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Detecting disease association with rare variants
in case-parents studies

Yu-Mei Li and Yang Xiang

Major advances in DNA sequencing technology have generated large quantities of sequence data that promote the development

of statistical methods for rare variant association analyses. Although many population-based case control methods have been

well developed for rare variant analysis, little work focuses on family-based studies. In this paper, we extend the existing

methods to test for association of rare variants with case-parents data. We investigated the influence of non-variants and

effects of causal variants on max-Z 2
i , multi-marker test, and collapsing method, and proposed an adaptive strategy based on

a difference vector. Using simulations we show that the collapsing method is affected profoundly by the number of non-causal

variants and different direction effects of causal variants and multi-marker test is most robust to non-causal variants and effects

of causal variants. Our selective-difference strategy can improve power especially for collapsing method.
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INTRODUCTION

In the past few years, large genome-wide association (GWA) studies
have uncovered a large number of common genetic variants involved
in common diseases. However, most associations discovered in GWA
studies only explained a limited proportion of heritability for most
complex traits.1 Recently many resequencing based studies of candi-
date genes suggest many rare genetic variants contribute to the missing
heretability unexplained by discovered common variants (CVs). Rare
variants (RVs) are alternative forms of a gene that are present with a
minor allele frequency (MAF) of o1%. Low frequencies of RVs make
it difficult to detect RV association with approaches used for analysis
of CVs.
The rapid advancement in DNA sequencing technology and the

availability of large quantities of sequence data on large numbers of
individuals provide an unprecedented opportunity to develop novel
statistical methods for rare variant association analyses. Recently, the
collapsing strategy has been widely adopted to analyse RVs. This
strategy is to collapse all RVs across a causal region into a ‘super’
variant and then collectively test their association effect as a whole.
Many statistical methods based on collapsing strategy have been
recently developed. These include the cohort allelic sums test
(CAST),2 the combined multivariate and collapsing method
(CMC),3 the weighted-sum method4 and the variable threshold
method.5 These methods, with the assumption that all variants in a
region have an effect on the phenotype and the effects are in the same
direction with the same magnitude, can improve power by combining
information of multiple RVs. However, these tests will lose power
when the set of collapsed variants includes non-causal variants or the
effects of causal variants have different directions. Various methods
have been proposed recently to overcome these limitations. These

include C-alpha score test,6 the sequence kernel association test,7 and
the adaptive sum strategy.8 The series of adaptive tests proposed by
Pan and Shen8 can be considered as the extension of the variable
threshold method. The former is based on the frequency of the minor
allele, while the latter is to order the standardised magnitudes of a
statistic U or the locations of their corresponding RVs.
Although many methods have been well developed for rare

variant analysis, relatively little work has focused on family-based
studies. Compared with population-based case control studies,
family-based studies are more attractive due to their robustness to
population stratification which is more prominent for rare
variants.9 Moreover, because of using information about transmis-
sion of genetic factors within families, family-based methods for
single SNP association are potentially more powerful than the
population-based methods for rare diseases.10,11 In family-based
analysis, one way is to transform the family-based data and apply
case–control statistical tests. The commonly used strategy is to use
nontransmitted genotypes as control (also named as pseudocon-
trols or complements) of affected offspring in case-parents data
and construct a difference vector calculated by comparing the
genotypes of affected offspring with their corresponding ‘comple-
ments’.12 In this paper, we will extend the existing methods
including max-Z2

i , multi-marker test, and collapsing method to
test for association of rare variants with family-based study and,
based on the difference vector, use an adaptive strategy to
eliminate the influence of non-causal variants and effects of causal
variants. In our method, we choose RVs according to the
magnitude of difference. Through simulation studies, we will
assess the type I error rates and the power.
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MATERIALS AND METHODS
We consider a sample of n trios-two parents and an affected offspring in
each family. The variants and the triads are indexed by i(i= 1, 2, ⋯, k) and j
(j= 1, 2, ⋯, n), respectively. Let Mij, Fij and Oij be the number of copies of
minor alleles carried by the mother, father and offspring, respectively, in the j th
trio at the i th variant. Let δij= 2Oij− Fij−Mij. δij presents the difference in
genotypes between the affected offspring and the complement for the j th trio at
the i th variant. Here, missing individual variant genotype is permitted, that
means, the genotypes at some variants can be sporadically unknown for a
member in the family. We define a family as a informative family for variant i
when the genotypes are known for each member of the trio and δij≠0. Let ni
(ni≤ n) be the number of the informative families and Di ¼ 1

