian hibernation: implications for metabolic suppression and ischemia tolerance. J. Neurochem. 102, 1713–1726 (2007).

    Article  CAS  Google Scholar 

  2. Carey, H.V., Andrews, M.T. & Martin, S.L. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol. Rev. 83, 1153–1181 (2003).

    Article  CAS  Google Scholar 

  3. Geiser, F. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu. Rev. Physiol. 66, 239–274 (2004).

    Article  CAS  Google Scholar 

  4. Barnes, B.M. Freeze avoidance in a mammal: body temperatures below 0 degree C in an Arctic hibernator. Science 244, 1593–1595 (1989).

    Article  CAS  Google Scholar 

  5. Heldmaier, G., Ortmann, S. & Elvert, R. Natural hypometabolism during hibernation and daily torpor in mammals. Respir. Physiol. Neurobiol. 141, 317–329 (2004).

    Article  Google Scholar 

  6. Jinka, T.R., Tøien, Ø. & Drew, K.L. Season primes the brain in an arctic hibernator to facilitate entrance into torpor mediated by adenosine A1 receptors. J. Neurosci. 31, 10752–10758 (2011).

    Article  CAS  Google Scholar 

  7. Dave, K.R. et al. Neuroprotection: lessons from hibernators. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 162, 1–9 (2012).

    Article  CAS  Google Scholar 

  8. Drew, K.L. et al. Hibernation: a natural model of tolerance to cerebral ischemia/reperfusion in Innate Tolerance in the CNS (eds. Gidday, J., Perez-Pinzon, M.A. & Zhang, J.) 37–50 (Springer, New York, 2013).

    Chapter  Google Scholar 

  9. Drew, K.L. et al. “Natural” tolerance in hibernators: Can we learn from physiological and preconditioning against ischemic or hypoxic brain injury?. in Ischemic Tolerance of the Brain (ed. Schaller, B.J.) 1–44 (Research Signpost, Trivandrum, Kerala, India, 2009).

    Google Scholar 

  10. Drew, K.L. & Jinka, T.R. The bioenergetic network of adenosine. in Hibernation, Sleep, and Thermoregulation (eds. Masino, S. & Boison, D.) 253–272 (Springer, New York, 2013).

    Google Scholar 

  11. Rosania, K. Inducing hibernation in the arctic ground squirrel. Lab Anim. (NY) 40, 262 (2011).

    Article  Google Scholar 

  12. Macrina, F.L. Scientific Integrity: Text and Cases in Responsible Conduct of Research 3rd edn. (ASM Press, Washington, DC, 2005).

    Google Scholar 

  13. Institute of Laboratory Animal Resources. Guide for the Care and Use of Laboratory Animals (National Academies Press, Washington, DC, 1996).

  14. Silverman, J. et al. The IACUC Handbook 2nd edn. (CRC Press, Boca Raton, FL, 2007).

    Google Scholar 

  15. Russell, W.M.S. & Burch, R.L. The Principles of Humane Experimental Technique (Methuen, London, 1959).

    Google Scholar 

  16. Fabre, I. [Alternatives to animal testing.] Bull. Acad. Natl. Med. 193, 1783–1791 (2009).

    CAS  PubMed  Google Scholar 

  17. Claude, N. [Reducing the use of laboratory animals.] Bull. Acad. Natl. Med. 193, 1767–1772 (2009).

    PubMed  Google Scholar 

  18. Gibson, W.C. The cost of not doing medical research. J. Am. Med. Assoc. 244, 1817–1819 (1980).

    Article  CAS  Google Scholar 

  19. Shanks, N. Animals and Science: A Guide to the Debates (ABC-CLIO, Santa Barbara, CA, 2002).

    Google Scholar 

  20. Frey, R.G. Justifying animal experimentation. Society 39, 37–47 (2002).

    Article  Google Scholar 

  21. Singer, P. Animal Liberation (Avon Books, New York, 1990).

    Google Scholar 

  22. Hewitt, R.E. Biobanking: the foundation of personalized medicine. Curr. Opin. Oncol. 23, 112–119 (2011).

    Article  Google Scholar 

  23. Salkind, N.J. (ed.) Encyclopedia of Research Design (SAGE Publications, Thousand Oaks, CA, 2010).

    Book  Google Scholar 

  24. Pengelley, E.T. & Fisher, K.C. Rhythmical arousal from hibernation in the golden-mantled ground squirrel, Citellus lateralis tescorum. Can. J. Zool. 39, 105–120 (1961).

