Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

High oleic/stearic fatty-acid desaturation index in cord plasma from infants of mothers with gestational diabetes

Abstract

Objective:

Enhanced fatty-acid desaturation by stearoyl-CoA desaturase enzyme-1 (SCD1) is associated with obesity. This study determined desaturation in the cord plasma of newborns of mothers with and without gestational diabetes (GDM).

Study design:

Newborns of mothers with GDM (n=21) and without (control, n=22) were recruited. Cord plasma fatty-acid desaturation indices (palmitoleic/palmitic, oleic/stearic ratios) were compared, and correlated with anthropometrics and biochemical measures. A subset of very low-density lipoprotein (VLDL) desaturation indices were determined to approximate the liver SCD1 activity.

Result:

The total oleic/stearic index was higher in GDM, despite adjustment for cord glucose concentrations. Among GDM and controls, the oleic/stearic index correlated with cord glucose concentrations (rs=0.36, P=0.02). Both palmitoleic/palmitic and oleic/stearic indices correlated with waist circumference (r=0.47, P=0.001; r=0.37, P=0.01). The VLDL oleic/stearic index was higher in GDM.

Conclusion:

The elevated total oleic/stearic index suggests increased lipogenesis in GDM newborns. Factors in addition to glucose supply may influence fetal SCD1 activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. King KC, Adam PA, Laskowski DE, Schwartz R . Sources of fatty acids in the newborn. Pediatrics 1971; 47 (1)Suppl 2 192–198.

    Google Scholar 

  2. Garg M, Bassilian S, Bell C, Lee S, Lee WNP . Hepatic de novo lipogenesis in stable low-birth-weight infants during exclusive breast milk feedings and during parenteral nutrition. JPEN J Parenter Enteral Nutr 2005; 29 (2): 81–86.

    Article  CAS  Google Scholar 

  3. Antony N, Weir JR, McDougall AR, Mantamadiotis T, Meikle PJ, Cole TJ et al. cAMP response element binding protein1 is essential for activation of steroyl co-enzyme a desaturase 1 (Scd1) in mouse lung type II epithelial cells. PLoS One 2013; 8 (4): e59763.

    Article  CAS  Google Scholar 

  4. Rodriguez A, Sarda P, Nessmann C, Boulot P, Leger CL, Descomps B . Δ6- and Δ5-desaturase activities in the human fetal liver: kinetic aspects. J Lipid Res 1998; 39 (9): 1825–1832.

    CAS  PubMed  Google Scholar 

  5. Ntambi JM, Miyazaki M, Stoehr JP, Lan H, Kendziorski CM, Yandell BS et al. Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc Natl Acad Sci USA 2002; 99 (17): 11482–11486.

    Article  CAS  Google Scholar 

  6. Sjogren P, Sierra-Johnson J, Gertow K, Rosell M, Vessby B, de Faire U et al. Fatty acid desaturases in human adipose tissue: relationships between gene expression, desaturation indexes and insulin resistance. Diabetologia 2008; 51 (2): 328–335.

    Article  CAS  Google Scholar 

  7. Gutierrez-Juarez R, Pocai A, Mulas C, Ono H, Bhanot S, Monia BP et al. Critical role of stearoyl-CoA desaturase-1 (SCD1) in the onset of diet-induced hepatic insulin resistance. J Clin Invest 2006; 116 (6): 1686–1695.

    Article  CAS  Google Scholar 

  8. Attie AD, Krauss RM, Gray-Keller MP, Brownlie A, Miyazaki M, Kastelein JJ et al. Relationship between stearoyl-CoA desaturase activity and plasma triglycerides in human and mouse hypertriglyceridemia. J Lipid Res 2002; 43 (11): 1899–1907.

    Article  CAS  Google Scholar 

  9. Peter A, Cegan A, Wagner S, Lehmann R, Stefan N, Konigsrainer A et al. Hepatic lipid composition and stearoyl-coenzyme A desaturase 1 mRNA expression can be estimated from plasma VLDL fatty acid ratios. Clin Chem 2009; 55 (12): 2113–2120.