ni
Sni
j¼1dij be the

sample mean of δij among informative families at the ith variant. Denote the
variance of Di by s2

Di
, where sDi

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
niðni�1ÞS

ni
j¼1ðdij � DiÞ2

q
.

Family-based association test
A simple approach for family-based association test (FBAT) is to analyse
individual variants separately. For the i th variant, define

Zi ¼ Di

sDi

: ð1Þ

Under the null hypothesis of no association Zi is approximately N(0,1).
A Bonferroni correction is used for k tests when all rare variants are
independent. If we take into account the correlation between the variants,
the maximum of the Z2

i across all k variants can be adopted with a permutation
procedure.12 The permutation procedure is as follows. We first calculate the
data-based statistic. Then we recalculate permutation-based statistic by random
reassigning the labels ‘case’ and ‘complement’ with equal probability. We repeat
this process B times and then the P-value is estimated as the proportion of
permutation-based statistics that are larger than the data-based statistic.
Another approach for the FBAT is Multi-Marker test, which is to test all

variants simultaneously with the use of a multivariate test.3 However, it requires
the genotypes known for each member of the triads at k variants. Assume that
the genotypes of n case-parents triads are available. Define a k-dimensional
random vector δ= (δ1, δ2,⋯, δk)

T be the difference vector for k variants. Then
D ¼ ðD1;D2;?;DkÞT is the sample mean vector and S ¼ diagðs2

D1
;?;s2

Dk
Þ

is the covariance matrix of D when rare variants are independent. The multi-
marker test is then given by

TM ¼ D
T
S�1D: ð2Þ

In large samples, TM has an asymptotically χ2 distribution with degrees of
freedom equal to the rank of Σ.

Collapsing method for rare variants
Collapsing method is to ‘collapse’ multiple variants into a single variant in a
gene or region. We assume that all variants have an effect with the same
direction on disease susceptibility. Let U ¼ Pk

i¼1 Di, then VarðUÞ ¼ Pk
i¼1 s

2
Di
.

The standardised test statistic is

ZC ¼ Uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðUÞp : ð3Þ

Under the null hypothesis of no association ZC is approximately N(0,1).
The original collapsing approach collapses all the variants in the region of

interest and does not eliminate the noise generated by the non-causal variants.
In order to remove the influence of the non-causal variants, we propose to use
an adaptive strategy based on the difference of Di

�� ��. We sort k variants in
ascending order of Di

�� �� and let G ¼ fi : jD1jrjD2jr?rjDkjg be a set
containing all k ordered variants. Let GðsÞ ¼ fi : jDsjr?rjDkjg ðs ¼
0; 1;?; k� 1Þ be the set which delete the first s variants from G, for example,
G(0)=G, Gð1Þ ¼ fi : D2

�� ��r D3

�� ��r?r Dk

�� ��g, and Gðk� 1Þ ¼ fi : Dk

�� ��g.
We obtain k variant sets G(0), G(1),⋯, G(k− 1) containing k, k− 1,⋯,1
variants, respectively. The values of Di

�� ��in G(s) are larger than those in variant
sets ahead of G(s). For each G(s), we calculate the statistic, denoted by ZG(s),

with collapsing method,

ZGðsÞ ¼

P
iAGðsÞ

Di

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iAGðsÞ

s2
Di

r

Our test statistic, here, denoted as max-ZG, is the maximum of the ZG(s), that is,
max-ZG ¼ max

s
fZGðsÞg. The variant set corresponding to the max-ZG can be

considered as the optimal set containing variants associated with disease. We
also denote the statistic corresponding to TM based on this selective-difference
strategy as max-TM,

max�TM ¼ max
s
fTM

GðsÞg
where, TM

G(s) corresponds to the statistic TM calculated with equation (2) in
variant set G(s). The statistical significance can be assessed by permutation.