    Article  Google Scholar 

  25. Jinka, T.R., Rasley, B.T. & Drew, K.L. Inhibition of NMDA-type glutamate receptors induces arousal from torpor in hibernating arctic ground squirrels (Urocitellus parryii). J. Neurochem. 122, 934–940 (2012).

    Article  CAS  Google Scholar 

  26. Karpovich, S.A. et al. Energetics of arousal episodes in hibernating arctic ground squirrels. J. Comp. Physiol. B 179, 691–700 (2009).

    Article  Google Scholar 

  27. Tøien, Ø. et al. Hibernation in black bears: independence of metabolic suppression from body temperature. Science 331, 906–909 (2011).

    Article  Google Scholar 

  28. Jinka, T.R. et al. Potential mechanisms of metabolic suppression downstream of central a1ar activation during onset of torpor in Living in a Seasonal World: Thermoregulatory and Metabolic Adaptations (eds. Ruf, T. et al.) 363–376 (Springer, Heidelberg, 2012).

    Chapter  Google Scholar 

  29. Jinka, T.R. et al. Altered thermoregulation via sensitization of A1 adenosine receptors in dietary-restricted rats. Psychopharmacol. (Berl.) 209, 217–224 (2010).

    Article  CAS  Google Scholar 

  30. Wacker, C.B., Rojas, D.A. & Geiser, F. The use of small subcutaneous transponders for quantifying thermal biology and torpor in small mammals. J. Thermal Biol. 37, 250–254 (2012).

    Article  Google Scholar 

  31. Williams, C.T. et al. Data logging of body temperatures provides precise information on phenology of reproductive events in a free-living Arctic hibernator. J. Comp. Physiol. B 181, 1101–1109 (2011).

    Article  Google Scholar 

  32. Pellegrino, L.J., Pellegrino, A.S. & Cushman, A.J. A Stereotaxic Atlas of the Rat Brain 2nd edn. (Plenum, New York, 1979).

    Google Scholar 

  33. Paxinos, G. & Watson, C. The Rat Brain: In Stereotaxic Coordinates 2nd edn. (Academic, New York, 1986).

    Google Scholar 

  34. Shirley, J.R. et al. A Stereotaxic Atlas of the Brain of the 13-line Ground Squirrel (Citellus tridecemlineatus) (Edgewood Arsenal Medical Research Laboratory, Edgewood, MD, 1966).

    Google Scholar 

  35. Aggarwal, M. et al. Magnetic resonance imaging and micro-computed tomography combined atlas of developing and adult mouse brains for stereotaxic surgery. Neuroscience 162, 1339–1350 (2009).

    Article  CAS  Google Scholar 

  36. Hik, D., McColl Jr., S.C. & Boonstra, R. Why are Arctic ground squirrels more stressed in the boreal forest than in alpine meadows? Ecoscience 8, 275–288 (2001).

    Article  Google Scholar 

  37. Carl, E.A. Population control in arctic ground squirrels. Ecology 52, 395–413 (1971).

    Article  Google Scholar 

  38. Buck, C.L. & Barnes, B. Temperatures of hibernacula and changes in body composition of arctic ground squirrels over winter. J. Mammal. 80, 1264–1276 (1999).

    Article  Google Scholar 

  39. Merriman, D.K. et al. Current practices in a captive breeding colony of 13-lined ground squirrels (Ictidomys tridecemlineatus). Lab Anim. (NY) 41, 315–325 (2012).

    Article  Google Scholar 

  40. Wasser, S.K. et al. A generalized fecal glucocorticoid assay for use in a diverse array of nondomestic mammalian and avian species. Gen. Comp. Endocrinol. 120, 260–275 (2000).

    Article  CAS  Google Scholar 

  41. Vaughan, D.K. et al. Capture, care, and captive breeding of 13-lined ground squirrels, Spermophilus tridecemlineatus. Lab Anim. (NY) 35, 33–40 (2006).