    Article  CAS  Google Scholar 

  10. Jeyakumar SM, Lopamudra P, Padmini S, Balakrishna N, Giridharan NV, Vajreswari A . Fatty acid desaturation index correlates with body mass and adiposity indices of obesity in Wistar NIN obese mutant rat strains WNIN/Ob and WNIN/GR-Ob. Nutr Metab 2009; 6: 27.

    Article  Google Scholar 

  11. Warensjo E, Rosell M, Hellenius ML, Vessby B, De Faire U, Riserus U . Associations between estimated fatty acid desaturase activities in serum lipids and adipose tissue in humans: links to obesity and insulin resistance. Lipids Health Dis 2009; 8: 37.

    Article  Google Scholar 

  12. Okada T, Furuhashi N, Kuromori Y, Miyashita M, Iwata F, Harada K . Plasma palmitoleic acid content and obesity in children. Am J Clin Nutr 2005; 82 (4): 747–750.

    Article  CAS  Google Scholar 

  13. Miyazaki M, Flowers MT, Sampath H, Chu K, Otzelberger C, Liu X et al. Hepatic stearoyl-CoA desaturase-1 deficiency protects mice from carbohydrate-induced adiposity and hepatic steatosis. Cell Metab 2007; 6 (6): 484–496.

    Article  CAS  Google Scholar 

  14. Hu CC, Qing K, Chen Y . Diet-induced changes in stearoyl-CoA desaturase 1 expression in obesity-prone and -resistant mice. Obes Res 2004; 12 (8): 1264–1270.

    Article  CAS  Google Scholar 

  15. Sampath H, Ntambi JM . Polyunsaturated fatty acid regulation of genes of lipid metabolism. Annu Rev Nutr 2005; 25: 317–340.

    Article  CAS  Google Scholar 

  16. Biddinger SB, Miyazaki M, Boucher J, Ntambi JM, Kahn CR . Leptin suppresses stearoyl-CoA desaturase 1 by mechanisms independent of insulin and sterol regulatory element-binding protein-1c. Diabetes 2006; 55 (7): 2032–2041.

    Article  CAS  Google Scholar 

  17. Garg M, Bassilian S, Bell C, Lee S, Lee WN . Hepatic de novo lipogenesis in stable low-birth-weight infants during exclusive breast milk feedings and during parenteral nutrition. JPEN J Parenter Enteral Nutr 2005; 29 (2): 81–86.

    Article  CAS  Google Scholar 

  18. Carpenter MW, Coustan DR . Criteria for screening tests for gestational diabetes. Am J Obstet Gynecol 1982; 144 (7): 768–773.

    Article  CAS  Google Scholar 

  19. Alexander GR, Himes JH, Kaufman RB, Mor J, Kogan M . A United States national reference for fetal growth. Obstet Gynecol 1996; 87 (2): 163–168.

    Article  CAS  Google Scholar 

  20. Ong KK, Ahmed ML, Sherriff A, Woods KA, Watts A, Golding J et al. Cord blood leptin is associated with size at birth and predicts infancy weight gain in humans. ALSPAC Study Team. Avon Longitudinal Study of Pregnancy and Childhood. J Clin Endocrinol Metab 1999; 84 (3): 1145–1148.

    Article  CAS  Google Scholar 

  21. de Bruin NC, van Velthoven KA, Stijnen T, Juttmann RE, Degenhart HJ, Visser HK . Quantitative assessment of infant body fat by anthropometry and total-body electrical conductivity. Am J Clin Nutr 1995; 61 (2): 279–286.

    Article  CAS  Google Scholar 

  22. Yee JK, Lee WN, Han G, Ross MG, Desai M . Organ-specific alterations in fatty acid de novo synthesis and desaturation in a rat model of programmed obesity. Lipids Health Dis 2011; 10: 72.