RESULTS

Simulation setting
To assess the performance of these statistics, we perform the
simulation study under a wide range of parameter values (the program
is available on request). The simulation parameter includes the
number of variants, the MAF at each variant, the number and effect
size of causal variants, and the sample size. We consider k
(k= 10, 20, 50) variants in the region and the proportion of non-
causal variants are 20%, 40%, 60% and 80% (here, let q be the number
of causal variants). We assume that variants are independent and firstly
create parental haplotypes and then generate offspring haplotypes.
Remember that although haplotypes are simulated in our study, only
genotype data are used. The disease status for an individual’s
phenotype is determined by the following logistic model:13

PðAffectedjOij; i ¼ 1;?; kÞ ¼ 1

1þ expð�gÞ;

G ¼ ln
c

1� c

� �
þ
Xk

i¼1

lnðORiÞ � Oij

where c is a background chance of being affected for a subject with no
minor alleles, ORi is the effect size of variant i and Oij is the number of
copies of minor alleles at the ith variant. The parameters are chosen as
follows: c= 0.01. The minor allele frequencies of all variants are
randomly determined with values ranging from 0.001 to 0.01. OR= 1
for all variants under the null hypothesis of no association. Under the
alternative hypothesis of association, we consider three scenarios:
scenario A is that variants associated with disease have the same OR
value, scenario B is that variants associated with disease have the same
positive direction but different effects, and scenario C is that variants
associated with disease have different direction effects. In scenario A,
we let OR= 2 for causal variants. In scenario B, we let OR∈ [1.2, 3]
with increments of 1:8

q�1 for causal variant 1 to variant q. In scenario C,
we let OR∈ [1.2, 3] for half of causal variants and OR∈ [0.2, 0.8] for
the rest causal variants. In three scenarios, OR= 1 for non-causal
variants. We assume that the genotypes of each individual for all
variants are available in the analysis. The number of case-parent triads,
n, is chosen as 500, 1000 and 1500.
In each simulation scenario, we calculate the values of the statistics

according to whether we use or not use selective-difference strategy.
When not using selective-difference strategy, we consider the statistics
max�Z2

i , the multi-marker test TM, and the statistic ZC with collapsing
method. When using selective-difference strategy, we consider the
multi-marker test max-TM and the collapsing statistic max-ZG. P-
values of these statistics are estimated as the proportion of the
permutation-based statistics that are larger than the data-based statistic
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by 5000 (B= 5000) permutations. Type I error rates and powers are
the proportion of p-values that are less than a significance level of 0.05
in 1000 replications when the null hypothesis/the alternative
hypothesis holds.

Type I error rate and power
We present in Table 1 the estimated type I error rates for sample sizes
from 500 to 1500 individuals. As shown in Table 1, the type I error
rates are all around the nominal levels.
The power estimates are exhibited in Tables 2–4 for three scenarios,

respectively, when the sample size is 500. From Tables 2,3, it is found
that the power estimates of all tests decrease with the increasing of the
number of non-causal variants for a given number of variants,
indicating that the powers of these tests are affected by non-causal
variants. We can see that the multi-marker test is least affected and the
collapsing method is most affected by non-causal variants. For
example, when there are 10 variants in scenario A, with the number
of non-causal variants increasing from 6 to 8, the powers of TM and
ZC decrease from 0.965% to 0.866% and 0.632% to 0.200%, with
10.26% and 68.35% decline rate, respectively. Nevertheless, this
difference becomes less severe by adopting selective-difference strategy.
It can be seen that the multi-marker test has highest power and
powers of max-TM with selective-difference strategy are slightly larger
than those of TM. We observed that powers of collapsing method with
selective-difference strategy are larger than those not with selective-
difference strategies, especially for the large number of non-causal
variants. When the number of variants is 10, powers of collapsing
method with selective-difference strategy are very close to those of
multi-marker test.
It can be seen from Table 4 that, when causal variants have different

