Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Vascular aging and cardiac maladaptation in growth-restricted preterm infants

Abstract

Objective:

To assess arterial morphology and mechanics in preterm infants with fetal growth restriction (FGR) compared with those appropriate for gestational age (AGA) in the early neonatal period.

Study design:

This observational study involved 20 preterm FGR infants (28 to 32 weeks) of gestational age (GA) and birth weight (BW) <10th centile and 20 preterm AGA infants. Vascular ultrasound was performed to measure aortic properties.

Results:

GA and BW of FGR and AGA infants were 29.8±1.3 vs 30±0.9 weeks (P=0.78) and 923.4±168 vs 1403±237 g (P<0.001), respectively. At 10.5±1.3 (s.d.) days after birth, blood pressure (systolic 51±3 vs 46±4 mm Hg, P<0.001) and maximum aorta intima–media thickness (621±76 vs 479±54 μm; P<0.001) were significantly higher in FGR infants. Arterial wall stiffness and peripheral resistance were also increased in the FGR infants (2.36±0.24 vs 2.14±0.24, P=0.008 and 22.2±5 vs 13.7±2.3 mm Hg min ml−1, P<0.001), respectively. Significant correlations between vascular mechanics and cardiac function were observed (resistance vs E/E', r=0.7 and Tei index, r=0.79).

Conclusion:

Maladaptive arterial–ventricular coupling was noted. Early detection may aid in early therapeutic strategies such as afterload reduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Rosenberg A . The IUGR newborn. Semin Perinatol 2008; 32: 219–224.

    Article  Google Scholar 

  2. Crispi F, Bijnens B, Figueras F, Bartrons J, Eixarch E, Le Noble F et al. Fetal growth restriction results in remodelled and less efficient hearts in children. Circulation 2010; 121: 2427–2436.

    Article  Google Scholar 

  3. Voors W, Webber LS, Berenson GS . Time course studies of blood pressure in children: the Bogalusa heart study. Am J Epidemiol 1979; 109: 320–334.

    Article  CAS  Google Scholar 

  4. Clarke WR, Schrott H, Leaverton PE, Connor WE, Lauer RM . Tracking of blood lipids and blood pressure in school age children: the Muscatine study. Circulation 1978; 58: 626–634.

    Article  CAS  Google Scholar 

  5. Labarthe DR, Eissa M, Varas C . Childhood precursors of high blood pressure and elevated cholesterol. Ann Rev Public Health 1991; 12: 19–41.

    Article  Google Scholar 

  6. Crispi F, Figueras F, Cruz-Lemini M, Bartrons J, Bijnens B, Gratacos E . Cardiovascular programming in children born small for gestational age and relationship with prenatal signs of severity. Am J Obstet Gynecol 2012; 207: 121.e1–e9.

    Article  Google Scholar 

  7. Mahomed FA . Remarks on arterio-capillary fibrosis and its clinical recognition. Lancet 1877; 110: 232–234.

    Article  Google Scholar 

  8. Riva-Rocci S . Un nuovo sfigmomanometro. Gazz Med Torino 1896; 50-51: 1001–1007.

    Google Scholar 

  9. Polglase GR, Allison BJ, Coia E, Li A, Jenkin G, Malhotra A et al. Altered cardiovascular function at birth in growth-restricted preterm lambs. Pediatr Res 2016; 80: 538–546.

    Article  Google Scholar 

  10. Sehgal A, Doctor T, Menahem S . Cardiac function and arterial biophysical properties in small for gestational age infants: postnatal manifestations of fetal programming. J Pediatr 2013; 163: 1296–1300.

    Article  Google Scholar 

  11. Miles KA, McDonnell BJ, Maki-Petaja KM, Cockcroft JR, Wilkinson IB, McEniery CM et al. The impact of birth weight on blood pressure and arterial stiffness in later life: the Enigma Study. J Hypertens 2011; 29: 2324–2331.

    Article  CAS  Google Scholar 

  12. Boutouyrie P, Bussy C, Hayoz D, Hengstler J, Dartois N, Laloux B et al. Local pulse pressure and regression of arterial wall hypertrophy during long-term antihypertensive treatment. Circulation 2000; 101: 2601–2606.

    Article  CAS  Google Scholar 

  13. Jarvisalo MJ, Jartti L, Nanto-Salonen K, Irjala K, Rönnemaa T, Hartiala JJ et al. Increased aortic intima-media thickness: a marker of preclinical atherosclerosis in high-risk children. Circulation 2001; 104: 2943–2947.

    Article  CAS  Google Scholar 

  14. Koklu E, Ozturk MA, Gunes T, Akcakus M, Kurtoglu S . Is increased intima-media thickness associated with pre-atherosclerotic changes in intrauterine growth restricted newborns? Acta Paediatr 2007; 96: 1858–1863.

    Article  Google Scholar 

  15. Litwin M, Niemirska A . Intima-media thickness measurements in children with cardiovascular risk factors. Pediatr Nephrol 2008; 24: 707–719.

    Article  Google Scholar 

  16. Sehgal A, Allison BJ, Gwini SM, Miller SL, Polglase GR . Cardiac morphology and function in preterm growth restricted infants: relevance for clinical sequelae. Perinatal Society of Australia and New Zealand: CanberraPSANZ2017-15(http://dx.doi.org/10.1016/j.jpeds.2017.05.076 ).

  17. Visentin S, Grumolato F, Nardelli GB, Di Camillo B, Grisan E, Cosmi E . Early origins of adult disease: low birthweight and vascular remodelling. Atherosclerosis 2014; 237: 391–399.

    Article  CAS  Google Scholar 

  18. Skilton MR, Evans N, Griffiths KA, Harmer JA, Celermajer DS . Aortic wall thickness in newborns with intrauterine growth restriction. Lancet 2005; 365: 1484–1486.

    Article  Google Scholar 

  19. Bradley TJ, Potts JE, Lee SK, Potts MT, De Souza AM, Sandor GG . Early changes in the biophysical properties of the aorta in pre-adolescent children born small for gestational age. J Pediatr 2010; 156: 388–392.

    Article  Google Scholar 

  20. Rossi P, Tauzin L, Boussuges A, Frances Y . Conventional Doppler ultrasonography in the assessment of peripheral arterial circulation. Int Med J 2004; 25: 135–140.

    CAS  Google Scholar 

  21. Koestenberger M, Nagel B, Ravekes W, Gamillscheg A, Binder C, Avian A et al. Longitudinal systolic left ventricular function in preterm and term neonates: reference values of the mitral annular plane systolic excursion (MAPSE) and calculation of z-scores. Pediatr Cardiol 2015; 36: 20–26.

    Article  Google Scholar 

  22. Negrine RJS, Chikermane A, Wright JGC, Ewer AK . Assessment of myocardial function in neonates using tissue Doppler imaging. Arch Dis Child Fetal Neonatal Ed 2012; 97: F304–F306.

    Article  CAS  Google Scholar 

  23. Schmitz L, Koch H, Bein G, Brockmeier K . Left ventricular diastolic function in infants, children, and adolescents. Reference values and analysis of morphologic and physiologic determinants of echocardiographic Doppler flow signals during growth and maturation. J Am Coll Cardiol 1998; 32: 1441–1448.

    Article  CAS  Google Scholar 

  24. Schmitz L, Schneider MBE, Lange PE . Isovolumic relaxation time corrected for heart rate has a constant value from infancy to adolescence. J Am Soc Echocardiogr 2003; 16: 221–222.

    Article  Google Scholar 

  25. Rowland DG, Gutgesell HP . Contractility, preload, and afterload in healthy newborn infants. Am J Cardiol 1995; 75: 818–821.

    Article  CAS  Google Scholar 

  26. Martyn CN, Greenwald SE . Impaired synthesis of elastin in walls of aorta and large conduit arteries during early development as an initiating event in pathogenesis of systemic hypertension. Lancet 1997; 350: 953–955.

    Article  CAS  Google Scholar 

  27. Cheung YF, Taylor MJ, Fisk NM, Tsoi NS . Fetal origins of reduced arterial distensibility in the donor twin in twin-twin transfusion syndrome. Lancet 2000; 355: 1157–1158.

    Article  CAS  Google Scholar 

  28. Dobrin PB . Mechanical properties of arteries. Physiol Rev 1978; 58: 397–460.

    Article  CAS  Google Scholar 

  29. Lurbe E, Torro MI, Carvajal E, Alvarez V, Redón J . Birth weight impacts on wave reflections in children and adolescents. Hypertension 2003; 41: 646–650.

    Article  CAS  Google Scholar 

  30. Leeson CPM, Whincup PH, Cook DG, Donald AE, Papacosta O, Lucas A et al. Flow-mediated dilation in 9- to 11-year-old children: the influence of intrauterine and childhood factors. Circulation 1997; 96: 2233–2238.

    Article  CAS  Google Scholar 

  31. Fouron JC, Teyssier G, Shalaby L, Lessard M, van Doesburg NH . Fetal central blood flow alterations in human fetuses with umbilical artery reverse diastolic flow. Am J Perinatol 1993; 10: 197–207.

    Article  CAS  Google Scholar 

  32. Berry CL, Looker T . An alteration in the chemical structure of the aortic wall induced by a finite period of growth inhibition. J Anat 1973; 114: 83–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Clarenbach CF, Thurnheer R, Kohler M . Vascular dysfunction in chronic obstructive pulmonary disease: current evidence and perspectives. Expert Rev Respir Med 2012; 6: 37–43.

    Article  CAS  Google Scholar 

  34. Lakatta EG . Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises. Part III: cellular and molecular clues to heart and arterial aging. Circulation 2003; 107: 490–497.

    Article  Google Scholar 

  35. Akira M, Yoshiyuki S . Placental circulation, fetal growth and stiffness of the abdominal aorta in newborn infants. J Pediatr 2006; 148: 49–53.

    Article  Google Scholar 

  36. Boutouyrie P, Tropeano AI, Asmar R, Gautier I, Benetos A, Lacolley P et al. Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: a longitudinal study. Hypertension 2002; 39: 10–15.

    Article  CAS  Google Scholar 

  37. Cattell MA, Anderson JC, Hasleton PS . Age-related changes in amounts and concentrations of collagen and elastin in normotensive human thoracic aorta. Clin Chim Acta 1996; 245: 73–84.

    Article  CAS  Google Scholar 

  38. Mitchell GF, Parise H, Benjamin EJ, Larson MG, Keyes MJ, Vita JA et al. Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: the Framingham Heart Study. Hypertension 2004; 3: 1239–1245.

    Article  Google Scholar 

  39. Chaiworapongsa T, Espinoza J, Yoshimatsu J, Kalache K, Edwin S, Blackwell S et al. Subclinical myocardial injury in small-for gestational age neonates. J Matern Fetal Neonatal Med 2002; 11: 385–390.

    Article  CAS  Google Scholar 

  40. Takenaka T, Mimura T, Kanno Y, Suzuki H . Quantification of arterial stiffness as a risk factor to the progression of chronic kidney diseases. Am J Nephrol 2005; 25: 417–424.

    Article  Google Scholar 

  41. Zanardo V, Fanelli T, Weiner G, Fanos V, Zaninotto M, Visentin S . Intrauterine growth restriction is associated with persistent aortic wall thickening and glomerular proteinuria during infancy. Kidney Int 2011; 80: 119–123.

    Article  Google Scholar 

  42. Rodriguez-Lopez M, Osorio L, Acosta-Rojas R, Figueras J, Cruz-Lemini M, Figueras F et al. Influence of breastfeeding and postnatal nutrition on cardiovascular remodeling induced by fetal growth restriction. Pediatr Res 2016; 79: 100–106.

    Article  CAS  Google Scholar 

  43. Skilton MR, Pahkala K, Viikari JS, Rönnemaa T, Simell O, Jula A et al. The association of dietary alpha-linolenic acid with blood pressure and subclinical atherosclerosis in people born small for gestational age: the Special Turku Coronary Risk Factor Intervention Project study. J Pediatr 2015; 166: 1252–1257.

    Article  CAS  Google Scholar 

  44. Skilton MR, Ayer JG, Harmer JA, Webb K, Leeder SR, Marks GB et al. Impaired fetal growth and arterial wall thickening. A randomized trial of omega-3 supplementation. Pediatrics 2012; 129: e698.

    Article  Google Scholar 

  45. Ayer JG, Harmer JA, Xuan W, Toelle B, Webb K, Almqvist C et al. Dietary supplementation with n-3 polyunsaturated fatty acids in early childhood: effects on blood pressure and arterial structure and function at age 8 y. Am J Clin Nutr 2009; 90: 438–446.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Andra Malikiwi for assistance with aIMT measurements. This study was supported by an ANZ Trustees/Equity Trustees Medical Research & Technology in Victoria Grant, a National Health and Medical Research Council and National Heart Foundation of Australia Fellowship (GRP: 1105526), an Australian Research Council Future Fellowship (SLM: FT130100650), a Rebecca L Cooper Medical Research Foundation Fellowship (GRP) and the Victorian Government’s Operational Infrastructure Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Sehgal.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sehgal, A., Allison, B., Gwini, S. et al. Vascular aging and cardiac maladaptation in growth-restricted preterm infants. J Perinatol 38, 92–97 (2018). https://doi.org/10.1038/jp.2017.135

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2017.135

This article is cited by

Search

Quick links