    Article  CAS  Google Scholar 

  23. Ortega-Senovilla H, Alvino G, Taricco E, Cetin I, Herrera E . Gestational diabetes mellitus upsets the proportion of fatty acids in umbilical arterial but not venous plasma. Diabetes Care 2009; 32 (1): 120–122.

    Article  CAS  Google Scholar 

  24. Enke U, Jaudszus A, Schleussner E, Seyfarth L, Jahreis G, Kuhnt K . Fatty acid distribution of cord and maternal blood in human pregnancy: special focus on individual trans fatty acids and conjugated linoleic acids. Lipids Health Dis 2011; 10: 247.

    Article  CAS  Google Scholar 

  25. Acuff RV, Dunworth RG, Webb LW, Lane JR . Transport of deuterium-labeled tocopherols during pregnancy. Am J Clin Nutr 1998; 67 (3): 459–464.

    Article  CAS  Google Scholar 

  26. Fontanals-Ferrer N, Serrat-Serrat J, Sorribas-Vivas A, Gonzalez-Garcia C, Gonzalez-Sastre F, Gomez-Gerique J . Quick method of determining lipoproteins, including those of intermediate density, in serum. Clin Chem 1988; 34 (9): 1753–1757.

    CAS  PubMed  Google Scholar 

  27. American Diabetes Association. Standards of Medical Care in Diabetes—2012. Diabetes Care 2012; 35 (Supplement 1): S11–S63.

    Article  Google Scholar 

  28. Warensjo E, Riserus U, Vessby B . Fatty acid composition of serum lipids predicts the development of the metabolic syndrome in men. Diabetologia 2005; 48 (10): 1999–2005.

    Article  CAS  Google Scholar 

  29. Garcia-Serrano S, Moreno-Santos I, Garrido-Sanchez L, Gutierrez-Repiso C, Garcia-Almeida JM, Garcia-Arnes J et al. Stearoyl-CoA desaturase-1 is associated with insulin resistance in morbidly obese subjects. Mol Med 2011; 17 (3-4): 273–280.

    Article  CAS  Google Scholar 

  30. Yee JK, Mao CS, Hummel HS, Lim S, Sugano S, Rehan VK et al. Compartmentalization of stearoyl-coenzyme A desaturase 1 activity in HepG2 cells. J Lipid Res 2008; 49 (10): 2124–2134.

    Article  CAS  Google Scholar 

  31. Feig DS, Briggs GG, Koren G . Oral antidiabetic agents in pregnancy and lactation: a paradigm shift? Ann Pharmacother 2007; 41 (7-8): 1174–1180.

    Article  CAS  Google Scholar 

  32. Kim E, Liu NC, Yu IC, Lin HY, Lee YF, Sparks JD et al. Metformin inhibits nuclear receptor TR4-mediated hepatic stearoyl-CoA desaturase 1 gene expression with altered insulin sensitivity. Diabetes 2011; 60 (5): 1493–1503.

    Article  CAS  Google Scholar 

  33. Prasad MR, Joshi VC . Regulation of rat hepatic stearoyl coenzyme A desaturase. The roles of insulin and carbohydrate. J Biol Chem 1979; 254 (4): 997–999.

    CAS  PubMed  Google Scholar 

  34. Freinkel N . Banting lecture 1980: of pregnancy and progeny. Diabetes 1980; 29 (12): 1023–1035.

    Article  CAS  Google Scholar 

  35. Herrera E, Lasuncion M . Maternal-fetal transfer of lipid metabolites In: Polin R, Fox W, Abman S (eds) Fetal and Neonatal Physiology 4th edn Saunders (Elsevier): Philadelphia, PA, USA, 2011 pp 441–453.

    Chapter  Google Scholar 

  36. Coleman RA, Haynes EB . Synthesis and release of fatty acids by human trophoblast cells in culture. J Lipid Res 1987; 28 (11): 1335–1341.

