Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Adult zebrafish in CNS disease modeling: a tank that's half-full, not half-empty, and still filling

Abstract

The zebrafish (Danio rerio) is increasingly used in a broad array of biomedical studies, from cancer research to drug screening. Zebrafish also represent an emerging model organism for studying complex brain diseases. The number of zebrafish neuroscience studies is exponentially growing, significantly outpacing those conducted with rodents or other model organisms. Yet, there is still a substantial amount of resistance in adopting zebrafish as a first-choice model system. Studies of the repertoire of zebrafish neural and behavioral functions continue to reveal new opportunities for understanding the pathobiology of various CNS deficits. Although some of these models are well established in zebrafish, including models for anxiety, depression, and addiction, others are less recognized, for example, models of autism and obsessive-compulsive states. However, mounting data indicate that a wide spectrum of CNS diseases can be modeled in adult zebrafish. Here, we summarize recent findings using zebrafish CNS assays, discuss model limitations and the existing challenges, as well as outline future directions of research in this field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Miller, G. Mysteries of the brain. Why is mental illness so hard to treat? Science 338, 32–33 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Kalueff, A.V., Stewart, A.M. & Gottesman, II. Rethinking CNS disorders: time for new drug targets? Trends Pharmacol. Sci. 35, 491–492 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Hyman, S.E. Revitalizing psychiatric therapeutics. Neuropsychopharmacology 39, 220–229 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Piirainen, S. et al. Psychosocial stress on neuroinflammation and cognitive dysfunctions in Alzheimer′s disease: the emerging role for microglia? Neurosci. Biobehav. Rev. 77, 148–164 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Meshalkina, D.A. et al. Zebrafish models of autism spectrum disorder. Exp. Neurol. 3 February 2017 (http://dx.doi.org/10.1016/j.expneurol.2017.02.004).

  6. Stewart, A.M. et al. Molecular psychiatry of zebrafish. Mol. Psychiatry 20, 2–17 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Kaitin, K.I. & DiMasi, J.A. Pharmaceutical innovation in the 21st century: new drug approvals in the first decade, 2000–2009. Clin. Pharmacol. Ther. 89, 183–188 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Denayer, T., Stohr, T. & Van Roy, M. Animal models in translational medicine: Validation and prediction. New Horiz. Transl. Med. 2, 5–11 (2014).

    Google Scholar 

  9. Silverman, J.L. et al. Low stress reactivity and neuroendocrine factors in the BTBR T+tf/J mouse model of autism. Neuroscience 171, 1197–1208 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Welch, J.M. et al. Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature 448, 894–900 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Meshalkina, D.A., Song, C. & Kalueff, A.V. Better lab animal models for translational neuroscience research and CNS drug development. Lab Anim. (NY) 46, 91–92 (2017).

    Article  Google Scholar 

  12. Lauretti, E., Di Meco, A., Merali, S. & Pratico, D. Chronic behavioral stress exaggerates motor deficit and neuroinflammation in the MPTP mouse model of Parkinson′s disease. Transcult. Psychiatry 6, e733 (2016).

    Article  CAS  Google Scholar 

  13. Akutagava-Martins, G.C., Rohde, L.A. & Hutz, M.H. Genetics of attention-deficit/hyperactivity disorder: an update. Expert Rev. Neurother. 16, 145–156 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Taylor, S. Molecular genetics of obsessive-compulsive disorder: a comprehensive meta-analysis of genetic association studies. Mol. Psychiatry 18, 799–805 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Stewart, A.M., Braubach, O., Spitsbergen, J., Gerlai, R. & Kalueff, A.V. Zebrafish models for translational neuroscience research: from tank to bedside. Trends Neurosci. 37, 264–278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kalueff, A.V., Stewart, A.M. & Gerlai, R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol. Sci. 35, 63–75 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Khan, K.M. et al. Zebrafish models in neuropsychopharmacology and CNS drug discovery. Br. J. Pharmacol. 174, 1925–1944 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nguyen, M. et al. Developing ′integrative′ zebrafish models of behavioral and metabolic disorders. Behav. Brain Res. 256, 172–187 (2013).