direction effects, the collapsing method has very low power. However,
powers of collapsing method are improved by using selective-
difference strategy, and especially when the number of variants
is 10, powers of collapsing method are sharply improved from
~10% to 490%. We also observed that, similar to those under the
first two scenarios, powers of multi-marker test are largest and can be
improved by selective-difference strategy. The results in Table 4
showed that the collapsing method has been affected profoundly by
different direction effects of causal variants and selective-difference
strategy can largely enhance the power, and at the same time, multi-
marker test is most robust to different direction effects of causal
variants. Furthermore, we can see that powers for all statistic tests
decease with the number of variants increasing.
We also investigated the performance of our method in the

presence of population stratification. We assume that the study
population is composed of two subpopulations both with 50%. In
the two subpopulations, the minor allele frequencies of all variants are
uniformly generated between 0.001 and 0.01. OR= 1 for all variants
under the null hypothesis. In the first subpopulation, c= 0.01, the
values of OR vary from 1.2 to 3.0 with increments of 1:8

q�1 for causal
variant 1 to variant q and OR= 1 for non-causal variants under the
alternative hypothesis of association. In the second subpopulation,
c= 0.008, the values of OR vary from 1.2 to 2.0 with increments of 0:8

q�1
for causal variant 1 to variant q and OR= 1 for non-causal variants
under the alternative hypothesis of association. we found that type I
error rates are well controlled (data not shown). The results for the
power are similar to those under the homogeneous population (data
not shown). In addition, we explored the effects of different sample
sizes on the power of these statistics. As expected, the power increases
when the sample size is increased (data not shown).

Computation time
The computation time for these statistics using the selective-difference
strategy depends on the number of variants, the sample size and the
permutation time. To analyse 10 variants on 500, 1000 and 1500 case-
parents trios with 5000 permutations requires 0.5, 1.2 and 2 min,

Table 1 The estimated type I error rates

The number

of variants Sample size max-Z 2
i TM ZC max-TM max-ZG

10 500 0.0543 0.0541 0.0437 0.0548 0.0504

1000 0.0456 0.0535 0.0546 0.0568 0.0476

1500 0.0526 0.0478 0.0470 0.0431 0.0555

20 500 0.0565 0.0491 0.0531 0.0481 0.0585

1000 0.0499 0.0505 0.0543 0.0519 0.0560

1500 0.0480 0.0570 0.0567 0.0422 0.0477

50 500 0.0408 0.0465 0.0401 0.0580 0.0452

1000 0.0469 0.0505 0.0553 0.0444 0.0511

1500 0.0554 0.0551 0.0477 0.0542 0.0439

Table 2 Empirical power at the 0.05 significance level when causal

variants have the same effect

Rare

variants

Non-causal variants

(%) max-Z2
i TM ZC max-TM max-ZG

10 20 0.970 1.00 0.985 1.00 0.977

40 0.961 0.973 0.954 0.980 0.961

60 0.947 0.965 0.632 0.968 0.806

80 0.842 0.866 0.200 0.900 0.789

20 20 0.489 1.00 0.972 1.00 0.960

40 0.451 0.981 0.944 0.980 0.946

60 0.448 0.972 0.845 0.976 0.809

80 0.446 0.765 0.312 0.772 0.701

50 20 0.224 0.965 0.953 0.970 0.948

40 0.199 0.845 0.841 0.945 0.856

60 0.117 0.806 0.632 0.928 0.711

80 0.109 0.637 0.306 0.684 0.580

The sample size is 500. OR=2 for causal variants. MAF∈ [0.001, 0.01].