    CAS  PubMed  Google Scholar 

  37. Weiss R, Dufour S, Groszmann A, Petersen K, Dziura J, Taksali SE et al. Low adiponectin levels in adolescent obesity: a marker of increased intramyocellular lipid accumulation. J Clin Endocrinol Metab 2003; 88 (5): 2014–2018.

    Article  CAS  Google Scholar 

  38. Ryan AS, Berman DM, Nicklas BJ, Sinha M, Gingerich RL, Meneilly GS et al. Plasma adiponectin and leptin levels, body composition, and glucose utilization in adult women with wide ranges of age and obesity. Diabetes Care 2003; 26 (8): 2383–2388.

    Article  CAS  Google Scholar 

  39. Gallo S, Egeland G, Meltzer S, Legault L, Kubow S . Plasma fatty acids and desaturase activity are associated with circulating adiponectin in healthy adolescent girls. J Clin Endocrinol Metab 2010; 95 (5): 2410–2417.

    Article  CAS  Google Scholar 

  40. Yee JK, Phillips SA, Allamehzadeh K, Herbst KL . Subcutaneous adipose tissue fatty acid desaturation in adults with and without rare adipose disorders. Lipids Health Dis 2012; 11: 19.

    Article  CAS  Google Scholar 

  41. Schaefer-Graf UM, Wendt L, Sacks DA, Kilavuz O, Gaber B, Metzner S et al. How many sonograms are needed to reliably predict the absence of fetal overgrowth in gestational diabetes mellitus pregnancies? Diabetes Care 2011; 34 (1): 39–43.

    Article  Google Scholar 

  42. Taylor RW, Jones IE, Williams SM, Goulding A . Evaluation of waist circumference, waist-to-hip ratio, and the conicity index as screening tools for high trunk fat mass, as measured by dual-energy X-ray absorptiometry, in children aged 3–19 y. Am J Clin Nutr 2000; 72 (2): 490–495.

    Article  CAS  Google Scholar 

  43. Li C, Ford ES, Mokdad AH, Cook S . Recent trends in waist circumference and waist-height ratio among US children and adolescents. Pediatrics 2006; 118 (5): e1390–e1398.

    Article  Google Scholar 

  44. Roswall J, Bergman S, Almqvist-Tangen G, Alm B, Niklasson A, Nierop AF et al. Population-based waist circumference and waist-to-height ratio reference values in preschool children. Acta Paediatr 2009; 98 (10): 1632–1636.

    Article  Google Scholar 

  45. Spolidoro JV, Pitrez Filho ML, Vargas LT, Santana JC, Pitrez E, Hauschild JA et al. Waist circumference in children and adolescents correlate with metabolic syndrome and fat deposits in young adults. Clin Nutr 2012; 32 (1): 93–97.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Department of Obstetrics and Gynecology, the Department of Pediatrics, the Bionutrition Core of the CTSI and the Biomedical Mass Spectrometry Facility for their support. We thank the following individuals for their contributions: Jessica Padilla and Evelyn Lopez (study coordinators); Peter Christenson, PhD (biostatistician); Lawrence Castellani, PhD (advice on VLDL isolation); Diana Wolfe, MD and Christiane Guberman, MD (sample collection); Ashley Martin and Juan Vega (technical assistance). The study was supported by NIH K23 DK08324, the Clinical Scholar Award from the Pediatric Endocrine Society (to JKY) and the UCLA CTSI (UL1TR000124). JKY received funding from NIH K23 DK08324 and the Clinical Scholar Award from the Pediatric Endocrine Society. The research was also supported by NIH/National Center for Advancing Translational Science (NCATS) UCLA CTSI Grant number UL1TR000124.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J K Yee.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Journal of Perinatology website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yee, J., Mao, C., Ross, M. et al. High oleic/stearic fatty-acid desaturation index in cord plasma from infants of mothers with gestational diabetes. J Perinatol 34, 357–363 (2014). https://doi.org/10.1038/jp.2014.23

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2014.23

Keywords

This article is cited by

Search

Quick links