    Article  PubMed  Google Scholar 

  19. Gerlai, R. Zebrafish antipredatory responses: a future for translational research? Behav. Brain Res. 207, 223–231 (2010).

    Article  PubMed  Google Scholar 

  20. Kalueff, A.V., Echevarria, D.J. & Stewart, A.M. Gaining translational momentum: more zebrafish models for neuroscience research. Prog. Neuropsychopharmacol. Biol. Psychiatry 55, 1–6 (2014).

    Article  PubMed  Google Scholar 

  21. Mayden, R.L. et al. Phylogenetic relationships of Danio within the order Cypriniformes: a framework for comparative and evolutionary studies of a model species. J. Exp. Zoolog. B Mol. Dev. Evol. 308, 642–654 (2007).

    Article  CAS  Google Scholar 

  22. Spence, R., Gerlach, G., Lawrence, C. & Smith, C. The behaviour and ecology of the zebrafish, Danio rerio. Biol. Rev. Camb. Philos. Soc. 83, 13–34 (2008).

    Article  PubMed  Google Scholar 

  23. Driever, W. et al. A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123, 37–46 (1996).

    CAS  PubMed  Google Scholar 

  24. Haffter, P. & Nusslein-Volhard, C. Large scale genetics in a small vertebrate, the zebrafish. Int. J. Dev. Biol. 40, 221–227 (1996).

    CAS  PubMed  Google Scholar 

  25. Gerlai, R. Antipredatory behavior of zebrafish: adaptive function and a tool for translational research. Evol. Psychol. 11, 591–605 (2013).

    Article  PubMed  Google Scholar 

  26. Howe, K. et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498–503 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Meyer, A. & Malaga-Trillo, E. Vertebrate genomics: more fishy tales about Hox genes. Curr. Biol. 9, R210–R213 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Stewart, A.M., Gerlai, R. & Kalueff, A.V. Developing highER-throughput zebrafish screens for in-vivo CNS drug discovery. Front. Behav. Neurosci. 9, 14 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Rennekamp, A.J. & Peterson, R.T. 15 years of zebrafish chemical screening. Curr. Opin. Chem. Biol. 24, 58–70 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Clark, K.J., Boczek, N.J. & Ekker, S.C. Stressing zebrafish for behavioral genetics. Rev. Neurosci. 22, 49–62 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Goldsmith, P. Zebrafish as a pharmacological tool: the how, why and when. Curr. Opin. Pharmacol. 4, 504–512 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Rihel, J. & Schier, A.F. Behavioral screening for neuroactive drugs in zebrafish. Dev. Neurobiol. 72, 373–385 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Parker, M.O. et al. Discrimination reversal and attentional sets in zebrafish (Danio rerio). Behav. Brain Res. 232, 264–268 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kulkarni, P. et al. Oral dosing in adult zebrafish: proof-of-concept using pharmacokinetics and pharmacological evaluation of carbamazepine. Pharmacol. Rep. 66, 179–183 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Nasiadka, A. & Clark, M.D. Zebrafish breeding in the laboratory environment. ILAR J. 53, 161–168 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Stewart, A.M. et al. A novel 3D method of locomotor analysis in adult zebrafish: Implications for automated detection of CNS drug-evoked phenotypes. J. Neurosci. Methods 255, 66–74 (2015).

    Article  PubMed  Google Scholar 

  37. Ellis, L.D., Soo, E.C., Achenbach, J.C., Morash, M.G. & Soanes, K.H. Use of the zebrafish larvae as a model to study cigarette smoke condensate toxicity. PLoS ONE 9, e115305 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Hill, A.J., Teraoka, H., Heideman, W. & Peterson, R.E. Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol. Sci. 86, 6–19 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Panzica-Kelly, J.M., Zhang, C.X. & Augustine-Rauch, K. Zebrafish embryo developmental toxicology assay. Methods Mol. Biol. 889, 25–50 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Kalueff, A.V. et al. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish 10, 70–86 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Green, J. et al. Automated high-throughput neurophenotyping of zebrafish social behavior. J. Neurosci. Methods 210, 266–271 (2012).

