Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Association of adipokines with blood pressure in rural Chinese adolescents

Abstract

Previous research has demonstrated that adipokines influence blood pressure (BP). Limited data exist in healthy adolescents, who are in a critical period for preventing the development of high BP. This study investigated the association of leptin, adiponectin and the leptin-to-adiponectin ratio (LAR) with BP in rural Chinese adolescents. This report included 1245 adolescents (average body mass index: 19.3 kg m−2) aged 13–21 years from an established twin cohort. We examined gender-specific associations between plasma adipokines and BP, with adjustment for measures of adiposity and insulin resistance (IR). We estimated the genetic contribution to adipokines using the twin design and Cholesky decomposition models. There was no correlation between leptin and adiponectin levels. Leptin was positively associated with systolic blood pressure (SBP) in males and diastolic blood pressure in females, but the association disappeared after adjusting for adiposity and IR. LAR was positively associated with SBP (β(s.e.): 1.94(0.45)), P<0.01), adiponectin was negatively associated with SBP (β(s.e.): −2.18(0.63)), P<0.001) only in males, and such associations were independent of adiposity and IR. A test of gender × adiponectin interaction was significant (P=0.01). Heritability estimation showed that both environmental and genetic factors contribute to variance in adipokines. In these relatively lean Chinese adolescents, leptin was positively associated with BP in both genders, but was adiposity/IR dependent. Adiponectin was negatively associated with SBP in males, independent of adiposity/IR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Reeder BA, Angel A, Ledoux M, Rabkin SW, Young TK, Sweet LE . Obesity and its relation to cardiovascular disease risk factors in Canadian adults. Canadian Heart Health Surveys Research Group. CMAJ 1992; 146: 2009–2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang H, Necheles J, Carnethon M, Wang B, Li Z, Wang L et al. Adiposity measures and blood pressure in Chinese children and adolescents. Arch Dis Child 2008; 93: 738–744.

    Article  CAS  Google Scholar 

  3. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM . Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372: 425–432.

    Article  CAS  Google Scholar 

  4. Friedman JM, Halaas JL . Leptin and the regulation of body weight in mammals. Nature 1998; 395: 763–770.

    Article  CAS  Google Scholar 

  5. Correia ML, Haynes WG . Leptin, obesity and cardiovascular disease. Curr Opin Nephrol Hypertens 2004; 13: 215–223.

    Article  Google Scholar 

  6. Beltowski J . Leptin and atherosclerosis. Atherosclerosis 2006; 189: 47–60.

    Article  CAS  Google Scholar 

  7. Beltowski J . Role of leptin in blood pressure regulation and arterial hypertension. J Hypertens 2006; 24: 789–801.

    Article  CAS  Google Scholar 

  8. Matsuzawa Y, Funahashi T, Kihara S, Shimomura I . Adiponectin and metabolic syndrome. Arterioscler Thromb Vasc Biol 2004; 24: 29–33.

    Article  CAS  Google Scholar 

  9. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002; 8: 1288–1295.

    Article  CAS  Google Scholar 

  10. Sung SH, Chuang SY, Sheu WH, Lee WJ, Chou P, Chen CH . Adiponectin, but not leptin or high-sensitivity C-reactive protein, is associated with blood pressure independently of general and abdominal adiposity. Hypertens Res 2008; 31: 633–640.

    Article  CAS  Google Scholar 

  11. Zhang S, Liu X, Brickman WJ, Christoffel KK, Zimmerman D, Tsai HJ et al. Association of plasma leptin concentrations with adiposity measurements in rural Chinese adolescents. J Clin Endocrinol Metab 2009; 94: 3497–3504.

    Article  CAS  PubMed Central  Google Scholar 

  12. Huang KC, Chen CL, Chuang LM, Ho SR, Tai TY, Yang WS . Plasma adiponectin levels and blood pressures in nondiabetic adolescent females. J Clin Endocrinol Metab 2003; 88: 4130–4134.

    Article  CAS  PubMed Central  Google Scholar 

  13. Goran MI, Gower BA . Longitudinal study on pubertal insulin resistance. Diabetes 2001; 50: 2444–2450.

    Article  CAS  Google Scholar 

  14. Cutler JA, Sorlie PD, Wolz M, Thom T, Fields LE, Roccella EJ . Trends in hypertension prevalence, awareness, treatment, and control rates in United States adults between 1988–1994 and 1999–2004. Hypertension 2008; 52: 818–827.

    Article  CAS  Google Scholar 

  15. Mallamaci F, Cuzzola F, Tripepi G, Cutrupi S, Parlongo S, Tripepi R et al. Gender-dependent differences in plasma leptin in essential hypertension. Am J Hypertens 2000; 13: 914–920.

