Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Diastolic blood pressure reduction contributes more to the regression of left ventricular hypertrophy: a meta-analysis of randomized controlled trials

Abstract

Left ventricular hypertrophy (LVH) is an independent cardiovascular risk factor; however, the key strategy necessary for LVH regression in hypertensive patients is not clear. A meta-analysis was conducted to study the effect of blood pressure reduction on LVH regression. We explored the relationship between different degrees of systolic blood pressure (SBP)/diastolic blood pressure (DBP) reduction and LVH regression. A total of 17 randomized controlled trials comprising 2196 hypertensive patients (mean age, 56.3 years; 64.1% were men) were identified. Different degrees of SBP and DBP reductions were significantly associated with LVH regression: SBP reduction 20 mm Hg (SBPM20) (weighted mean difference (WMD): 14.35 g m−2; 95% confidence interval (CI): 10.44, 18.26; P<0.0001); SBP reduction <20 mm Hg (SBPL20 group) (WMD: 14.82 g m−2; 95% CI: 9.83, 19.82; P<0.0001); DBP reduction 10 mm Hg (DBPM10 group) (WMD: 15.17 g m−2; 95% CI: 11.86, 18.48; P<0.0001); and DBP reduction <10 mm Hg (DBPL10 group) (WMD: 11.76 g m−2; 95% CI: 3.75, 19.76; P=0.004). Significant regression of LVH was found in the DBPM10 group compared with the SBPM20, SBPL20 and DBPL10 groups (P<0.0001). The most significant decrease in LVH was seen in patients with a mean age over 60 years in the DBPM10 group. Moreover, the renin–angiotensin system inhibitor was found to be the most effective antihypertensive drug for LVH regression. This meta-analysis result indicates that proper DBP reduction plays an important role in the regression of echocardiographic LVH in hypertensive patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Levy D, Anderson KM, Savage DD, Kannel WB, Christiansen JC, Castelli WP . Echocardiographically detected left ventricular hypertrophy: prevalence and risk factors. The Framingham Heart Study. Ann Intern Med 1988; 108: 7–13.

    Article  CAS  Google Scholar 

  2. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP . Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 1990; 322: 1561–1566.

    Article  CAS  Google Scholar 

  3. Schillaci G, Verdecchia P, Porcellati C, Cuccurullo O, Cosco C, Perticone F . Continuous relation between left ventricular mass and cardiovascular risk in essential hypertension. Hypertension 2000; 35: 580–586.

    Article  CAS  Google Scholar 

  4. Vakili BA, Okin PM, Devereux RB . Prognostic implications of left ventricular hypertrophy. Am Heart J 2001; 141: 334–341.

    Article  CAS  Google Scholar 

  5. Devereux RB, Palmieri V, Liu JE, Wachtell K, Bella JN, Boman K et al. Progressive hypertrophy regression with sustained pressure reduction in hypertension: the Losartan Intervention for Endpoint Reduction study. J Hypertens 2002; 20: 1445–1450.

    Article  CAS  Google Scholar 

  6. Verdecchia P, Schillaci G, Guerrieri M, Gatteschi C, Benemio G, Boldrini F et al. Circadian blood pressure changes and left ventricular hypertrophy in essential hypertension. Circulation 1990; 81: 528–536.

    Article  CAS  Google Scholar 

  7. Verdecchia P, Angeli F, Gattobigio R, Guerrieri M, Benemio G, Porcellati C . Does the reduction in systolic blood pressure alone explain the regression of left ventricular hypertrophy? J Hum Hypertens 2004; 18 (Suppl 2): S23–S528.

    Article  Google Scholar 

  8. Okin PM, Hille DA, Kjeldsen SE, Dahlof B, Devereux RB . Impact of lower achieved blood pressure on outcomes in hypertensive patients. J Hypertens 2012; 30: 802–810.

    Article  CAS  Google Scholar 

  9. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 2003; 289: 2560–2572.

    Article  CAS  Google Scholar 

  10. Jiang N, Wang B, Chen A, Dong F, Yu B . Operative versus nonoperative treatment for acute Achilles tendon rupture: a meta-analysis based on current evidence. Int Orthop 2012; 36: 765–773.

    Article  Google Scholar 

  11. Williams B, Lindholm LH, Sever P . Systolic pressure is all that matters. Lancet 2008; 371: 2219–2221.

    Article  Google Scholar 

  12. Sever P . Is systolic blood pressure all that matters? Yes. BMJ 2009; 339: b2665.

    Article  Google Scholar 

  13. Bangalore S, Messerli FH, Wun CC, Zuckerman AL, DeMicco D, Kostis JB et al. J-curve revisited: an analysis of blood pressure and cardiovascular events in the Treating to New Targets (TNT) Trial. Eur Heart J 2010; 31: 2897–2908.

    Article  CAS  Google Scholar 

  14. O'Brien E . Is systolic blood pressure all that matters? No. BMJ 2009; 339: b2669.

    Article  Google Scholar 

  15. Batkai S, Thum T . MicroRNAs in hypertension: mechanisms and therapeutic targets. Curr Hypertens Rep 2012; 14: 79–87.

    Article  CAS  Google Scholar 

  16. Burns J, Ball SG, Worthy G, Struthers AD, Mary DA, Greenwood JP . Hypertensive left ventricular hypertrophy: a mechanistic approach to optimizing regression assessed by cardiovascular magnetic resonance. J Hypertens 2012; 30: 2039–2046.

    Article  CAS  Google Scholar 

  17. Franklin SS, Wt Gustin, Wong ND, Larson MG, Weber MA, Kannel WB et al. Hemodynamic patterns of age-related changes in blood pressure. The Framingham Heart Study. Circulation 1997; 96: 308–315.

    Article  CAS  Google Scholar 

  18. Franklin SS, Khan SA, Wong ND, Larson MG, Levy D . Is pulse pressure useful in predicting risk for coronary heart Disease? The Framingham Heart Study. Circulation 1999; 100: 354–360.

    Article  CAS  Google Scholar 

  19. Orias M, Tabares AH, Peixoto AJ . Hypothesis: it is time to reconsider phenotypes in hypertension. J Clin Hypertens (Greenwich) 2010; 12: 350–356.

    Article  Google Scholar 

  20. Whitworth JA . 2003 World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension. J Hypertens 2003; 21: 1983–1992.

    Article  Google Scholar 

  21. Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G et al. 2007 Guidelines for the Management of Arterial Hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens 2007; 25: 1105–1187.

    Article  CAS  Google Scholar 

  22. Cushman WC, Evans GW, Byington RP, Goff DC, Grimm RH, Cutler JA et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med 2010; 362: 1575–1585.

    Article  Google Scholar 

  23. Okin PM . Regression of electrocardiographic left ventricular hypertrophy by losartan versus atenolol: The Losartan Intervention For Endpoint Reduction in Hypertension (LIFE) Study. Circulation 2003; 108: 684–690.

    Article  CAS  Google Scholar 

  24. Machnig T, Henneke KH, Engels G, Pongratz G, Schmalzl M, Gellert J et al. Nitrendipine vs. captopril in essential hypertension: effects on circadian blood pressure and left ventricular hypertrophy. Cardiology 1994; 85: 101–110.

    Article  CAS  Google Scholar 

  25. Fogari R, Zoppi A, Mugellini A, Tettamanti F, Lusardi P, Corradi L . Effects of lisinopril vs hydralazine on left ventricular hypertrophy and ambulatory blood pressure monitoring in essential hypertension. Eur Heart J 1995; 16: 1120–1125.

    Article  CAS  Google Scholar 

  26. Tedesco MA, Ratti G, Aquino D, Limongelli G, di Salvo G, Mennella S et al. Effects of losartan on hypertension and left ventricular mass: a long-term study. J Hum Hypertens 1998; 12: 505–510.

    Article  CAS  Google Scholar 

  27. Hoglund C, Cifkova R, Mimran A, Tenczer J, Watt A, Wilkins MR et al. A comparison of the effects of mibefradil and atenolol on regression of left ventricular hypertrophy in hypertensive patients. Cardiology 1998; 89: 263–270.

    Article  CAS  Google Scholar 

  28. Agabiti-Rosei E, Zulli R, Muiesan ML, Salvetti M, Rizzoni D, Corbellini C et al. Reduction of cardiovascular structural changes by nifedipine GITS in essential hypertensive patients. Blood Press 1998; 7: 160–169.

    Article  CAS  Google Scholar 

  29. Thurmann PA, Kenedi P, Schmidt A, Harder S, Rietbrock N . Influence of the angiotensin II antagonist valsartan on left ventricular hypertrophy in patients with essential hypertension. Circulation 1998; 98: 2037–2042.

    Article  CAS  Google Scholar 

  30. Gosse P, Sheridan DJ, Zannad F, Dubourg O, Gueret P, Karpov Y et al. Regression of left ventricular hypertrophy in hypertensive patients treated with indapamide SR 1.5 mg versus enalapril 20 mg: the LIVE study. J Hypertens 2000; 18: 1465–1475.

    Article  CAS  Google Scholar 

  31. Devereux RB, Palmieri V, Sharpe N, De Quattro V, Bella JN, de Simone G et al. Effects of once-daily angiotensin-converting enzyme inhibition and calcium channel blockade-based antihypertensive treatment regimens on left ventricular hypertrophy and diastolic filling in hypertension: the prospective randomized enalapril study evaluating regression of ventricular enlargement (preserve) trial. Circulation 2001; 104: 1248–1254.

    Article  CAS  Google Scholar 

  32. Cuspidi C, Muiesan ML, Valagussa L, Salvetti M, Di Biagio C, Agabiti-Rosei E et al. Comparative effects of candesartan and enalapril on left ventricular hypertrophy in patients with essential hypertension: the candesartan assessment in the treatment of cardiac hypertrophy (CATCH) study. J Hypertens 2002; 20: 2293–2300.

    Article  CAS  Google Scholar 

  33. Gaudio C, Ferri FM, Giovannini M, Pannarale G, Puddu PE, Vittore A et al. Comparative effects of irbesartan versus amlodipine on left ventricular mass index in hypertensive patients with left ventricular hypertrophy. J Cardiovasc Pharmacol 2003; 42: 622–628.

    Article  CAS  Google Scholar 

  34. Galzerano D, Tammaro P, Cerciello A, Breglio R, Mallardo M, Lama D et al. Freehand three-dimensional echocardiographic evaluation of the effect of telmisartan compared with hydrochlorothiazide on left ventricular mass in hypertensive patients with mild-to-moderate hypertension: a multicentre study. J Hum Hypertens 2004; 18: 53–59.

    Article  CAS  Google Scholar 

  35. de Luca N, Mallion JM, O'Rourke MF, O’Brien E, Rahn KH, Trimarco B et al. Regression of left ventricular mass in hypertensive patients treated with perindopril/indapamide as a first-line combination: the REASON echocardiography study. Am J Hypertens 2004; 17: 660–667.

    CAS  Google Scholar 

  36. Yasunari K, Maeda K, Watanabe T, Nakamura M, Yoshikawa J, Asada A . Comparative effects of valsartan versus amlodipine on left ventricular mass and reactive oxygen species formation by monocytes in hypertensive patients with left ventricular hypertrophy. J Am Coll Cardiol 2004; 43: 2116–2123.

    Article  CAS  Google Scholar 

  37. Agabiti-Rosei E, Trimarco B, Muiesan ML, Reid J, Salvetti A, Tang R et al. Cardiac structural and functional changes during long-term antihypertensive treatment with lacidipine and atenolol in the European Lacidipine Study on Atherosclerosis (ELSA). J Hypertens 2005; 23: 1091–1098.

    Article  CAS  Google Scholar 

  38. Rosendorff C, Dubiel R, Xu J, Chavanu KJ . Comparison of olmesartan medoxomil versus amlodipine besylate on regression of ventricular and vascular hypertrophy. Am J Cardiol 2009; 104: 359–365.

    Article  CAS  Google Scholar 

  39. Yamamoto K, Ozaki H, Takayasu K, Akehi N, Fukui S, Sakai A et al. The effect of losartan and amlodipine on left ventricular diastolic function and atherosclerosis in Japanese patients with mild-to-moderate hypertension (J-ELAN) study. Hypertens Res 2011; 34: 325–330.

    Article  CAS  Google Scholar 

  40. Fogari R, Mugellini A, Destro M, Corradi L, Lazzari P, Zoppi A et al. Losartan and amlodipine on myocardial structure and function: a prospective, randomized, clinical trial. Diabet Med 2012; 29: 24–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSFC [81170647, 91029742, 30973207 and 11101439], Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China [132030], Yat-sen Scholarship for Young Scientists and the Science & technology star of Zhujiang (Guangzhou) to Hui Huang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Huang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, K., Chen, J., Liu, Y. et al. Diastolic blood pressure reduction contributes more to the regression of left ventricular hypertrophy: a meta-analysis of randomized controlled trials. J Hum Hypertens 27, 698–706 (2013). https://doi.org/10.1038/jhh.2013.20

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2013.20

Keywords

This article is cited by

Search

Quick links