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Including non-informative parents in transmission-
based association tests

Hemant Kulkarni and Saurabh Ghosh

The classical transmission disequilibrium test (TDT) based on a trio design uses information only on the allele transmitted by

a heterozygous parent at a marker locus as homozygous parents are non-informative about linkage. However, the phenotype

of an offspring depends on the alleles transmitted by both parents, irrespective of whether the parents are homozygous or

heterozygous, and hence carry useful information on association. In this article, we propose modifications to the TDT procedures

by incorporating transmission data on both parents in an informative trio to explore possible gain in power in detecting

association. For a binary trait, we use a goodness-of-fit χ2 test, whereas for a quantitative trait, we devise two tests: one based on

a bivariate response logistic model and the other using a quasi-likelihood approach. We evaluate the type 1 errors and the

powers of the proposed tests with those of the classical TDT procedures for both binary and quantitative traits based on

extensive simulations. We find that the inclusion of transmission data on non-informative parents yields marginally higher power

in the logistic regression approach but results in substantial gain in power in the quasi-likelihood approach. We apply our

proposed methods to analyze a count phenotype related to alcoholism.
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INTRODUCTION

The classical transmission disequilibrium test (TDT) for binary traits1

based on a trio design is a popular family-based alternative
to population-based case–control studies as it tests for association
in the presence of linkage, and hence is protected against population
stratification. As many binary clinical end-point traits are governed
by one or more quantitative precursors (e.g., homocysteine levels
and vitamin B12 levels are precursors of coronary artery disease),
association analyses of these quantitative traits have also been an active
area of research. Although several model-based tests for transmission
disequilibrium have been developed for quantitative traits,2–4 the
test proposed by Waldman et al.5 and modified by Haldar and Ghosh6

are based on the logistic regression framework, which uses similar
approach as the classical TDT and do not require any distributional
assumption on quantitative trait values. However, most existing test
procedures to detect transmission disequilibrium for both binary
and quantitative traits use data only on those parents who are
heterozygous at the marker locus of interest, as informations on
linkage are not contained in allelic transmissions by homozygous
parents. On the other hand, the phenotype of an individual is
a function of the genotype of the individual at a trait locus, implying
that useful information on genetic association are contained in
the alleles transmitted by both parents of the individual, irrespective
of whether the other parent is homozygous or heterozygous.
Ghosh and Reich7 had explored the effect of including homozygous
parents in the classical TDT framework in which they had considered
the frequencies of the different combinations of transmission and

non-transmission of the two alleles at the marker locus and
constructed a χ2 test statistic based on the deviation of these observed
frequencies from those expected under the null hypothesis of
no association. The power of the test was lower than the classical
TDT as the deviations corresponding to homozygous parents are
smaller compared with heterozygous parents. However, Terwillger
and Ott8 derived a haplotype-based relative risk statistic haplotype-
based haplotype relative risk (HHRR) where the variance of the
difference in transmission frequencies is estimated using data from all
parents and showed that it provides higher power than the classical
TDT under certain disease models.
Hence, it is of interest to develop statistical tests that incorporate

data on allelic transmissions from both parents (subject to at least
one of them being heterozygous) to an offspring and explore whether
the inclusion of transmission information from homozygous
parents in such analyses results in increased powers of the tests.
In this article, we explore some novel statistical methods that

use information on the allelic transmissions from both parents to an
offspring in a nuclear family for detecting genetic association
with respect to binary as well as quantitative traits. For binary traits,
we consider a goodness-of-fit χ2 test for the joint distribution of the
allelic transmissions from the two parents to an affected offspring.
For quantitative traits, we explore a bivariate response logistic model
of the parental allelic transmissions conditioned on the quantitative
trait value of the offspring. We also consider a competing approach
based on a quasi-likelihood framework that models the differences
between the allelic transmissions of the two parents and their expected
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values conditioned on the quantitative trait value of the offspring. We
carry out extensive simulations under a wide spectrum of genetic
models and different probability distributions of quantitative trait
values to assess the type 1 errors and compare the powers of
the proposed tests. We also illustrate an application of the
methods using data on externalizing symptoms, an alcohol-related
endophenotype from the Collaborative Study on the Genetics of
Alcoholism.

MATERIALS AND METHODS
We assume that a binary disease trait (1, if affected and 0, otherwise) and
a quantitative trait Y are both controlled by an autosomal biallelic locus
with alleles A and a with minor allele frequency P(A)= q. We consider
a biallelic marker locus with allele M1 and M2 with minor allele frequency
P(M1)=m. The coefficient of linkage disequilibrium between the minor
alleles at the two loci is denoted by δ. Suppose the penetrance of the
disease corresponding to the genotypes at the trait locus AA, Aa and aa are
f2, f1 and f0, respectively, while for quantitative traits, f2, f1 and f0 denote the
probability density functions of Y conditioned on the three genotypes. We
assume that the allele A increases the risk of the disease or pertains to higher
values of the quantitative trait Y. For the binary trait, we assume that marker
genotype data are available on trios ascertained through an affected offspring
and satisfying the condition that at least one parent is heterozygous at
the marker locus. For the quantitative trait, we consider marker genotype
data on trios (two parents and an offspring) such that at least one parent is
heterozygous at the marker locus along with quantitative trait data on the
offspring.

We define Z1 and Z2 to be indicator variables corresponding to
the transmission of the allele M1 by the heterozygous parent and the other
parent, respectively. If both the parents are heterozygous at the marker locus,
then we assign one transmission as Z1 and other as Z2 randomly. We note that
the identification of Z1 and Z2 are not affected if the offspring is homozygous.
On the other hand, while Z1 and Z2 cannot be identified for a heterozygous
offspring, P(Z1= 1, Z2= 0) and P(Z1= 0, Z2= 1) are equally likely in the
absence of association. Haldar and Ghosh6 showed that if only one transmis-
sion from such families are considered, the test for association maintains
the correct size. Suppose denotes the conditional probability of Z1= i and
Z2= j given the phenotype value (affected in case of binary trait) i, j= 0,1 and
l= 0,1,2 denote the number of minor allele of the genotype at the trait
locus, then under the complex disease model, the joint distribution of Z1 and
Z2 is given as

p00 ¼ 1
D

X2
l¼0

Cl00 f lpl ;p10 ¼
1

D

X2
l¼0

Cl10 f lpl

p01 ¼ 1
D

X2
l¼0

Cl01 f lpl; p11 ¼
1

D

X2
l¼0

Cl11 f lpl

where Ψlij=P(Z1= i, Z2= j|l) denotes the conditional probabilities of Z1 and
Z2 given that l is the number of minor allele of the genotype at trait loci
(the expressions are provided in Supplementary Equation S1), pl, l= 0,1,2
denotes the genotype frequencies at the quantitative trait loci (QTL) and