    Article  CAS  PubMed Central  Google Scholar 

  16. Ma D, Feitosa MF, Wilk JB, Laramie JM, Yu K, Leiendecker-Foster C et al. Leptin is associated with blood pressure and hypertension in women from the National Heart, Lung, and Blood Institute Family Heart Study. Hypertension 2009; 53: 473–479.

    Article  CAS  PubMed Central  Google Scholar 

  17. Park HS, Lee MS, Park JY . Leptin and the metabolic syndrome in Korean adolescents: factor analysis. Pediatr Int 2004; 46: 697–703.

    Article  CAS  Google Scholar 

  18. Tambs K, Eaves LJ, Moum T, Holmen J, Neale MC, Naess S et al. Age-specific genetic effects for blood pressure. Hypertension 1993; 22: 789–795.

    Article  CAS  PubMed Central  Google Scholar 

  19. Cesari M, Narkiewicz K, De Toni R, Aldighieri E, Williams CJ, Rossi GP . Heritability of plasma adiponectin levels and body mass index in twins. J Clin Endocrinol Metab 2007; 92: 3082–3088.

    Article  CAS  Google Scholar 

  20. Narkiewicz K, Szczech R, Winnicki M, Chrostowska M, Pawlowski R, Lysiak-Szydlowska W et al. Heritability of plasma leptin levels: a twin study. J Hypertens 1999; 17: 27–31.

    Article  CAS  PubMed Central  Google Scholar 

  21. Kaprio J, Eriksson J, Lehtovirta M, Koskenvuo M, Tuomilehto J . Heritability of leptin levels and the shared genetic effects on body mass index and leptin in adult Finnish twins. Int J Obes Relat Metab Disord 2001; 25: 132–137.

    Article  CAS  PubMed Central  Google Scholar 

  22. Wang B, Necheles J, Ouyang F, Ma W, Li Z, Liu X et al. Monozygotic co-twin analyses of body composition measurements and serum lipids. Prev Med 2007; 45: 358–365.

    Article  CAS  PubMed Central  Google Scholar 

  23. Macfarlane DJ, Lee CC, Ho EY, Chan KL, Chan DT . Reliability and validity of the Chinese version of IPAQ (short, last 7 days). J Sci Med Sport 2007; 10: 45–51.

    Article  Google Scholar 

  24. Yu Y, Lu BS, Wang B, Wang H, Yang J, Li Z et al. Short sleep duration and adiposity in Chinese adolescents. Sleep 2007; 30: 1688–1697.

    Article  PubMed Central  Google Scholar 

  25. Marshall WA, Tanner JM . Variations in pattern of pubertal changes in girls. Arch Dis Child 1969; 44: 291–303.

    Article  CAS  PubMed Central  Google Scholar 

  26. Marshall WA, Tanner JM . Variations in the pattern of pubertal changes in boys. Arch Dis Child 1970; 45: 13–23.

    Article  CAS  PubMed Central  Google Scholar 

  27. Pietrobelli A, Formica C, Wang Z, Heymsfield SB . Dual-energy X-ray absorptiometry body composition model: review of physical concepts. Am J Physiol 1996; 271: E941–E951.

    CAS  PubMed  Google Scholar 

  28. Zhang S, Liu X, Yu Y, Hong X, Christoffel KK, Wang B et al. Genetic and environmental contributions to phenotypic components of metabolic syndrome: a population-based twin study. Obesity (Silver Spring) 2009; 17: 1581–1587.

    Article  CAS  Google Scholar 

  29. Lambert M, Paradis G, O’Loughlin J, Delvin EE, Hanley JA, Levy E . Insulin resistance syndrome in a representative sample of children and adolescents from Quebec, Canada. Int J Obes Relat Metab Disord 2004; 28: 833–841.

    Article  CAS  Google Scholar 

  30. Neale MC, Cardon LR . Methodology for Genetic Studies of Twins and Families. Kluwer Academic: Dordrecht, The Netherlands, 1992.

    Book  Google Scholar 

  31. Winer JC, Zern TL, Taksali SE, Dziura J, Cali AM, Wollschlager M et al. Adiponectin in childhood and adolescent obesity and its association with inflammatory markers and components of the metabolic syndrome. J Clin Endocrinol Metab 2006; 91: 4415–4423.

    Article  CAS  Google Scholar 

  32. Chu NF, Shen MH, Wu DM, Lai CJ . Relationship between plasma adiponectin levels and metabolic risk profiles in Taiwanese children. Obes Res 2005; 13: 2014–2020.

    Article  CAS  Google Scholar 

  33. Garn SM, Clark DC, Guire KE . Growth, body composition, and development of obese and lean children. Curr Concepts Nutr 1975; 3: 23–46.

    CAS  PubMed  Google Scholar 

  34. Pilz S, Horejsi R, Moller R, Almer G, Scharnagl H, Stojakovic T et al. Early atherosclerosis in obese juveniles is associated with low serum levels of adiponectin. J Clin Endocrinol Metab 2005; 90: 4792–4796.

    Article  CAS  Google Scholar 

  35. Bush NC, Darnell BE, Oster RA, Goran MI, Gower BA . Adiponectin is lower among African Americans and is independently related to insulin sensitivity in children and adolescents. Diabetes 2005; 54: 2772–2778.

    Article  CAS  Google Scholar 

  36. Shaibi GQ, Cruz ML, Weigensberg MJ, Toledo-Corral CM, Lane CJ, Kelly LA et al. Adiponectin independently predicts metabolic syndrome in overweight Latino youth. J Clin Endocrinol Metab 2007; 92: 1809–1813.

    Article  CAS  Google Scholar 

  37. Schillaci G, Pirro M . Hypoadiponectinemia: a novel link between obesity and hypertension? Hypertension 2007; 49: 1217–1219.

    Article  CAS  Google Scholar 

  38. Martin SS, Qasim A, Reilly MP . Leptin resistance: a possible interface of inflammation and metabolism in obesity-related cardiovascular disease. J Am Coll Cardiol 2008; 52: 1201–1210.

    Article  CAS  PubMed Central  Google Scholar 

  39. Heymsfield SB, Greenberg AS, Fujioka K, Dixon RM, Kushner R, Hunt T et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA 1999; 282: 1568–1575.

    Article  CAS  Google Scholar 

  40. Oda N, Imamura S, Fujita T, Uchida Y, Inagaki K, Kakizawa H et al. The ratio of leptin to adiponectin can be used as an index of insulin resistance. Metabolism 2008; 57: 268–273.

    Article  CAS  PubMed Central  Google Scholar 

  41. Soderberg S, Ahren B, Stegmayr B, Johnson O, Wiklund PG, Weinehall L et al. Leptin is a risk marker for first-ever hemorrhagic stroke in a population-based cohort. Stroke 1999; 30: 328–337.

    Article  CAS  PubMed Central  Google Scholar 

  42. Dullaart RP, de Vries R, van Tol A, Sluiter WJ . Lower plasma adiponectin is a marker of increased intima-media thickness associated with type 2 diabetes mellitus and with male gender. Eur J Endocrinol 2007; 156: 387–394.

    Article  CAS  PubMed Central  Google Scholar 

  43. Bottner A, Kratzsch J, Muller G, Kapellen TM, Bluher S, Keller E et al. Gender differences of adiponectin levels develop during the progression of puberty and are related to serum androgen levels. J Clin Endocrinol Metab 2004; 89: 4053–4061.

    Article  PubMed Central  Google Scholar 

  44. Agirbasli M, Agaoglu NB, Orak N, Caglioz H, Ocek T, Poci N et al. Sex hormones and metabolic syndrome in children and adolescents. Metabolism 2009; 58: 1256–1262.

    Article  CAS  PubMed Central  Google Scholar 

  45. Martin LJ, Woo JG, Daniels SR, Goodman E, Dolan LM . The relationships of adiponectin with insulin and lipids are strengthened with increasing adiposity. J Clin Endocrinol Metab 2005; 90: 4255–4259.

    Article  CAS  PubMed Central  Google Scholar 

  46. Ohtani-Kaneko R . Mechanisms underlying estrogen-induced sexual differentiation in the hypothalamus. Histol Histopathol 2006; 21: 317–324.

    CAS  PubMed  Google Scholar 

  47. Yu Y, Kumar R, Venners S, Pongracic J, Wang B, Yang J et al. Age and gender specific lung function predictive equations provide similar predictions for both a twin population and a general population from age 6 through adolescence. Pediatr Pulmonol 2007; 42: 631–639.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported in part by grants R01 HD049059 from the National Institute of Child Health and Human Development; R01 HL0864619 from the National Heart, Lung and Blood Institute, and R01 AG032227 from the National Institute of Aging. We acknowledge the assistance and cooperation of the faculty and staff of the Anhui Institute of Biomedicine, Anhui Medical University and thank all study participants for their support. We thank Tami R Bartell for English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X Wang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Journal of Human Hypertension website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Necheles, J., Birne, J. et al. Association of adipokines with blood pressure in rural Chinese adolescents. J Hum Hypertens 26, 493–501 (2012). https://doi.org/10.1038/jhh.2011.64

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2011.64

Keywords

This article is cited by

Search

Quick links