    Article  PubMed  Google Scholar 

  42. Miller, N. & Gerlai, R. Quantification of shoaling behaviour in zebrafish (Danio rerio). Behav. Brain Res. 184, 157–166 (2007).

    Article  PubMed  Google Scholar 

  43. Menger, G.J., Koke, J.R. & Cahill, G.M. Diurnal and circadian retinomotor movements in zebrafish. Vis. Neurosci. 22, 203–209 (2005).

    Article  PubMed  Google Scholar 

  44. Stewart, A.M. et al. Building zebrafish neurobehavioral phenomics: effects of common environmental factors on anxiety and locomotor activity. Zebrafish 12, 339–348 (2015).

    Article  PubMed  Google Scholar 

  45. D′Amico, D., Estivill, X. & Terriente, J. Switching to zebrafish neurobehavioral models: The obsessive-compulsive disorder paradigm. Eur. J. Pharmacol. 759, 142–150 (2015).

    Article  PubMed  CAS  Google Scholar 

  46. Liu, D. et al. Efficient gene targeting in zebrafish mediated by a zebrafish-codon-optimized cas9 and evaluation of off-targeting effect. J. Genet. Genomics 41, 43–46 (2014).

    Article  PubMed  CAS  Google Scholar 

  47. Kessler, R.C. et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). J. Am. Med. Assoc. 289, 3095–3105 (2003).

    Article  Google Scholar 

  48. Stewart A., K.F., DiLeo, J., Min Chung, K., Cachat, J. & Goodspeed, J et al. The developing utility of zebrafish in modeling neurobehavioral disorders. Int. J. Comp. Psychol. 23, 104–121 (2010).

    Google Scholar 

  49. Champagne, D.L., Hoefnagels, C.C., de Kloet, R.E. & Richardson, M.K. Translating rodent behavioral repertoire to zebrafish (Danio rerio): relevance for stress research. Behav. Brain Res. 214, 332–342 (2010).

    Article  PubMed  Google Scholar 

  50. Maximino, C., Marques de Brito, T., Dias, C.A., Gouveia, A. Jr. & Morato, S. Scototaxis as anxiety-like behavior in fish. Nat. Protoc. 5, 209–216 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Levin, E.D., Bencan, Z. & Cerutti, D.T. Anxiolytic effects of nicotine in zebrafish. Physiol. Behav. 90, 54–58 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Grossman, L. et al. Characterization of behavioral and endocrine effects of LSD on zebrafish. Behav. Brain Res. 214, 277–284 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Cachat, J. et al. Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nat. Protoc. 5, 1786–1799 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Maaswinkel, H., Zhu, L. & Weng, W. Using an automated 3D-tracking system to record individual and shoals of adult zebrafish. J. Vis. Exp. 5, 50681 (2013).

    Google Scholar 

  55. Cachat, J. et al. Three-dimensional neurophenotyping of adult zebrafish behavior. PLoS ONE 6, e17597 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cachat, J. et al. Unique and potent effects of acute ibogaine on zebrafish: the developing utility of novel aquatic models for hallucinogenic drug research. Behav. Brain Res. 236, 258–269 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Stewart, A.M.C., de Brito, T.M., Herculano, A.M., Gouveia, A. Jr & Morato, S. et al. Neurophenotyping of adult zebrafish using the light/dark box paradigm. Zebrafish Neurobehavioral Protocols. P. 157–167 (2011).

  58. Maximino, C. et al. Possible role of serotoninergic system in the neurobehavioral impairment induced by acute methylmercury exposure in zebrafish (Danio rerio). Neurotoxicol. Teratol. 33, 727–734 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Stewart, A. et al. Homebase behavior of zebrafish in novelty-based paradigms. Behav. Processes 85, 198–203 (2010).