D ¼
X2
l¼0

f lpl

Table 1 Empirical powers for different disease models

q m d

Recessive Dominance Complex

TDT TDTB TDT TDTB TDT TDTB

0.1 0.1 0.33 0.637 0.533 1 1 0.984 0.96

0.1 0.1 0.67 0.976 0.975 1 1 1 1

0.1 0.1 1 1 1 1 1 1 1

0.1 0.2 0.33 0.254 0.207 0.998 0.98 0.641 0.527

0.1 0.2 0.67 0.663 0.611 1 1 0.993 0.979

0.1 0.2 1 0.892 0.949 1 1 1 1

0.1 0.3 0.33 0.154 0.114 0.9 0.847 0.355 0.254

0.1 0.3 0.67 0.424 0.341 1 1 0.869 0.808

0.1 0.3 1 0.708 0.742 1 1 0.995 0.99

0.2 0.1 0.33 0.843 0.746 0.965 0.928 0.861 0.776

0.2 0.1 0.67 0.997 0.996 1 1 1 1

0.2 0.1 1 1 1 1 1 1 1

0.2 0.2 0.33 0.922 0.858 0.995 0.992 0.968 0.933

0.2 0.2 0.67 1 1 1 1 1 1

0.2 0.2 1 1 1 1 1 1 1

0.2 0.3 0.33 0.712 0.613 0.917 0.859 0.722 0.636

0.2 0.3 0.67 0.997 0.996 1 1 0.999 0.999

0.2 0.3 1 1 1 1 1 1 1

0.3 0.1 0.33 0.946 0.887 0.662 0.532 0.635 0.504

0.3 0.1 0.67 1 1 0.988 0.967 0.984 0.967

0.3 0.1 1 1 1 1 1 1 1

0.3 0.2 0.33 0.988 0.968 0.791 0.68 0.744 0.637

0.3 0.2 0.67 1 1 1 0.988 0.999 0.999

0.3 0.2 1 1 1 1 1 1 1

0.3 0.3 0.33 0.996 0.999 0.882 0.814 0.878 0.811

0.3 0.3 0.67 1 1 1 1 1 1

0.3 0.3 1 1 1 1 1 1 1

Abbreviations: d, standardized value of linkge disequilibrium; m, allele frequency at marker locus; q, allele frequency at disease locus; TDT, evaluated powers using classical TDT; TDTB, evaluated
powers using proposed method.
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is the prevalence of the disease (unconditional probability density function
of trait values for quantitative traits) in the population. Under the null
hypothesis of no association in the presence of linkage, the null distribution
of Z1 and Z2 is given by

p00 ¼ p10 ¼ ð1�mÞ=2; p01 ¼ p11 ¼ m=2

Thus, testing the null hypothesis of no association is equivalent to testing
π00= π10 and π01= π11. The proof of the above equivalence is provided in
Supplementary Equation S1. It can be easily deduced from Supplementary
Equations S1.1 and S1.2 that π10–π0040 and π11–π0140 if δ40, whereas both
the quantities are negative if δo0.

Binary traits
The classical TDT statistic1 based on the trio framework as described above is
given by

T ¼ nM1 ; M2 � nM2 ; M1

� �2
nM1 ; M2 þ nM2 ; M1

where nM1;M2 and nM2;M1 are the total number of heterozygous parents
transmitting the alleles M1 and M2, respectively, to their offspring. Here
we extend the above test procedure by including the transmission of the
other parents. Let nij be the number of observation for which Z1= i and
Z2= j and i,j= 0,1, then the hypothesis given in (Supplementary Equation S1)
can tested using the goodness-of-fit test statistic as

TDTB ¼
X1
i¼0

X1
j¼0

nij � eij
� �2

eij

where eij is the expected value of nij under the null hypothesis. On
simplification, the above test statistic can be expressed as

TDTB ¼ ðn00 � n01Þ2
n00 þ n01

þ ðn10 � n11Þ2
n10 þ n11

and is asymptotically distributed as χ2 with 2 degrees of freedom.

Quantitative traits
Waldman et al.5 proposed a test based on a logistic regression framework
that models the probability of transmission of the alleleM1 from a heterozygous
parent to a offspring conditioned on the offspring’s quantitative trait value. The
model is given by

P z ¼ 1jy½ � ¼ eaþby

1þ eaþby

where z denotes the indicator for the transmission of allele M1 by
a heterozygous parent. Haldar and Ghosh6 proposed a modified logistic
regression model that does not contain any intercept parameter and
is conditioned on the mean-adjusted quantitative trait values of the offspring
as follows:

P½z ¼ 1jy� ¼ ebðy�yÞ

1þ ebðy�yÞ

The test for association in the presence of linkage transmission-based
association test (TBAT)6 is based on the parameter β and yields comparable
power as the popular approach family-based association test (FBAT),9 but is
computationally much less expensive.

Figure 1 Empirical type 1 error rates corresponding to the different test statistics when the quantitative trait values are distributed as normal.
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We model the joint distribution of the alleles transmitted by the two parents
using a logistic regression with two responses:10

p00 ¼ 1
1þeb1 ðy�yÞþeaþb2 ðy�yÞþeaþb3 ðy�yÞ

p10 ¼ eb1 ðy�yÞ
1þeb1 ðy�yÞþeaþb2 ðy�yÞþeaþb3 ðy�yÞ

p01 ¼ eaþb2 ðy�yÞ
1þeb1 ðy�yÞþeaþb2 ðy�yÞþeaþb3 ðy�yÞ

p11 ¼ eaþb3 ðy�yÞ
1þeb1 ðy�yÞþeaþb2 ðy�yÞþeaþb3 ðy�yÞ

The null hypothesis of no linkage or no association is equivalent to
β1=β2= β3= 0. Thus, a TDT can be constructed using likelihood ratio
principles and is given by

TBATBL ¼ �2ðlða0; 0; 0; 0jdataÞ � lða1;b1;b2; b3jdataÞÞ
where l denotes the log-likelihood function, α0 and α1 are the maximum-
likelihood estimates of α under the null and the alternative hypothesis,
respectively, whereas β1, β2 and β3 are the maximum-likelihood estimates
of β1, β2 and β3, respectively. The test statistic is asymptotically distributed
as w23 under the null hypothesis.
An alternative test statistic can be defined as

TBATMax ¼ max
b1

2

vðb̂1Þ
;
b2

2

vðb̂2Þ
;
b3

2

vðb̂3Þ

( )

The false discovery rates corresponding to the above test statistic is obtained
using the Benjamini–Hochberg multiple testing correction.11

We also adopt the quasi-likelihood approach proposed by Wedderburn12

based on generalized linear models given by McCullagh and Nelder13

to develop a competing test for transmission disequilibrium. In the trio

framework, the quasi-likelihood equation is given by

Lðmða;bÞÞ ¼
Xn
i¼1

ðZi � miÞ0V�1
i ðZi � miÞ

where Zi= (z1i, z2i) is the transmission vector for the ith family, z1i is the
indicator for the transmission of the allele M1 by the heterozygous parent
and z2i is the indicator for the transmission of the allele M1 by the other parent.
If both parents are heterozygous, then we assign the transmission of one
parent as z1i and other as z2i randomly, so that every family has single
observation. Let μi= (μ1i, μ2i)= (E(z1i|yi), E(z2i|yi)) and Vi=V(Zi|y) be the
conditional variance–covariance matrix of Zi. We use a logistic link function
corresponding to the mean as follows:

Eðz1ijyiÞ ¼ ebðyi�yÞ

1þebðyi�yÞ

Eðz2ijyÞ ¼ eaþbðyi�yÞ

1þeaþbðyi�yÞ

For simplicity, we assume that Vi is the same for all i and equal to V.
We note that for large values of yi (i.e., yi4y) β40 implies that

E(z1i|yi)40.5, whereas βo0 implies that E(z1i|yi)o0.5. The implications are
in the reverse directions for small values of yi (i.e., yioy).
The parameter γ= (α, β) can be estimated using the generalized estimating

equations (GEE)14,15

Xn
i¼1

∂mTi
∂g

V�1ðZi � miÞ ¼ 0

The GEE procedure is known to be highly influenced by the presence of
outliers. As extreme phenotype values are common in association studies,
the above GEE approach may not be an efficient strategy. Thus, we assume

Figure 2 Empirical powers corresponding to the different test statistics when the quantitative trait values are distributed as normal under an additive model.
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a modified resistance GEE16,17 model given as follows:

Xn
i¼1

∂mTi
∂g

V�1Wiðy;mÞðZi � miÞ ¼ 0 ð1Þ

whereWi is a function that downweights the extreme values. We use the weight

function Wiðy;mÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� h2i Þ

q
, where hi ¼ YT

i DiY iPn

i¼1
YT
i DiY i

, YT
i ¼ ðyi; yiÞ1 ´ 2

and Di ¼ ∂mTi
∂g V

�1∂mi
∂g . Using the Taylor series expansion on Equation (1) around

the true parameter γ, we obtain

g� g ¼ O�1
Xn
i¼1

∂mTi
∂g

V�1Wiðy;mÞðZi � miÞ þ Opðn�1Þ ð2Þ

where O ¼ P ∂mTi
∂g V

�1Wi
∂mi
∂g . The variance of γ can be estimated using the

robust sandwich estimator as follows:

VarðgÞ ¼ O�1 ∂mTi
∂g

V�1Wiεiεi
TWiV

�1∂mi
∂g

� �
g ¼ ĝO�1
��

where εi ¼ Zi � m̂i is the estimated residual vector and the variance–covariance
matrix of the transmission vector is estimated using the plug in estimator given
by

V ¼ 1

n� 1

Xn
i¼1

Zi � m̂ið ÞT Zi � m̂ið Þ

We note that in Equation (2)

∂mTi
∂g

g ¼ ĝ ¼ ∂ðm1i;m2iÞ
∂ða;bÞ ¼ 0

m̂2ið1� m̂2iÞ
m̂1ið1� m̂1iÞy�
m̂2ið1� m̂2iÞy�

� �
g¼ĝ

�����
and V(β) is the (2, 2)th element of V(γ).
The null hypothesis of no association or no linkage is equivalent to β= 0 and

the test statistic is given by

TBATQL ¼ b2

VarðbÞ
and is asymptotically distributed as w21 under the null.

RESULTS

Simulation study
To compare TDTB with the classical TDT1 as well as TBATBL,
TBATMax and TBATQL with TBAT with respect to power of
detecting association in the presence of linkage, we carried out
extensive simulations under a wide spectrum of genetic models and
probability distributions of the underlying trait. We generate genotype
data for three choices of minor allele frequencies: 0.1, 0.2 and 0.3 for
both the trait and the marker loci. We consider different
models of disease inheritance: recessive, dominant (both with
incomplete penetrances) and complex such that the prevalence of
the underlying disease is ∼ 10% under each of the models. We fix
the value of the recombination fraction θ between the two loci

Figure 3 Empirical powers corresponding to the different test statistics when the quantitative trait values are distributed as location- and scale-shifted
χ2 under an additive model.
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as 0.01 and consider four different levels for linkage disequilibrium
δ= 0 (no association), 0.33, 0.67 and 1 (complete association).
(The details on the simulation parameters considered under the
different models are provided in Supplementary Equation S2).
For quantitative traits, we use the different combination of

the values 0.1, 0.3 and 0.5 as minor allele at the marker and
QTL. Assuming that A and a are the two alleles at the QTL,
the conditional mean and variance of the trait values given the
genotypes AA, Aa and aa are μ2, μ1, μ0 and σ2, σ1, σ0, respectively.
The trait values are generated using different probability models:
normal (reflecting symmetric QT distributions), location- and scale-
shifted χ2 (reflecting skewed QT distributions) and location-shifted
Poisson (reflecting count phenotypes) by varying the means
and variances of the quantitative traits conditioned on QTL
genotypes. (The details on the simulation parameters considered
under the different models are provided in Supplementary
Equation S3).
In the case of binary traits (results are provided in Table 1),

our simulations reveal that the power of the proposed test
procedure TDTB is an increasing function of the heterozygosity
at the disease locus for recessive models of inheritance and
is a decreasing function of heterozygosity at the disease locus for
dominant and complex models. However, the classical TDT statistic
yields more power compared with TDTB. On the other hand, the
rate of increase in power with increase in the coefficient

of linkage disequilibrium is comparatively more for the TDTB
procedure.
For quantitative traits, we observe that under certain scenarios,

the test statistics based on the bivariate logistic model TBATBL
and TBATMax yield marginally higher rates of false positives
than the desired level of 0.05, whereas TBATQL maintains the
desired level for all parameters considered (Figure 1). We also
observe that the powers corresponding to TBATBL and TBATMax are
marginally higher than TBAT (that considers transmission data
only from heterozygous parents) if the minor allele frequency at the
marker locus is high but yields comparable power as TBAT
for smaller values of minor allele frequency. On the other hand,
the quasi-likelihood approach TBATQL produces consistently
higher powers compared with TBAT, TBATBL and TBATMax.
We note that TBATBL, is a χ2 test with 3 degrees of freedom,
whereas TBATQL is a χ2 test with 1 degree of freedom. It is likely
that the additional degrees of freedom corresponding to TBATBL
results in a reduction in power compared with TBATQL.
The simulations also reveal that TBATMax yields more power
compared with TBATBL (as evident from Figure 2). All the test
procedures give similar powers across different probability distribu-
tions of quantitative trait values (comparing Figures 2,3,4), and hence
is robust to possible violations in underlying distributional assump-
tions. We also observe that the powers of the all test procedures
increases with the extent of dominance (Figure 5) and decreases

Figure 4 Empirical powers corresponding to the different test statistics when the quantitative trait values are distributed as location-shifted Poisson under an
additive model.
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with the extent of heteroskedasticity across the genotypes at the
QTL (Figure 6). We also found that under population stratification,
the modified approach that includes information on transmission
of both parents is susceptible to inflated rates of type I errors
(results not shown for brevity).

An application to Collaborative Study on the Genetics of
Alcoholism phenotype
The Collaborative Study on the Genetics of Alcoholism is a multi-
center research initiative with the objective of identifying susceptibility
genes for alcohol dependence and related phenotypes. There is
increasing evidence that externalizing behavior disorders such as
conduct disorder are strongly correlated with alcohol use
disorders. Ghosh et al.18 performed a genome-wide linkage scan
on a quantitative endophenotype defined as the number of externaliz-
ing symptoms related to antisocial behavioral traits. The phenotype
is the count of 24 symptoms endorsed by an individual and hence
ranges between 0 and 24. Multipoint nonparametric regression
based on 171 independent sib-pairs revealed significant evidence
of linkage in the 4q22.3 region on chromosome 4 harboring
the alcohol dehydorogenase gene cluster. One of the linkage
markers genotyped in this region was a biallelic marker ADH1C.
We applied the proposed bivariate logistic regression (TBATBL)
and the quasi-likelihood approach (TBATQL) on 138 independent
trios with at least one parent heterozygous at the locus. Although

both the procedures provided significant evidence of over
transmission of one of the alleles compared with the other allele
for high values of the quantitative endophenotype, indicating that
the marker locus may be in strong linkage disequilibrium with
a QTL modulating the number of externalizing symptoms, the
significance provided by TBATQL (P-value o0.00001) was much
more pronounced compared with TBATBL (P-value o0.0001).

DISCUSSION

The classical TDT1 for association in the presence of linkage is based
on a trio design and uses information on allelic transmission only
from heterozygous parents. As the phenotype of an offspring depends
on his/her genotype at the trait locus, and hence on the combination
of alleles inherited from the two parents, information on genetic
association is provided not only by the allele transmitted by
a heterozygous parent in a trio but also by the allele transmitted by
the other parent, irrespective of whether that parent is homozygous or
heterozygous. Terwillger and Ott8 and Ghosh and Reich7 had studied
the effect of including transmission information from homozygous
parents in the classical TDT framework in which they had considered
transmission data from the two parents within a trio to be indepe-
ndent of each other and had obtained contrasting results with respect
to powers of their proposed tests vis-a-vis the classical TDT.
The purpose of this article was to explore the effect of including

data on allelic transmissions simultaneously from both parents to an

Figure 5 Empirical powers corresponding to the different test statistics when the quantitative trait values are distributed as normal under
a dominance model.
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offspring in the framework of the classical TDT design for binary as
well as quantitative traits. Our proposed joint modeling of the
transmitted alleles from the two parents in an informative trio to an
affected offspring (TDTB) does not provide any advantage and yields
lower power in detecting association compared with the classical
TDT that is based on transmissions only from heterozygous parents.
On the other hand, the bivariate logistic regression approach
(TBATBL) provides marginal increase in power compared with
FBAT9 and TBAT6 with respect to association tests for quantitative
traits. However, the proposed quasi-likelihood approach (TBATQL)
based on resistance GEE provides a significant gain in power over the
other test procedures, while maintaining the model free property of
TDT statistics. While the modified test procedure has higher power
compared with TBAT,6 it is important to note that, unlike TBAT, the
test is not protected against population stratification, and hence the
power comparison needs to be restricted to genetically homogeneous
populations.
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