    Article  Google Scholar 

  42. Keay, J.M. et al. Fecal glucocorticoids and their metabolites as indicators of stress in various mammalian species: A literature review. J. Zoo Wildlife Med. 37, 234–244 (2006).

    Article  Google Scholar 

  43. Jurke, M.H. et al. Monitoring hormones in urine and feces of captive bonobos (Pan paniscus). Primates 41, 311–319 (2000).

    Article  CAS  Google Scholar 

  44. Peel, A.J. et al. Non-invasive fecal hormone analysis and behavioral observations for monitoring stress responses in captive western lowland gorillas (Gorilla gorilla gorilla). Zoo Biol. 24, 431–445 (2005).

    Article  CAS  Google Scholar 

  45. Carlstead, K., Brown, J.L. & Seidensticker, J. Behavioral and adrenocortical responses to environmental changes in leopard cats (Felis bengalensis). Zoo Biol. 12, 321–331 (1993).

    Article  Google Scholar 

  46. Geiser, F. & Ferguson, C. Intraspecific differences in behaviour and physiology: effects of captive breeding on patterns of torpor in feathertail gliders. J. Comp. Physiol. B 171, 569–576 (2001).

    Article  CAS  Google Scholar 

  47. Fenn, A.M., Zervanos, S.M. & Florant, G.L. Energetic relationships between field and laboratory woodchucks (Marmota monax) along a latitudinal gradient. Ethol. Ecol. Evol. 21, 299–315 (2009).

    Article  Google Scholar 

  48. Zervanos, S.M. et al. Latitudinal differences in the hibernation characteristics of woodchucks (Marmota monax). Physiol. Biochem. Zool. 83, 135–141 (2010).

    Article  Google Scholar 

  49. Stawski, C. Comparision of variables of torpor between populations of a hibernating subtropical/tropical bat at different latitudes in Living in a Seasonal World: Thermoregulatory and Metabolic Adaptations (eds. Ruf, T. et al.) 99–108 (Springer, Heidelberg, 2012).

    Chapter  Google Scholar 

  50. Shintani, M. et al. Characterization of N(6)-cyclohexyladenosine-induced hypothermia in Syrian hamsters. J. Pharmacol. Sci. 97, 451–454 (2005).

    Article  CAS  Google Scholar 

  51. Kilduff, T.S. et al. Sleep and mammalian hibernation: homologous adaptations and homologous processes? Sleep 16, 372–386 (1993).

    Article  CAS  Google Scholar 

  52. Jinka, T.R. Natural protection against cardiac arrhythmias during hibernation: significance of adenosine. in Cardiac Arrhythmias - New Considerations (ed. Breijo-Marquez, F.R.) 151–166 (InTech, Rijeka, Croatia, 2012).

    Google Scholar 

  53. Geiser, F. Hibernation, daily torpor and estivation in mammals and birds: behavioral aspects. in Encyclopedia of Animal Behavior (eds. Breed, M.D. & Moore, J.) 77–83 (Academic, Oxford, 2012).

    Google Scholar 

  54. Swoap, S.J. & Weinshenker, D. Norepinephrine controls both torpor initiation and emergence via distinct mechanisms in the mouse. PLoS One 3, e4038 (2008).

    Article  Google Scholar 

  55. Geiser, F. & Ruf, T. Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. Physiol. Zool. 68, 935–966 (1995).

    Article  Google Scholar 

  56. Buck, C.L. & Barnes, B.M. Effects of ambient temperature on metabolic rate, respiratory quotient, and torpor in an arctic hibernator. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R255–R262 (2000).

    Article  CAS  Google Scholar 

  57. Geiser, F. Hibernation: Endotherms. In eLS (John Wiley & Sons, Ltd, Chichester, UK, 2011).

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Kelly L. Drew for her review and comments and the following agencies for funding: US Army Research Office (Grant W911NF-05-1-0280); US Army Medical Research and Material Command (Grant 05178001); National Institute of Neurological Disorders and Stroke (Grants NS041069-06 and R15NS070779); and Alaska Experimental Program to Stimulate Competitive Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tulasi R. Jinka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jinka, T., Duffy, L. Ethical considerations in hibernation research. Lab Anim 42, 248–252 (2013). https://doi.org/10.1038/laban.253

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/laban.253

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing