Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Analysis of circulating human and viral microRNAs in patients with congenital cytomegalovirus infection

Abstract

Objective:

Cytomegalovirus (CMV) is the most common cause of congenital infection and can cause neurodevelopmental disabilities, although a majority of patients are asymptomatic. Biomarkers associated with disease severity would be desirable to distinguish asymptomatic from mildly symptomatic patients who may benefit from antiviral treatment. MicroRNAs (miRNAs) are noncoding RNAs that may have the potential to serve as biomarkers.

Study Design:

Thirteen infants with congenital CMV infection were enrolled, and plasma levels of 11 human- and 3 CMV-encoded miRNAs were quantitated by real-time PCR. Plasma levels of miRNAs and their associations with clinical features were evaluated.

Results:

The levels of miR-183-5p and miR-210-3p were significantly higher in patients with congenital CMV infection than in control infants, whereas no significant associations between levels of miRNAs and clinical features of congenital CMV infection were observed.

Conclusion:

Plasma miRNAs could be associated with the pathogenesis of congenital CMV infection and could be used as disease biomarkers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Torii Y, Kimura H, Ito Y, Hayakawa M, Tanaka T, Tajiri H et al. Clinicoepidemiologic status of mother-to-child infections: a nationwide survey in Japan. Pediatr Infect Dis J 2013; 32 (6): 699–701.

    Article  Google Scholar 

  2. Kenneson A, Cannon MJ . Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. Rev Med Virol 2007; 17 (4): 253–276.

    Article  Google Scholar 

  3. Boppana SB, Ross SA, Fowler KB . Congenital cytomegalovirus infection: clinical outcome. Clin Infect Dis 2013; 57 (Suppl 4): S178–S181.

    Article  Google Scholar 

  4. Zavattoni M, Lombardi G, Rognoni V, Furione M, Klersy C, Stronati M et al. Maternal, fetal, and neonatal parameters for prognosis and counseling of HCMV congenital infection. J Med Virol 2014; 86 (12): 2163–2170.

    Article  CAS  Google Scholar 

  5. Kawada J, Torii Y, Kawano Y, Suzuki M, Kamiya Y, Kotani T et al. Viral load in children with congenital cytomegalovirus infection identified on newborn hearing screening. J Clin Virol 2015; 65: 41–45.

    Article  Google Scholar 

  6. Forner G, Abate D, Mengoli C, Palu G, Gussetti N . High cytomegalovirus (CMV) DNAemia predicts CMV sequelae in asymptomatic congenitally infected newborns born to women with primary infection during pregnancy. J Infect Dis 2015; 212 (1): 67–71.

    Article  CAS  Google Scholar 

  7. Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell 2009; 136 (2): 215–233.

    Article  CAS  Google Scholar 

  8. Kawano Y, Iwata S, Kawada J, Gotoh K, Suzuki M, Torii Y et al. Plasma viral microRNA profiles reveal potential biomarkers for chronic active Epstein-Barr virus infection. J Infect Dis 2013; 208 (5): 771–779.

    Article  CAS  Google Scholar 

  9. Stern-Ginossar N, Elefant N, Zimmermann A, Wolf DG, Saleh N, Biton M et al. Host immune system gene targeting by a viral miRNA. Science 2007; 317 (5836): 376–381.

    Article  CAS  Google Scholar 

  10. Stern-Ginossar N, Saleh N, Goldberg MD, Prichard M, Wolf DG, Mandelboim O . Analysis of human cytomegalovirus-encoded microRNA activity during infection. J Virol 2009; 83 (20): 10684–10693.

    Article  CAS  Google Scholar 

  11. Fu M, Gao Y, Zhou Q, Zhang Q, Peng Y, Tian K et al. Human cytomegalovirus latent infection alters the expression of cellular and viral microRNA. Gene 2014; 536 (2): 272–278.

    Article  CAS  Google Scholar 

  12. Li S, Zhu J, Zhang W, Chen Y, Zhang K, Popescu LM et al. Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation 2011; 124 (2): 175–184.

    Article  CAS  Google Scholar 

  13. Lisboa LF, Egli A, O'Shea D, Asberg A, Hartmann A, Rollag H et al. Hcmv-miR-UL22A-5p: a biomarker in transplantation with broad impact on host gene expression and potential immunological implications. Am J Transplant 2015; 15 (7): 1893–1902.

    Article  CAS  Google Scholar 

  14. Sacheli R, Nguyen L, Borgs L, Vandenbosch R, Bodson M, Lefebvre P et al. Expression patterns of miR-96, miR-182 and miR-183 in the development inner ear. Gene Expr Patterns 2009; 9 (5): 364–370.

    Article  CAS  Google Scholar 

  15. Li H, Kloosterman W, Fekete DM . MicroRNA-183 family members regulate sensorineural fates in the inner ear. J Neurosci 2010; 30 (9): 3254–3263.

    Article  CAS  Google Scholar 

  16. Chan YC, Banerjee J, Choi SY, Sen CK . miR-210: the master hypoxamir. Microcirculation 2012; 19 (3): 215–223.

    Article  CAS  Google Scholar 

  17. Chan SY, Loscalzo J . MicroRNA-210: a unique and pleiotropic hypoxamir. Cell Cycle 2010; 9 (6): 1072–1083.

    Article  CAS  Google Scholar 

  18. Pereira L, Petitt M, Fong A, Tsuge M, Tabata T, Fang-Hoover J et al. Intrauterine growth restriction caused by underlying congenital cytomegalovirus infection. J Infect Dis 2014; 209 (10): 1573–1584.

    Article  CAS  Google Scholar 

  19. van Rooij E, Kauppinen S . Development of microRNA therapeutics is coming of age. EMBO Mol Med 2014; 6 (7): 851–864.

    Article  CAS  Google Scholar 

  20. Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K et al. Treatment of HCV infection by targeting microRNA. N Engl J Med 2013; 368 (18): 1685–1694.

    Article  CAS  Google Scholar 

  21. Egli A, Lisboa LF, O'Shea D, Asberg A, Mueller T, Emery V et al. Complexity of host micro-RNA response to cytomegalovirus reactivation after organ transplantation. Am J Transplant 2016; 16 (2): 650–660.

    Article  CAS  Google Scholar 

  22. Nallamshetty S, Chan SY, Loscalzo J . Hypoxia: a master regulator of microRNA biogenesis and activity. Free Radic Biol Med 2013; 64: 20–30.

    Article  CAS  Google Scholar 

  23. Maccani MA, Avissar-Whiting M, Banister CE, McGonnigal B, Padbury JF, Marsit CJ . Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-21, and miR-146a in the placenta. Epigenetics 2010; 5 (7): 583–589.

    Article  CAS  Google Scholar 

  24. Sen CK, Gordillo GM, Khanna S, Roy S . Micromanaging vascular biology: tiny microRNAs play big band. J Vasc Res 2009; 46 (6): 527–540.

    Article  CAS  Google Scholar 

  25. Shi H, Chen L, Wang H, Zhu S, Dong C, Webster KA et al. Synergistic induction of miR-126 by hypoxia and HDAC inhibitors in cardiac myocytes. Biochem Biophys Res Commun 2013; 430 (2): 827–832.

    Article  CAS  Google Scholar 

  26. Qin B, Yang H, Xiao B . Role of microRNAs in endothelial inflammation and senescence. Mol Biol Rep 2012; 39 (4): 4509–4518.

    Article  CAS  Google Scholar 

  27. Zawislak CL, Beaulieu AM, Loeb GB, Karo J, Canner D, Bezman NA et al. Stage-specific regulation of natural killer cell homeostasis and response against viral infection by microRNA-155. Proc Natl Acad Sci USA 2013; 110 (17): 6967–6972.

    Article  CAS  Google Scholar 

  28. Dhuruvasan K, Sivasubramanian G, Pellett PE . Roles of host and viral microRNAs in human cytomegalovirus biology. Virus Res 2011; 157 (2): 180–192.

    Article  CAS  Google Scholar 

  29. Santhakumar D, Forster T, Laqtom NN, Fragkoudis R, Dickinson P, Abreu-Goodger C et al. Combined agonist-antagonist genome-wide functional screening identifies broadly active antiviral microRNAs. Proc Natl Acad Sci USA 2010; 107 (31): 13830–13835.

    Article  CAS  Google Scholar 

  30. Pineles BL, Romero R, Montenegro D, Tarca AL, Han YM, Kim YM et al. Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia. Am J Obstet Gynecol 2007; 196 (3): 261 e261–261 e266.

    Article  Google Scholar 

  31. Huang L, Shen Z, Xu Q, Huang X, Chen Q, Li D . Increased levels of microRNA-424 are associated with the pathogenesis of fetal growth restriction. Placenta 2013; 34 (7): 624–627.

    Article  CAS  Google Scholar 

  32. Tuddenham L, Pfeffer S . Roles and regulation of microRNAs in cytomegalovirus infection. Biochim Biophys Acta 2011; 1809 (11-12): 613–622.

    Article  CAS  Google Scholar 

  33. Meshesha MK, Veksler-Lublinsky I, Isakov O, Reichenstein I, Shomron N, Kedem K et al. The microRNA transcriptome of human cytomegalovirus (HCMV). Open Virol J 2012; 6: 38–48.

    Article  CAS  Google Scholar 

  34. Veksler-Lublinsky I, Shemer-Avni Y, Meiri E, Bentwich Z, Kedem K, Ziv-Ukelson M . Finding quasi-modules of human and viral miRNAs: a case study of human cytomegalovirus (HCMV). BMC Bioinformatics 2012; 13: 322.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the physicians for providing samples from their patients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Ito.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawano, Y., Kawada, J., Kamiya, Y. et al. Analysis of circulating human and viral microRNAs in patients with congenital cytomegalovirus infection. J Perinatol 36, 1101–1105 (2016). https://doi.org/10.1038/jp.2016.157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2016.157

This article is cited by

Search

Quick links