    Article  PubMed  Google Scholar 

  60. Stewart, A.M., Gaikwad, S., Kyzar, E. & Kalueff, A.V. Understanding spatio-temporal strategies of adult zebrafish exploration in the open field test. Brain Res. 1451, 44–52 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Barba-Escobedo, P.A. & Gould, G.G. Visual social preferences of lone zebrafish in a novel environment: strain and anxiolytic effects. Genes Brain Behav. 11, 366–373 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Saverino, C. & Gerlai, R. The social zebrafish: behavioral responses to conspecific, heterospecific, and computer animated fish. Behav. Brain Res. 191, 77–87 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Engeszer, R.E., Ryan, M.J. & Parichy, D.M. Learned social preference in zebrafish. Curr. Biol. 14, 881–884 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Bass, S.L. & Gerlai, R. Zebrafish (Danio rerio) responds differentially to stimulus fish: the effects of sympatric and allopatric predators and harmless fish. Behav. Brain Res. 186, 107–117 (2008).

    Article  PubMed  Google Scholar 

  65. Wright, D., Rimmer, L.B., Pritchard, V.L., Krause, J. & Butlin, R.K. Inter and intra-population variation in shoaling and boldness in the zebrafish (Danio rerio). Naturwissenschaften 90, 374–377 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Moretz, J.A. et al. Behavioral syndromes and the evolution of correlated behavior in zebrafish. Behav. Ecol. 18, 556–562 (2007).

    Article  Google Scholar 

  67. Chakravarty, S. et al. Chronic unpredictable stress (CUS)-induced anxiety and related mood disorders in a zebrafish model: altered brain proteome profile implicates mitochondrial dysfunction. PLoS ONE 8, e63302 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mocelin, R. et al. N-acetylcysteine prevents stress-induced anxiety behavior in zebrafish. Pharmacol. Biochem. Behav. 139, 121–126 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Quadros, V.A. et al. Strain- and context-dependent behavioural responses of acute alarm substance exposure in zebrafish. Behav. Processes 122, 1–11 (2016).

    Article  PubMed  Google Scholar 

  70. Marcon, M. et al. Prevention of unpredictable chronic stress-related phenomena in zebrafish exposed to bromazepam, fluoxetine and nortriptyline. Psychopharmacology (Berl.) 233, 3815–3824 (2016).

    Article  CAS  Google Scholar 

  71. Giacomini, A.C. et al. Fluoxetine and diazepam acutely modulate stress induced-behavior. Behav. Brain Res. 296, 301–310 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Bencan, Z., Sledge, D. & Levin, E.D. Buspirone, chlordiazepoxide and diazepam effects in a zebrafish model of anxiety. Pharmacol. Biochem. Behav. 94, 75–80 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Maximino, C. et al. Role of serotonin in zebrafish (Danio rerio) anxiety: relationship with serotonin levels and effect of buspirone, WAY 100635, SB 224289, fluoxetine and para-chlorophenylalanine (pCPA) in two behavioral models. Neuropharmacology 71, 83–97 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Mathur, P. & Guo, S. Differences of acute versus chronic ethanol exposure on anxiety-like behavioral responses in zebrafish. Behav. Brain Res. 219, 234–239 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tran, S. et al. Time-dependent interacting effects of caffeine, diazepam, and ethanol on zebrafish behaviour. Prog. Neuropsychopharmacol. Biol. Psychiatry 75, 16–27 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Cachat, J. et al. Modeling withdrawal syndrome in zebrafish. Behav. Brain Res. 208, 371–376 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Sackerman, J. et al. Zebrafish behavior in novel environments: effects of acute exposure to anxiolytic compounds and choice of danio rerio line. Int. J. Comp. Psychol. 23, 43–61 (2010).

    PubMed  PubMed Central  Google Scholar 

  78. Egan, R.J. et al. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav. Brain Res. 205, 38–44 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pavlidis, M., Theodoridi, A. & Tsalafouta, A. Neuroendocrine regulation of the stress response in adult zebrafish, Danio rerio. Prog. Neuropsychopharmacol. Biol. Psychiatry 60, 121–131 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Steenbergen, P.J., Richardson, M.K. & Champagne, D.L. Patterns of avoidance behaviours in the light/dark preference test in young juvenile zebrafish: a pharmacological study. Behav. Brain Res. 222, 15–25 (2011).

    Article  PubMed  Google Scholar 

  81. Alsop, D. & Vijayan, M.M. Development of the corticosteroid stress axis and receptor expression in zebrafish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R711–R719 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Abreu, M.S. et al. Diazepam and fluoxetine decrease the stress response in zebrafish. PLoS ONE 9, e103232 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. (APA), A.P.A. Diagnostic and statistical manual of mental disorders (5th ed.). (APA, Washington, D.C. ; 2013).

    Google Scholar 

  84. Elsabbagh, M. et al. Global prevalence of autism and other pervasive developmental disorders. Autism Res. 5, 160–179 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Rice, C.E. et al. Evaluating Changes in the Prevalence of the Autism Spectrum Disorders (ASDs). Public Health Rev. 34, 1–22 (2012).

    Article  PubMed  Google Scholar 

  86. Geschwind, D.H. Genetics of autism spectrum disorders. Trends Cogn. Sci. 15, 409–416 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Chaste, P. & Leboyer, M. Autism risk factors: genes, environment, and gene-environment interactions. Dialogues Clin. Neurosci. 14, 281–292 (2012).

    PubMed  PubMed Central  Google Scholar 

  88. Zimmermann, F.F., Gaspary, K.V., Leite, C.E., De Paula Cognato, G. & Bonan, C.D. Embryological exposure to valproic acid induces social interaction deficits in zebrafish (Danio rerio): A developmental behavior analysis. Neurotoxicol. Teratol. 52, 36–41 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Butail, S., Bartolini, T. & Porfiri, M. Collective response of zebrafish shoals to a free-swimming robotic fish. PLoS ONE 8, e76123 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Polverino, G. & Porfiri, M. Zebrafish (Danio rerio) behavioural response to bioinspired robotic fish and mosquitofish (Gambusia affinis). Bioinspir. Biomim. 8, 044001 (2013).

    Article  PubMed  Google Scholar 

  91. Kopman, V., Laut, J., Polverino, G. & Porfiri, M. Closed-loop control of zebrafish response using a bioinspired robotic-fish in a preference test. J. R. Soc. Interface 10, 20120540 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Mahabir, S., Chatterjee, D., Buske, C. & Gerlai, R. Maturation of shoaling in two zebrafish strains: a behavioral and neurochemical analysis. Behav. Brain Res. 247, 1–8 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Buske, C. & Gerlai, R. Maturation of shoaling behavior is accompanied by changes in the dopaminergic and serotoninergic systems in zebrafish. Dev. Psychobiol. 54, 28–35 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Maaswinkel, H., Zhu, L. & Weng, W. Assessing social engagement in heterogeneous groups of zebrafish: a new paradigm for autism-like behavioral responses. PLoS ONE 8, e75955 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ng, M.C., Yang, Y.L. & Lu, K.T. Behavioral and synaptic circuit features in a zebrafish model of fragile X syndrome. PLoS ONE 8, e51456 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Way, G.P., Ruhl, N., Snekser, J.L., Kiesel, A.L. & McRobert, S.P. A comparison of methodologies to test aggression in zebrafish. Zebrafish 12, 144–151 (2015).

    Article  PubMed  Google Scholar 

  97. Lindeyer, C.M. & Reader, S.M. Social learning of escape routes in zebrafish and the stability of behavioural traditions. Anim. Behav. 79, 827–834 (2010).

    Article  Google Scholar 

  98. Butail, S., Mwaffo, V. & Porfiri, M. Model-free information-theoretic approach to infer leadership in pairs of zebrafish. Phys. Rev. E 93, 042411 (2016).

    Article  PubMed  CAS  Google Scholar 

  99. Abril-de-Abreu, R., Cruz, J. & Oliveira, R.F. Social Eavesdropping in Zebrafish: Tuning of Attention to Social Interactions. Sci. Rep. 5, 12678 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yu, L., Tucci, V., Kishi, S. & Zhdanova, I.V. Cognitive aging in zebrafish. PLoS ONE 1, e14 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Stewart, A.M. et al. A novel 3D method of locomotor analysis in adult zebrafish: Implications for automated detection of CNS drug-evoked phenotypes. J. Neurosci. Methods 255, 66–74 (2015).

