Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Biological risks for neurological abnormalities associated with hyperbilirubinemia

Abstract

Unconjugated bilirubin (UCB) injury to glial cells leads to the secretion of glutamate and elicits a typical inflammatory response. Release of pro-inflammatory cytokines may influence gliogenesis and neurogenesis, and lead to deficits in learning and memory. Glutamate metabolism dysregulation and overexpression of tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β are consistent with schizophrenia neuropathology. Recently, an increased prevalence of schizophrenia was reported in individuals with Gilbert's syndrome and among those who have had elevated levels of UCB in the neonatal life. In this review, we explore the reactivity of astrocytes, neurons and microglia to UCB, the cascade of events implicated in the immunostimulant effects of UCB, as well as the role of each nerve cell type and maturation state in the neuropathology of UCB. Identification of the signaling events promoted by UCB will be relevant for developing novel therapies that might reduce the risk of brain injury and disabilities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Rubaltelli FF, Griffith PF . Management of neonatal hyperbilirubinaemia and prevention of kernicterus. Drugs 1992; 43: 864–872.

    Article  CAS  PubMed  Google Scholar 

  2. Hansen TWR . Pioneers in the scientific study of neonatal jaundice and kernicterus. Pediatrics 2000; 106: E15.

    Article  CAS  PubMed  Google Scholar 

  3. Silva RFM, Rodrigues CMP, Brites D . Rat cultured neuronal and glial cells respond differently to toxicity of unconjugated bilirubin. Pediatr Res 2002; 51: 535–541.

    Article  CAS  PubMed  Google Scholar 

  4. Fernandes A, Silva RFM, Falcão AS, Brito MA, Brites D . Cytokine production, glutamate release and cell death in rat cultured astrocytes treated with unconjugated bilirubin and LPS. J Neuroimmunol 2004; 153: 64–75.

    Article  CAS  PubMed  Google Scholar 

  5. Silva R, Mata LR, Gulbenkian S, Brito MA, Tiribelli C, Brites D . Inhibition of glutamate uptake by unconjugated bilirubin in cultured cortical rat astrocytes: role of concentration and pH. Biochem Biophys Res Commun 1999; 265: 67–72.

    Article  CAS  PubMed  Google Scholar 

  6. Ostrow JD, Pascolo L, Brites D, Tiribelli C . Molecular basis of bilirubin-induced neurotoxicity. Trends Mol Med 2004; 10: 65–70.

    Article  CAS  PubMed  Google Scholar 

  7. Dalman C, Cullberg J . Neonatal hyperbilirubinaemia—a vulnerability factor for mental disorder? Acta Psychiatr Scand 1999; 100: 469–471.

    Article  CAS  PubMed  Google Scholar 

  8. Miyaoka T, Seno H, Itoga M, Iijima M, Inagaki T, Horiguchi J . Schizophrenia-associated idiopathic unconjugated hyperbilirubinemia (Gilbert's syndrome). J Clin Psychiatry 2000; 61: 868–871.

    Article  CAS  PubMed  Google Scholar 

  9. Mueller HT, Haroutunian V, Davis KL, Meador-Woodruff JH . Expression of the ionotropic glutamate receptor subunits and NMDA receptor-associated intracellular proteins in the substantia nigra in schizophrenia. Brain Res Mol Brain Res 2004; 121: 60–69.

    Article  CAS  PubMed  Google Scholar 

  10. Gilmore JH, Jarskog LF, Vadlamudi S, Lauder JM . Prenatal infection and risk for schizophrenia: IL-1β, IL-6, and TNF-α inhibit cortical neuron dendrite development. Neuropsychopharmacology 2004; 29: 1221–1229.

    Article  CAS  PubMed  Google Scholar 

  11. Broadbelt K, Byne W, Jones LB . Evidence for a decrease in basilar dendrites of pyramidal cells in schizophrenic medial prefrontal cortex. Schizophr Res 2002; 58: 75–81.

    PubMed  Google Scholar 

  12. Falcão AS, Silva RF, Pancadas S, Fernandes A, Brito MA, Brites D . Apoptosis and impairment of neurite network by short exposure of immature rat cortical neurons to unconjugated bilirubin increase with cell differentiation and are additionally enhanced by an inflammatory stimulus. J Neurosci Res 2008; 5: 1229–1239.