Table 3 Empirical power at the 0.05 significance level when causal

variants have different effects with the same direction

Rare

variants

Non-causal

variants (%) max-Z2
i TM ZC max-TM max-ZG

10 20 0.989 1.00 0.986 1.00 0.980

40 0.984 0.970 0.942 0.974 0.957

60 0.975 0.964 0.562 0.970 0.932

80 0.963 0.975 0.319 0.973 0.924

20 20 0.815 1.00 0.987 1.00 0.945

40 0.798 0.986 0.931 0.985 0.914

60 0.543 0.953 0.720 0.960 0.908

80 0.532 0.881 0.353 0.892 0.725

50 20 0.225 0.976 0.960 0.979 0.961

40 0.188 0.870 0.842 0.974 0.852

60 0.142 0.831 0.670 0.905 0.747

80 0.104 0.825 0.221 0.886 0.691

The sample size is 500. OR∈ [1.2, 3] for causal variants. MAF∈ [0.001, 0.01].
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respectively. Analysing 20 variants on 500, 1000 and 1500 case-parents
trios with 5000 permutations requires 1, 1.8 and 2.5 min, respectively.
In addtion, 1.6, 2.3 and 3 min are required for 50 variants on 500,
1000 and 1500 case-parents trios with 5000 permutations, respectively.

DISCUSSION

In this paper, we extended the existing methods including max�Z2
i ,

multi-marker test, and collapsing method to test RVs association with
disease susceptibility using case-parents data. We used case-parents
triad to create the genotype difference between affected offspring with
their corresponding ‘complements’ and adopted a selective-difference
strategy by ordering the means of the differences for all variants. Our
method can be considered the extension of the adaptive methods
proposed by Price et al.5 and Pan and Shen.8 However, at least two
characteristics of our method are totally different from their methods:
(1) our method uses the case-parents data and offers a substantial
benefit of being robust to admixture population, while their methods
are for case control population-based analysis, (2) our approach is
based on the order of the means of the differences between affected
offspring with their corresponding ‘complements’, whereas the
method of Price5 uses the frequency of the minor allele and the
method of Pan and Shen8 is to order the standardised magnitudes of a
statistic U or the locations of their corresponding RVs. We assessed the
performance of our method by simulation analysis.
In our simulations, we investigated the influence of non-causal

variants and the effect size of causal variants on the power. The results
showed that powers of these methods are all affected by the number of
non-causal variants and the effect size of causal variants. Here, we

found that the collapsing method is affected profoundly by the
number of non-causal variants and different direction effects of causal
variants and multi-marker test is most robust to non-causal variants
and effects of causal variants. The selective-difference strategy can
improve power especially for collapsing method. It should be noted
that, although our method is designed for case-parents data, it is
flexible in application. In practice, when multiple markers are studied,
individuals may have incomplete information of individual marker
data. Our strategy for collapsing method is capable of handling
missing SNP data. We can also use single-parent families to obtain
the difference and then construct these statistic tests for RVs analyses
when we make a study of diseases of late onset.
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Table 4 Empirical power at the 0.05 significance level when causal

variants have opposite effects

Rare

variants

Non-causal

variants (%) max-Z2
i TM ZC max-TM max-ZG

10 20 0.902 1.00 0.116 1.00 0.971

40 0.900 0.988 0.107 0.997 0.946

60 0.861 0.957 0.104 0.989 0.952

80 0.889 0.880 0.092 0.976 0.920

20 20 0.593 1.00 0.117 1.00 0.903

40 0.604 0.978 0.115 0.980 0.895

60 0.405 0.865 0.110 0.875 0.825

80 0.337 0.760 0.098 0.803 0.790

50 20 0.270 0.871 0.104 1.00 0.704

40 0.196 0.845 0.100 0.970 0.606

60 0.132 0.832 0.101 0.894 0.558

80 0.090 0.615 0.090 0.705 0.481

The sample size is 500. OR∈ [1.2, 3] for half of causal variants and OR∈ [0.2, 0.8]
for the rest causal variants. MAF∈ [0.001, 0.01].
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