    Article  PubMed  Google Scholar 

  102. Cachat, J. et al. Three-dimensional neurophenotyping of adult zebrafish behavior. PLoS ONE 6, e17597 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang, Y. et al. Maternal exposure to the water soluble fraction of crude oil, lead and their mixture induces autism-like behavioral deficits in zebrafish (Danio rerio) larvae. Ecotoxicol. Environ. Saf. 134P1, 23–30 (2016).

    Article  PubMed  CAS  Google Scholar 

  104. Scerbina, T., Chatterjee, D. & Gerlai, R. Dopamine receptor antagonism disrupts social preference in zebrafish: a strain comparison study. Amino Acids 43, 2059–2072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Eddins, D., Cerutti, D., Williams, P., Linney, E. & Levin, E.D. Zebrafish provide a sensitive model of persisting neurobehavioral effects of developmental chlorpyrifos exposure: comparison with nicotine and pilocarpine effects and relationship to dopamine deficits. Neurotoxicol. Teratol. 32, 99–108 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Iossifov, I. et al. De novo gene disruptions in children on the autistic spectrum. Neuron 74, 285–299 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Golzio, C. et al. KCTD13 is a major driver of mirrored neuroanatomical phenotypes of the 16p11.2 copy number variant. Nature 485, 363–367 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Oksenberg, N., Stevison, L., Wall, J.D. & Ahituv, N. Function and regulation of AUTS2, a gene implicated in autism and human evolution. PLoS Genet. 9, e1003221 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sugathan, A. et al. CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors. Proc. Natl. Acad. Sci. USA 111, E4468–E4477 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bernier, R. et al. Disruptive CHD8 mutations define a subtype of autism early in development. Cell 158, 263–276 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Stewart, A. et al. Zebrafish models to study drug abuse-related phenotypes. Rev. Neurosci. 22, 95–105 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Cousin, M.A. et al. Larval zebrafish model for FDA-approved drug repositioning for tobacco dependence treatment. PLoS ONE 9, e90467 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Lopez Patino, M.A., Yu, L., Yamamoto, B.K. & Zhdanova, I.V. Gender differences in zebrafish responses to cocaine withdrawal. Physiol. Behav. 95, 36–47 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kily, L.J. et al. Gene expression changes in a zebrafish model of drug dependency suggest conservation of neuro-adaptation pathways. J. Exp. Biol. 211, 1623–1634 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Webb, K.J. et al. Zebrafish reward mutants reveal novel transcripts mediating the behavioral effects of amphetamine. Genome Biol. 10, R81 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Best, J.D. et al. Non-associative learning in larval zebrafish. Neuropsychopharmacology 33, 1206–1215 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Tran, S., Chatterjee, D. & Gerlai, R. An integrative analysis of ethanol tolerance and withdrawal in zebrafish (Danio rerio). Behav. Brain Res. 276, 161–170 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Gerlai, R., Lee, V. & Blaser, R. Effects of acute and chronic ethanol exposure on the behavior of adult zebrafish (Danio rerio). Pharmacol. Biochem. Behav. 85, 752–761 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lopez-Patino, M.A., Yu, L., Cabral, H. & Zhdanova, I.V. Anxiogenic effects of cocaine withdrawal in zebrafish. Physiol. Behav. 93, 160–171 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Khor, B.S., Jamil, M.F., Adenan, M.I. & Shu-Chien, A.C. Mitragynine attenuates withdrawal syndrome in morphine-withdrawn zebrafish. PLoS ONE 6, e28340 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kyzar, E. et al. Behavioral effects of bidirectional modulators of brain monoamines reserpine and d-amphetamine in zebrafish. Brain Res. 1527, 108–116 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Gerlai, R., Chatterjee, D., Pereira, T., Sawashima, T. & Krishnannair, R. Acute and chronic alcohol dose: population differences in behavior and neurochemistry of zebrafish. Genes Brain Behav. 8, 586–599 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. World Health Organization. Edn. 10th revision (WHO, Geneva, 1992).