    Google Scholar 

  13. Dennery PA, Seidman DS, Stevenson DK . Neonatal hyperbilirubinemia. N Engl J Med 2001; 344: 581–590.

    Article  CAS  PubMed  Google Scholar 

  14. Gourley GR . Bilirubin metabolism and kernicterus. Adv Pediatr 1997; 44: 173–229.

    CAS  PubMed  Google Scholar 

  15. Amit Y, Brenner T . Age-dependent sensitivity of cultured rat glial cells to bilirubin toxicity. Exp Neurol 1993; 121: 248–255.

    Article  CAS  PubMed  Google Scholar 

  16. Rodrigues CMP, Solá S, Silva RFM, Brites D . Aging confers different sensitivity to the neurotoxic properties of unconjugated bilirubin. Pediatr Res 2002; 51: 112–118.

    Article  CAS  PubMed  Google Scholar 

  17. Rhine WD, Schmitter SP, Yu AC, Eng LF, Stevenson DK . Bilirubin toxicity and differentiation of cultured astrocytes. J Perinatol 1999; 19: 206–211.

    Article  CAS  PubMed  Google Scholar 

  18. Falcão AS, Fernandes A, Silva RFM, Brito MA, Brites D . Bilirubin-induced immunostimulant effects and toxicity vary with neural cell type and maturation state. Acta Neuropathol 2006; 112: 95–105.

    Article  PubMed  Google Scholar 

  19. Falcão AS, Fernandes A, Brito MA, Silva RFM, Brites D . Bilirubin-induced inflammatory response, glutamate release, and cell death in rat cortical astrocytes are enhanced in younger cells. Neurobiol Dis 2005; 20: 199–206.

    Article  PubMed  Google Scholar 

  20. Rigato I, Pascolo L, Fernetti C, Ostrow JD, Tiribelli C . The human multidrug-resistance-associated protein MRP1 mediates ATP-dependent transport of unconjugated bilirubin. Biochem J 2004; 383: 335–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Falcão AS, Bellarosa C, Brito MA, Silva RFM, Tiribelli C, Brites D . Role of multidrug resistance-associated protein 1 (Mrp1) expression in the in vitro susceptibility of rat nerve cells to unconjugated bilirubin. Neuroscience 2007; 144 (3): 878–888.

    Article  PubMed  Google Scholar 

  22. Tsai CE, Daood MJ, Lane RH, Hansen TWR, Gruetzmacher EM, Watchko JF . P-glycoprotein expression in mouse brain increases with maturation. Biol Neonate 2002; 81: 58–64.

    Article  CAS  PubMed  Google Scholar 

  23. Allan SM, Rothwell NJ . Cytokines and acute neurodegeneration. Nat Rev Neurosci 2001; 2: 734–741.

    Article  CAS  PubMed  Google Scholar 

  24. Saliba E, Henrot A . Inflammatory mediators and neonatal brain damage. Biol Neonate 2001; 79: 224–227.

    Article  CAS  PubMed  Google Scholar 

  25. Fernandes A, Falcão AS, Silva RFM, Gordo AC, Gama MJ, Brito MA et al. Inflammatory signaling pathways involved in astroglial activation by unconjugated bilirubin. J Neurochem 2006; 96: 1667–1679.

    Article  CAS  PubMed  Google Scholar 

  26. Fernandes A, Falcão AS, Gordo C, Gama MJ, Silva RFM, Brito MA et al. Dissecting astrocyte reactivity by unconjugated bilirubin: evidence for a biphasic response. PAS 2005; 57: 2255.

    Google Scholar 

  27. Saklatvala J, Dean J, Clark A . Control of the expression of inflammatory response genes. Biochem Soc Symp 2003; 70: 95–106.

    Article  CAS  Google Scholar 

  28. Aranguez I, Torres C, Rubio N . The receptor for tumor necrosis factor on murine astrocytes: characterization, intracellular degradation, and regulation by cytokines and Theiler′s murine encephalomyelitis virus. Glia 1995; 13: 185–194.

    Article  CAS  PubMed  Google Scholar 

  29. Lin S, Yan C, Wei X, Paul SM, Du Y . p38 MAP kinase mediates bilirubin-induced neuronal death of cultured rat cerebellar granule neurons. Neurosci Lett 2003; 353: 209–212.

    Article  CAS  PubMed  Google Scholar 

  30. Fernandes A, Falcão AS, Silva RF, Brito MA, Brites D . MAPKs are key players in mediating cytokine release and cell death induced by unconjugated bilirubin in cultured rat cortical astrocytes. Eur J Neurosci 2007; 25: 1058–1068.

    Article  PubMed  Google Scholar 

  31. Kim CH, Kim JH, Moon SJ, Hsu CY, Seo JT, Ahn YS . Biphasic effects of dithiocarbamates on the activity of nuclear factor-κB. Eur J Pharmacol 2000; 392: 133–136.

    Article  CAS  PubMed  Google Scholar 

  32. Chung KC, Park JH, Kim CH, Lee HW, Sato N, Uchiyama Y et al. Novel biphasic effect of pyrrolidine dithiocarbamate on neuronal cell viability is mediated by the differential regulation of intracellular zinc and copper ion levels, NF-κB, and MAP kinases. J Neurosci Res 2000; 59: 117–125.

    Article  CAS  PubMed  Google Scholar 

  33. Schreck R, Meier B, Männel DN, Dröge W, Baeuerle PA . Dithiocarbamates as potent inhibitors of nuclear factor κB activation in intact cells. J Exp Med 1992; 175: 1181–1194.

    Article  CAS  PubMed  Google Scholar 

  34. Porcile C, Stanzione S, Piccioli P, Bajetto A, Barbero S, Bisaglia M et al. Pyrrolidinedithiocarbamate induces apoptosis in cerebellar granule cells: involvement of AP-1 and MAP kinases. Neurochem Int 2003; 43: 31–38.

    Article  CAS  PubMed  Google Scholar 

  35. Kadhim H, Tabarki B, De Prez C, Sebire G . Cytokine immunoreactivity in cortical and subcortical neurons in periventricular leukomalacia: are cytokines implicated in neuronal dysfunction in cerebral palsy? Acta Neuropathol 2003; 105: 209–216.

    CAS  PubMed  Google Scholar 

  36. Xiao BG, Link H . Immune regulation within the central nervous system. J Neurol Sci 1998; 157: 1–12.

    Article  CAS  PubMed  Google Scholar 

  37. Nakajima K, Kohsaka S . Microglia: neuroprotective and neurotrophic cells in the central nervous system. Curr Drug Targets Cardiovasc Haematol Disord 2004; 4: 65–84.

    Article  CAS  PubMed  Google Scholar 

  38. Gordo AC, Falcão AS, Fernandes A, Brito MA, Silva RFM, Brites D . Unconjugated bilirubin activates and damages microglia. J Neurosc Res 2006; 84: 194–201.

    Article  CAS  Google Scholar 

  39. Raivich G, Bohatscheck M, Kloss CU, Werner A, Jones LL, Kreutzberg GW . Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Brain Res Rev 1999; 30: 77–105.

    Article  CAS  PubMed  Google Scholar 

  40. Piani D, Frei K, Do KQ, Cuenod M, Fontana A . Murine brain macrophages induced NMDA receptor mediated neurotoxicity in vitro by secreting glutamate. Neurosci Lett 1991; 133: 159–162.

    Article  CAS  PubMed  Google Scholar 

  41. Patrizio M, Levi G . Glutamate production by cultured microglia: differences between rat and mouse, enhancement by lipopolysaccharide and lack effect of HIV coat protein gp120 and depolarizing agents. Neurosci Lett 1994; 178: 184–189.

    Article  CAS  PubMed  Google Scholar 

  42. Kim SH, Smith CJ, Van Eldik LJ . Importance of MAPK pathways for microglial pro-inflammatory cytokine IL-1β production. Neurobiol Aging 2004; 25: 431–439.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Fundação para a Ciência e a Tecnologia (FCT), Lisbon, Portugal, for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Brites.

Additional information

Disclosure

The authors have declared no financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brites, D., Fernandes, A., Falcão, A. et al. Biological risks for neurological abnormalities associated with hyperbilirubinemia. J Perinatol 29 (Suppl 1), S8–S13 (2009). https://doi.org/10.1038/jp.2008.214

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2008.214

Keywords

This article is cited by

Search

Quick links