Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Mechanism(s) of in utero meconium passage

Abstract

To use sheep and rat models and demonstrate that stressors activate fetal glucocorticoid (GC) system, corticotrophin-releasing factor (CRF) system and cholinergic neurotransmitter system (ChNS) leading to propulsive colonic motility and in utero meconium passage. Immunohistochemical studies (IHS) were performed to localize GC-Receptors, CRF-receptors and key molecules of ChNS in sheep fetal distal colon. CRF expression in placenta and enteric endocrine cells in fetal rat system were examined and the effects of acute hypoxia on in utero meconium passage was tested. IHS confirmed localization and gestation dependent changes in GC-Rs, CRF-Rs and cholinergic markers in sheep fetal colon. Rat placenta and enteric endocrine cells express CRF and gastrointestinal tract express CRF-Rs. Hypoxia is a potent inducer of meconium passage in term fetal rats. Stress is a risk factor for in utero meconium passage and laboratory animal models can be used to develop pharmacotherapy to prevent stress-induced in utero meconium passage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Momoh JT . Hirschsprung's disease: problems of diagnosis and treatment. Ann Trop Paediatr 1982; 2: 31–35.

    Article  CAS  Google Scholar 

  2. Wiswell TE, Tuggle JM, Turner BS . Meconium aspiration syndrome: have we made a difference? [see comments]. Pediatrics 1990; 85: 715–721.

    CAS  PubMed  Google Scholar 

  3. Ahanya SN, Lakshmanan J, Morgan BL, Ross MG . Meconium passage in utero: mechanisms, consequences, and management. Obstet Gynecol Surv 2005; 60: 45–56.

    Article  Google Scholar 

  4. Usher RH, Boyd ME, McLean FH, Kramer MS . Assessment of fetal risk in postdate pregnancies. Am J Obstet Gynecol 1988; 158: 259–264.

    Article  CAS  Google Scholar 

  5. Miller FC, Read JA . Intrapartum assessment of the postdate fetus. Am J Obstet Gynecol 1981; 141: 516–520.

    Article  CAS  Google Scholar 

  6. Richey SD, Ramin SM, Bawdon RE, Roberts SW, Dax J, Roberts J et al. Markers of acute and chronic asphyxia in infants with meconium-stained amniotic fluid. Am J Obstet Gynecol 1995; 172: 1212–1215.

    Article  CAS  Google Scholar 

  7. Tache Y, Bonaz B . Corticotropin-releasing factor receptors and stress-related alterations of gut motor function. J Clin Invest 2007; 117: 33–40.

    Article  CAS  Google Scholar 

  8. Tache Y, Martinez V, Million M, Rivier J . Corticotropin-releasing factor and the brain-gut motor response to stress. Can J Gastroenterol 1999; 13 (Suppl A): 18A–25A.

    Article  Google Scholar 

  9. Martinez V, Wang L, Rivier J, Grigoriadis D, Tache Y . Central CRF, urocortins and stress increase colonic transit via CRF1 receptors while activation of CRF2 receptors delays gastric transit in mice. J Physiol 2004; 556: 221–234.

    Article  CAS  Google Scholar 

  10. Million M, Wang L, Martinez V, Tache Y . Differential Fos expression in the paraventricular nucleus of the hypothalamus, sacral parasympathetic nucleus and colonic motor response to water avoidance stress in Fischer and Lewis rats. Brain Res 2000; 877: 345–353.

    Article  CAS  Google Scholar 

  11. Williams CL, Villar RG, Peterson JM, Burks TF . Stress-induced changes in intestinal transit in the rat: a model for irritable bowel syndrome. Gastroenterology 1988; 94: 611–621.

    Article  CAS  Google Scholar 

  12. Miampamba M, Sharkey KA . c-Fos expression in the myenteric plexus, spinal cord and brainstem following injection of formalin in the rat colonic wall. J Auton Nerv Syst 1999; 77: 140–151.

    Article  CAS  Google Scholar 

  13. la Fleur SE, Wick EC, Idumalla PS, Grady EF, Bhargava A . Role of peripheral corticotropin-releasing factor and urocortin II in intestinal inflammation and motility in terminal ileum. Proc Natl Acad Sci USA 2005; 102: 7647–7652.

    Article  CAS  Google Scholar 

  14. Hillhouse EW, Grammatopoulos DK . The molecular mechanisms underlying the regulation of the biological activity of corticotropin-releasing hormone receptors: implications for physiology and pathophysiology. Endocr Rev 2006; 27: 260–286.

    Article  CAS  Google Scholar 

  15. Maillot C, Million M, Wei JY, Gauthier A, Tache Y . Peripheral corticotropin-releasing factor and stress-stimulated colonic motor activity involve type 1 receptor in rats. Gastroenterology 2000; 119: 1569–1579.

    Article  CAS  Google Scholar 

  16. Grundy D, Al-Chaer ED, Aziz Q, Collins SM, Ke M, Tache Y et al. Fundamentals of neurogastroenterology: basic science. Gastroenterology 2006; 130: 1391–1411.

    Article  CAS  Google Scholar 

  17. Jones SA, Brooks AN, Challis JR . Steroids modulate corticotropin-releasing hormone production in human fetal membranes and placenta. J Clin Endocrinol Metab 1989; 68: 825–830.

    Article  CAS  Google Scholar 

  18. Bruder ED, Jacobson L, Raff H . Plasma leptin and ghrelin in the neonatal rat: interaction of dexamethasone and hypoxia. J Endocrinol 2005; 185: 477–484.

    Article  CAS  Google Scholar 

  19. Takahashi LK, Goh CS . Glucocorticoid facilitation of cholinergic development in the rat hippocampus. Neurosci 1998; 83: 1145–1153.

    Article  CAS  Google Scholar 

  20. Coukos G, Monzani A, Saletti C, Petraglia F . [Noradrenaline and interleukin-1 stimulate CRF secretion from human placental cells in culture]. Medicina (Firenze) 1988; 8: 441–442.

    CAS  Google Scholar 

  21. Lakshmanan J, Ahanya SN, Rehan V, Oyachi N, Ross MG . Elevated plasma corticotrophin release factor levels and in utero meconium passage. Pediatr Res 2007; 61: 176–179.

    Article  CAS  Google Scholar 

  22. Lakshmanan J, Salido E, Amidi F, Amidi E, Raj R, Ross MG . Rat placenta expresses corticotrophin releasing factor protein and mRNA. Reproductive Sciences 2007; 14 (1 Suppl): 175A.

    Google Scholar 

  23. Frim DM, Emanuel RL, Robinson BG, Smas CM, Adler GK, Majzoub JA . Characterization and gestational regulation of corticotropin-releasing hormone messenger RNA in human placenta. J Clin Invest 1988; 82: 287–292.

    Article  CAS  Google Scholar 

  24. Lakshmanan J, Richard JD, Liu GL, Ross MG . Corticotrophin releasing factor is a fetal gut hormone. Reprod Sci 2007; 14 (1 Suppl): 251A.

    Google Scholar 

  25. Kawahito Y, Sano H, Kawata M, Yuri K, Mukai S, Yamamura Y et al. Local secretion of corticotropin-releasing hormone by enterochromaffin cells in human colon. Gastroenterology 1994; 106: 859–865.

    Article  CAS  Google Scholar 

  26. Richard JD, Lakshmanan J, John TA, Ross MG . Rat fetal gastrointestinal tract is a target organ for corticotrophin-releasing factor family neuropeptides. Am J Obstet Gyn 2006; 195 (6 Suppl): S214.

    Article  Google Scholar 

  27. Ross B, Bradley K, Nijland MJ, Polk DH, Ross MG . Increased fetal colonic muscle contractility following glucocorticoid and thyroxine therapy: implications for meconium passage. J Matern Fetal Med 1997; 6: 129–133.

    CAS  PubMed  Google Scholar 

  28. Acosta R, Oyachi N, Lee JJ, Lakshmanan J, Atkinson JB, Ross MG . Mechanisms of meconium passage: cholinergic stimulation of electromechanical coordination in the fetal colon. J Soc Gynecol Investig 2005; 12: 169–173.

    Article  CAS  Google Scholar 

  29. Lakshmanan J, Oyachi N, Ahanya SA, Liu G, Mazdak M, Ross MG . Corticotropin-releasing factor inhibition of sheep fetal colonic contractility: mechanisms to prevent meconium passage in utero. Am J Obstet Gynecol 2007; 196: 357.

    Article  Google Scholar 

  30. Lakshmanan J, Oyachi N, Liu GL, Choi GY, Ross MG . Fetal colonic enteric nervous system is a site of glucocorticoid-induced gastrointestinal maturation. Reprod Sci 2007; 14 (1 Suppl): 287A.

    Google Scholar 

  31. Lakshmanan J, Liu GL, Oyachi N, Ross MG . Evidence for pre-receptor metabolism of glucocorticoids in ovinee fetal distal colonic enteric nervous system. Reprod Sci 2007; 14 (1 Suppl): 288A.

    Google Scholar 

  32. Lakshmanan J, Liu GL, Oyachi N, Ross MG . Localization and gestation-dependent pattern of CRF-receptos (R1, R2) expression in ovine fetal distal colon. Reprod Sci 2007; 14 (1 Suppl): 258A.

    Google Scholar 

  33. Seasholtz AF, Valverde RA, Denver RJ . Corticotropin-releasing hormone-binding protein: biochemistry and function from fishes to mammals. J Endocrinol 2002; 175: 89–97.

    Article  CAS  Google Scholar 

  34. Lakshmanan J, Liu GL, Oyachi N, Ross MG . Cellular localization of corticotrophin releasing factor binding protein (CRF-BP) in fetal ovine distal colon: a possible local inhibitor of stress-induced colonic motility. Reprod Sci 2007; 14 (1 Suppl): 288A.

    Google Scholar 

  35. Lakshmanan J, Lips KS, Liu GL, Ross MG . Maturational changes in ovine fetal colonic cholinergic circuitry parallels plasma glucocorticoid surge. Reprod Sci 2007; 14 (1 Suppl): 249A.

    Google Scholar 

  36. Lakshmanan J, Liu GL, Ross MG . Localization of inhibitory and stimulatory muscarinic receptor subtypes in ovine fetal distal colon: implications for meconium passage. Reprod Sci 2007; 14 (1 Suppl): 168A.

    Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the March of Dimes Foundation (MGR) and the National Institutes of Health (JL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M G Ross.

Additional information

Disclosure

Jayaraman Lakshmanan has received grant funding from NIH R03. Michael Ross has received grant funding from the March of Dimes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakshmanan, J., Ross, M. Mechanism(s) of in utero meconium passage. J Perinatol 28 (Suppl 3), S8–S13 (2008). https://doi.org/10.1038/jp.2008.144

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2008.144

Search

Quick links