  124. Willcutt, E.G. The prevalence of DSM-IV attention-deficit/hyperactivity disorder: a meta-analytic review. Neurotherapeutics 9, 490–499 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Castellanos, F.X. et al. Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. J. Am. Med. Assoc. 288, 1740–1748 (2002).

    Article  Google Scholar 

  126. Solanto, M.V. Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: a review and integration. Behav. Brain Res. 94, 127–152 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. Kieling, C., Genro, J.P., Hutz, M.H. & Rohde, L.A. A current update on ADHD pharmacogenomics. Pharmacogenomics 11, 407–419 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Sagvolden, T., Russell, V.A., Aase, H., Johansen, E.B. & Farshbaf, M. Rodent models of attention-deficit/hyperactivity disorder. Biol. Psychiatry 57, 1239–1247 (2005).

    Article  PubMed  Google Scholar 

  129. Sagvolden, T. Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neurosci. Biobehav. Rev. 24, 31–39 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. de Jong, W., Linthorst, A.C. & Versteeg, H.G. The nigrostriatal dopamine system and the development of hypertension in the spontaneously hypertensive rat. Arch. Mal. Coeur Vaiss. 88, 1193–1196 (1995).

    CAS  PubMed  Google Scholar 

  131. Gainetdinov, R.R. & Caron, M.G. An animal model of attention deficit hyperactivity disorder. Mol. Med. Today 6, 43–44 (2000).

    Article  CAS  PubMed  Google Scholar 

  132. Shaywitz, B.A., Klopper, J.H. & Gordon, J.W. Methylphenidate in 6-hydroxydopamine-treated developing rat pups. Effects on activity and maze performance. Arch. Neurol. 35, 463–469 (1978).

    Article  CAS  PubMed  Google Scholar 

  133. Zhang, J. et al. Decreased axonal density and altered expression profiles of axonal guidance genes underlying lead (Pb) neurodevelopmental toxicity at early embryonic stages in the zebrafish. Neurotoxicol. Teratol. 33, 715–720 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Busch-Nentwich, E. et al. Sanger Institute Zebrafish Mutation Project mutant data submission. ZFIN Direct Data Submission (2013).

    Google Scholar 

  135. Lange, M. et al. The ADHD-susceptibility gene lphn3.1 modulates dopaminergic neuron formation and locomotor activity during zebrafish development. Mol. Psychiatry 17, 946–954 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Parker, M.O., Brock, A.J., Sudwarts, A. & Brennan, C.H. Atomoxetine reduces anticipatory responding in a 5-choice serial reaction time task for adult zebrafish. Psychopharmacology (Berl.) 231, 2671–2679 (2014).

    Article  CAS  Google Scholar 

  137. Kalueff, A.V. et al. Neurobiology of rodent self-grooming and its value for translational neuroscience. Nat. Rev. Neurosci. 17, 45–59 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Campbell, K.M. et al. OCD-Like behaviors caused by a neuropotentiating transgene targeted to cortical and limbic D1+ neurons. J. Neurosci. 19, 5044–5053 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Szechtman, H., Sulis, W. & Eilam, D. Quinpirole induces compulsive checking behavior in rats: a potential animal model of obsessive-compulsive disorder (OCD). Behav. Neurosci. 112, 1475–1485 (1998).

    Article  CAS  PubMed  Google Scholar 

  140. Greer, J.M. & Capecchi, M.R. Hoxb8 is required for normal grooming behavior in mice. Neuron 33, 23–34 (2002).

    Article  CAS  PubMed  Google Scholar 

  141. Chou-Green, J.M., Holscher, T.D., Dallman, M.F. & Akana, S.F. Compulsive behavior in the 5–HT2C receptor knockout mouse. Physiol. Behav. 78, 641–649 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. Hill, R.A. et al. Estrogen deficient male mice develop compulsive behavior. Biol. Psychiatry 61, 359–366 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Shmelkov, S.V. et al. Slitrk5 deficiency impairs corticostriatal circuitry and leads to obsessive-compulsive-like behaviors in mice. Nat. Med. 16, 598–602 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yadin, E., Friedman, E. & Bridger, W.H. Spontaneous alternation behavior: an animal model for obsessive-compulsive disorder? Pharmacol. Biochem. Behav. 40, 311–315 (1991).

