Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Amniotic fluid rapid biomarkers are associated with intra-amniotic infection in preterm pregnancies regardless of the membrane status

Abstract

Objective:

The objective of this study was to evaluate the association of amniotic fluid lactate dehydrogenase and glucose concentrations with microbial invasion of amniotic cavity and histologic chorioamnionitis before 37 pregnancy weeks in women with or without preterm premature rupture of membranes.

Study Design:

Amniocentesis was performed on 70 women with suspected intra-amniotic infection. Standard biochemical methods, molecular microbiology and culture techniques were used. Histopathological examination of the placenta was performed.

Results:

Thirty (48%) women had microbial invasion of the amniotic cavity (MIAC), 53 (76%) women had histological chorioamnionitis and 28 women had both. The cutoff values for MIAC and histological chorioamnionitis were 429 IU l−1 for lactate dehydrogenase and 0.7 mmol l−1 for glucose. Both end points occurred equally often regardless of the membrane status.

Conclusion:

Increased amniotic fluid lactate dehydrogenase and decreased glucose were associated with MIAC and histological chorioamnionitis. However, test performance was of limited value.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Wu HC, Shen CM, Wu YY, Yuh YS, Kua KE . Subclinical histologic chorioamnionitis and related clinical and laboratory parameters in preterm deliveries. Pediatr Neonatol 2009; 50: 217–221.

    Article  PubMed  Google Scholar 

  2. Goldenberg RL, Culhane JF, Iams JD, Romero R . Epidemiology and causes of preterm birth. Lancet 2008; 371: 75–84.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Roescher AM, Timmer A, Erwich JJ, Bos AF . Placental pathology, perinatal death, neonatal outcome, and neurological development: a systematic review. PLoS One 2014; 9: e89419.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Garcia-Munoz Rodrigo F, Galan Henriquez GM, Ospina CG . Morbidity and mortality among very-low-birth-weight infants born to mothers with clinical chorioamnionitis. Pediatr Neonatol 2014; 55: 381–386.

    Article  PubMed  Google Scholar 

  5. Edwards RK . Chorioamnionitis and Labor. Obstet Gynecol Clin North Am 2005; 32: 287–296.

    Article  PubMed  Google Scholar 

  6. Xie A, Zhang W, Chen M, Wang Y, Wang Y, Zhou Q et al. Related factors and adverse neonatal outcomes in women with preterm premature rupture of membranes complicated by histologic chorioamnionitis. Med Sci Monit 2015; 21: 390–395.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Menon R, Taylor RN, Fortunato SJ . Chorioamnionitis – A complex pathophysiologic syndrome. Placenta 2010; 31: 113–120.

    Article  CAS  PubMed  Google Scholar 

  8. Lahra MM, Jeffery HE . A fetal response to chorioamnionitis is associated with early survival after preterm birth. Am J Obstet Gynecol 2004; 190: 147–151.

    Article  PubMed  Google Scholar 

  9. Vajrychova M, Kacerovsky M, Tambor V, Hornychova H, Lenco J . Microbial invasion and histological chorioamnionitis upregulate neutrophil-gelatinase associated lipocalin in preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med 2016; 29: 12–21.

    Article  CAS  PubMed  Google Scholar 

  10. Dulay AT, Buhimschi IA, Zhao G, Bahtiyar MO, Thung SF, Cackovic M et al. Compartmentalization of acute phase reactants interleukin-6, C-reactive protein and procalcitonin as biomarkers of intra-amniotic infection and chorioamnionitis. Cytokine 2015; 76: 236–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Romero R, Jimenez C, Lohda AK, Nores J, Hanaoka S, Avila C et al. Amniotic fluid glucose concentration: a rapid and simple method for the detection of intraamniotic infection in preterm labor. Am J Obstet Gynecol 1990; 163: 968–974.

    Article  CAS  PubMed  Google Scholar 

  12. Ford C, Genc MR . Optimized amniotic fluid analysis in patients suspected of intrauterine infection/inflammation. J Perinat Med 2011; 40: 33–37.

    PubMed  Google Scholar 

  13. Buhimschi CS, Bhandari V, Hamar BD, Bahtiyar MO, Zhao G, Sfakianaki AK et al. Proteomic profiling of the amniotic fluid to detect inflammation, infection, and neonatal sepsis. PLoS Med 2007; 4: e18.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Romero R, Miranda J, Chaiworapongsa T, Chaemsaithong P, Gotsch F, Dong Z et al. A novel molecular microbiologic technique for the rapid diagnosis of microbial invasion of the amniotic cavity and intra-amniotic infection in preterm labor with intact membranes. Am J Reprod Immunol 2014; 71: 330–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pettker CM, Buhimschi IA, Magloire LK, Sfakianaki AK, Hamar BD, Buhimschi CS . Value of placental microbial evaluation in diagnosing intra-amniotic infection. Obstet Gynecol 2007; 109: 739–749.

    Article  PubMed  Google Scholar 

  16. DiGiulio DB, Romero R, Kusanovic JP, Gomez R, Kim CJ, Seok KS et al. Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm pre-labor rupture of membranes. Am J Reprod Immunol 2010; 64: 38–57.

    PubMed  PubMed Central  Google Scholar 

  17. Payne MS, Bayatibojakhi S . Exploring preterm birth as a polymicrobial disease: an overview of the uterine microbiome. Front Immunol 2014; 5: 595.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gervasi MT, Romero R, Bracalente G, Chaiworapongsa T, Erez O, Dong Z et al. Viral invasion of the amniotic cavity (VIAC) in the midtrimester of pregnancy. J Matern Fetal Neonatal Med 2012; 25: 2002–2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Romero R, Miranda J, Chaiworapongsa T, Korzeniewski SJ, Chaemsaithong P, Gotsch F et al. Prevalence and clinical significance of sterile intra-amniotic inflammation in patients with preterm labor and intact membranes. Am J Reprod Immunol 2014; 72: 458–474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim CJ, Romero R, Chaemsaithong P, Chaiyasit N, Yoon BH, Kim YM . Acute chorioamnionitis and funisitis: definition, pathologic features, and clinical significance. Am J Obstet Gynecol 2015; 213 (4 Suppl): S29–S52.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hitti J, Tarczy-Hornoch P, Murphy J, Hillier SL, Aura J, Eschenbach DA . Amniotic fluid infection, cytokines, and adverse outcome among infants at 34 weeks' gestation or less. Obstet Gynecol 2001; 98: 1080–1088.

    CAS  PubMed  Google Scholar 

  22. Porreco RP, Heyborne KD, Shapiro H . Amniocentesis in the management of preterm premature rupture of the membranes: a retrospective cohort analysis. J Matern Fetal Neonatal Med 2008; 21: 573–579.

    Article  PubMed  Google Scholar 

  23. Maki Y, Furukawa S, Kodama Y, Sameshima H, Ikenoue T . Amniocentesis for threatened preterm labor with intact membranes and the impact on adverse outcome in infants born at 22 to 28 weeks of gestation. Early Hum Dev 2015; 91: 333–337.

    Article  PubMed  Google Scholar 

  24. Shinjo A, Otsuki K, Sawada M, Ota H, Tokunaka M, Oba T et al. Retrospective cohort study: a comparison of two different management strategies in patients with preterm premature rupture of membranes. Arch Gynecol Obstet 2012; 286: 337–345.

    Article  PubMed  Google Scholar 

  25. Akolekar R, Beta J, Picciarelli G, Ogilvie C, D'Antonio F . Procedure-related risk of miscarriage following amniocentesis and chorionic villus sampling: a systematic review and meta-analysis. Ultrasound Obstet Gynecol 2015; 45: 16–26.

    Article  CAS  PubMed  Google Scholar 

  26. Yeast JD, Garite TJ, Dorchester W . The risks of amniocentesis in the management of premature rupture of the membranes. Am J Obstet Gynecol 1984; 149: 505–508.

    Article  CAS  PubMed  Google Scholar 

  27. Lee SY, Park KH, Jeong EH, Oh KJ, Ryu A, Kim A . Intra-amniotic infection/inflammation as a risk factor for subsequent ruptured membranes after clinically indicated amniocentesis in preterm labor. J Korean Med Sci 2013; 28: 1226–1232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Garry D, Figueroa R, Aguero-Rosenfeld M, Martinez E, Visintainer P, Tejani N . A comparison of rapid amniotic fluid markers in the prediction of microbial invasion of the uterine cavity and preterm delivery. Obstet Gynecol 1996; 175: 1336–1341.

    CAS  Google Scholar 

  29. Buhimschi CS, Buhimschi IA, Abdel-Razeq S, Rosenberg VA, Thung SF, Zhao G et al. Proteomic biomarkers of intra-amniotic inflammation: relationship with funisitis and early-onset sepsis in the premature neonate. Pediatr Res 2007; 61: 318–324.

    Article  CAS  PubMed  Google Scholar 

  30. Dulay AT, Buhimschi CS, Zhao G, Oliver EA, Mbele A, Jing S et al. Soluble TLR2 is present in human amniotic fluid and modulates the intraamniotic inflammatory response to infection. J Immunol 2009; 182: 7244–7253.

    Article  CAS  PubMed  Google Scholar 

  31. Kidokoro K, Furuhashi M, Kuno N, Ishikawa K . Amniotic fluid neutrophil elastase and lactate dehydrogenase: association with histologic chorioamnionitis. Acta Obstet Gynecol Scand 2006; 85: 669–674.

    Article  CAS  PubMed  Google Scholar 

  32. Gauthier DW, Meyer WJ, Bieniarz A . Correlation of amniotic fluid glucose concentration and intraamniotic infection in patients with preterm labor or premature rupture of membranes. Am J Obstet Gynecol 1991; 165: 1105–1110.

    Article  CAS  PubMed  Google Scholar 

  33. Odibo AO, Rodis JF, Sanders MM, Borgida AF, Wilson M, Egan JF et al. Relationship of amniotic fluid markers of intra-amniotic infection with histopathology in cases of preterm labor with intact membranes. J Perinatol 1999; 19: 407–412.

    Article  CAS  PubMed  Google Scholar 

  34. Greig PC, Ernest JM, Teot L . Low amniotic fluid glucose levels are a specific but not a sensitive marker for subclinical intrauterine infections in patients in preterm labor with intact membranes. Am J Obstet Gynecol 1994; 171: 365–370 discussion 370-1.

    Article  CAS  PubMed  Google Scholar 

  35. Romero R, Miranda J, Chaemsaithong P, Chaiworapongsa T, Kusanovic JP, Dong Z et al. Sterile and microbial-associated intra-amniotic inflammation in preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med 2015; 28: 1394–1409.

    Article  PubMed  Google Scholar 

  36. Combs CA, Gravett M, Garite TJ, Hickok DE, Lapidus J, Porreco R et al. Amniotic fluid infection, inflammation, and colonization in preterm labor with intact membranes. Am J Obstet Gynecol 2014; 210: 125.e1–125.e15.

    Article  Google Scholar 

Download references

Acknowledgements

The study was funded by Helsinki University Hospital Research grant (TYH2013340), by The Finnish Medical Foundation, and by the SalWe Research Program ‘Get it Done’ (Tekes- The Finnish Funding Agency for Technology and Innovation grant 3986/31/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Myntti.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myntti, T., Rahkonen, L., Tikkanen, M. et al. Amniotic fluid rapid biomarkers are associated with intra-amniotic infection in preterm pregnancies regardless of the membrane status. J Perinatol 36, 606–611 (2016). https://doi.org/10.1038/jp.2016.59

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2016.59

This article is cited by

Search

Quick links