    Article  CAS  PubMed  Google Scholar 

  145. Tsaltas, E. et al. Reinforced spatial alternation as an animal model of obsessive-compulsive disorder (OCD): investigation of 5–HT2C and 5–HT1D receptor involvement in OCD pathophysiology. Biol. Psychiatry 57, 1176–1185 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Round, J., Ross, B., Angel, M., Shields, K. & Lom, B. Slitrk gene duplication and expression in the developing zebrafish nervous system. Dev. Dyn. 243, 339–349 (2014).

    Article  CAS  PubMed  Google Scholar 

  147. Irons, T.D., Kelly, P.E., Hunter, D.L., Macphail, R.C. & Padilla, S. Acute administration of dopaminergic drugs has differential effects on locomotion in larval zebrafish. Pharmacol. Biochem. Behav. 103, 792–813 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Andrade, P. et al. Effects of bilateral lesions in thalamic reticular nucleus and orbitofrontal cortex in a T-maze perseverative model produced by 8-OH-DPAT in rats. Behav. Brain Res. 203, 108–112 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Lu, J., Peatman, E., Tang, H., Lewis, J. & Liu, Z. Profiling of gene duplication patterns of sequenced teleost genomes: evidence for rapid lineage-specific genome expansion mediated by recent tandem duplications. BMC Genomics 13, 246 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Semon, M. & Wolfe, K.H. Rearrangement rate following the whole-genome duplication in teleosts. Mol. Biol. Evol. 24, 860–867 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. Alsop, D. & Vijayan, M. The zebrafish stress axis: molecular fallout from the teleost-specific genome duplication event. Gen. Comp. Endocrinol. 161, 62–66 (2009).

    Article  CAS  PubMed  Google Scholar 

  152. Johnson, S.L. & Zon, L.I. Genetic backgrounds and some standard stocks and strains used in zebrafish developmental biology and genetics. Methods Cell Biol. 60, 357–359 (1999).

    Article  CAS  PubMed  Google Scholar 

  153. Hou, J., Fujimoto, T., Saito, T., Yamaha, E. & Arai, K. Generation of clonal zebrafish line by androgenesis without egg irradiation. Sci. Rep. 5, 13346 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lawrence, C., Ebersole, J.P. & Kesseli, R.V. Rapid growth and out-crossing promote female development in zebrafish (Danio rerio). Environ. Biol. Fishes 81, 239–246 (2008).

    Article  Google Scholar 

  155. Liew, W.C. & Orban, L. Zebrafish sex: a complicated affair. Brief. Funct. Genomics 13, 172–187 (2014).

    Article  PubMed  Google Scholar 

  156. Facciol, A., Tran, S. & Gerlai, R. Re-examining the factors affecting choice in the light-dark preference test in zebrafish. Behav. Brain Res. 327, 21–28 (2017).

    Article  PubMed  Google Scholar 

  157. Ahmad, F., Noldus, L.P.J.J., Tegelenbosch, R.A.J. & Richardson, M.K. Zebrafish embryos and larvae in behavioural assays. Behaviour 149, 1241–1281 (2012).

    Article  Google Scholar 

  158. Nichols, D.E. Hallucinogens. Pharmacol. Ther. 101, 131–181 (2004).

    Article  CAS  PubMed  Google Scholar 

  159. Hart, P.C. et al. Experimental Models of Anxiety for Drug Discovery and Brain Research. Methods Mol. Biol. 1438, 271–291 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Russian Foundation for Basic Research grant 16-04-00851 to A.V.K. He is the Chair of the International Zebrafish Neuroscience Research Consortium (ZNRC), and current President of the International Stress and Behavior Society (ISBS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan V Kalueff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meshalkina, D., Kysil, E., Warnick, J. et al. Adult zebrafish in CNS disease modeling: a tank that's half-full, not half-empty, and still filling. Lab Anim 46, 378–387 (2017). https://doi.org/10.1038/laban.1345

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/laban.1345

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing