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Block-based association tests for rare variants using
Kullback–Leibler divergence

Degang Zhu1,2, Yue-Qing Hu3 and Shili Lin4

Although genome-wide association studies have successfully detected numerous associations between common variants and

complex diseases, these variants typically can only explain a small part of the heritable component of a disease. With the advent

of next-generation sequencing, attention has turned to rare variants. Recently, a variety of approaches for detecting associations

of rare variants have been proposed, including the Kullback–Leibler divergence-based tests (KLTs) for detecting genotypic

differences between cases and controls. However, few of these approaches consider linkage disequilibrium (LD) structure among

rare variants and common variants. In this study, we propose two block-based association tests for testing the effects of rare

variants on a disease. The main idea for this approach comes from the hypothesis that a region of interest may consist of two or

more LD blocks such that single-nucleotide variants (SNVs) within each block are correlated, whereas SNVs in different blocks

are independent or weakly correlated. Under this hypothesis, we propose two tests that are generalizations of the KLTs by taking

the block structure into account. A simulation study under various scenarios shows that the proposed methods have well-

controlled type I error rates and outperform some leading methods in the literature. Moreover, application to the Dallas Heart

Study data demonstrates the feasibility and performance of the two proposed methods in a realistic setting.
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INTRODUCTION

Although extensive genome-wide association studies have resulted in
the detection of many common variants (CVs) that are associated with
complex traits or diseases, these variants tend to have modest effect on
the phenotype, whereas rare variants (RVs) are likely to have stronger
effects.1–3 At the same time, the new sequencing technologies are
providing an avenue for re-sequencing parts of, or even the entire,
genome, thus leading to the effective detection of RVs. There is
growing evidence supporting the role of RVs in complex trait
associations. For example, four disease-associated RVs in the IFIH1
gene, which had been proved to be protective of type 1 diabetes, were
detected.4 Four variants with a minor allele frequency (MAF) in the
range of 0.1–0.8% in the NOD2 gene were also found to be associated
with Crohn’s disease.5 Also, 13 functionally screened MTNR1B
variants with MAFo0.1% were identified to be associated with type 2
diabetes.6,7 However, statistical approaches for genome-wide associa-
tion studies based on testing individual single-nucleotide variants
(SNVs) do not work well because the power for detecting an
association with a RV is low even with a very large sample.8,9

Therefore, a larger number of new statistical data analysis strategies
specifically targeting RVs have been proposed. Some newly proposed
tests share the common idea of pooling or collapsing multiple rare
SNVs and then testing for an association with some trait by combining
information across multiple sites.9–13 These so-called burden tests

perform well when there are no or few neutral RVs in the region of
interest and most of the causal RVs have the same association
direction on the trait. For ease of discussion, we refer to variants that
are associated with the disease of interest as ‘causal’, but such variants
may not be really causal but rather, merely associated. However, the
effects of RVs are not always in the same direction. If the RVs to be
pooled consist of both positively and negatively associated variants, the
association signal may be weakened or canceled out, which may result
in low power.14 Tests based on model selection have then been
proposed to address this.15–18 The main idea of these tests is to
determine whether a RV may be associated and should be collapsed,
and if so, its association direction is also ascertained. As already
pointed out by researchers, in spite of their strong motivation for
model selection, the performance of model selection-based tests might
not be as impressive as expected, especially when there are a large
number of neutral RVs in the region of interest.14

Another alternative to overcoming the problem of different
association directions is to use non-burden tests, including variance
component tests such as the C-alpha test,19 the sequence kernel
association test (SKAT)20 and some other related methods such as the
sum of squared score test (SSU)21 and the Goeman’s score test.22

Non-burden tests are shown to be more robust to the inclusion of
causal variants with opposite association directions. However, non-
burden tests have their own disadvantages. They can be less powerful
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than burden tests if most of the causal variants have the same
association direction. As such, an optimal test, SKAT-O, which
combines SKAT and a burden test, was proposed and shown to
perform well in a wide range of scenarios.23 Nevertheless, SKAT-O has
its own disadvantage in that it may lose power when the proportion of
non-associated RVs in the testing region is large.24 Recently, several
novel methods based on Kullback–Leibler divergence for testing the
effects of RVs on a trait were proposed.25 These tests, referred to as
Kullback–Leibler tests (KLTs), have been shown to perform better
than SSU and SKAT-O through extensive simulations.
Linkage disequilibrium (LD) is known to exist among CVs, which

was relied on as the fundamental principle for detecting markers that
are associated with common diseases21,26,27. However, despite the
increased focus on ascertaining the role of RVs in complex diseases,
there has been little study on LD patterns involving RVs. The situation
for RVs is clearly different from that for CVs due to low minor allele
counts; therefore, it has been suggested that RVs are likely to be
independent in general.9 As such, many RV association methods
assume that RVs are independent, either implicitly or explicitly.
However, based on a study utilizing the 1000 Genomes data, Feng and
Zhu28 concluded that substantial LD among RVs exist, which may be
explained by population admixture. Unless such LD is being appro-
priately accounted for, large-scale false positives may result. However,
the authors also concluded that traditional family-based transmission
disequilibrium test may not be able to overcome the problem if
multiple RVs are analyzed together. To address this problem, a
handful of methods have been proposed. Talluri and Shete29 proposed
a step-wise variant-selection procedure (LDSEL) that takes LD into
account. An alternative variant selection procedure (CCRS) was
proposed in Yazdani et al.,30 in which LD was incorporated implicitly
by selecting principal components that are most related to the
phenotype being studied. On the other hand, Turkmen and Lin31

proposed two family-based block approaches (rbPDT and rbFBAT)
that preserve the LD structure within each block while treating
variants between blocks to be independent to increase statistical power
without inflating the type I error.
Inspired by the block-based approach for accounting for LD and the

nice properties of KLTs, in this paper, we propose two block-based
association tests for RVs, which generalize the KLTs and improve the
power when the LD block in a region of interest is known. These
methods share the same feature as the KLTs in that they are not
sensitive to different effect sizes or directions, but they can be more
powerful than the original KLTs when there are indeed blocks in the
test region that separate the causal variants from the majority of the
non-causal ones. In addition to comparing with the original KLT, we
also compare the proposed tests with SSU and SKAT-O, with the latter
arguably being the most popular method to date. Note that SSU was
originally proposed for CVs and takes LD into consideration. As
burden tests have been shown to be less powerful than SKAT-O and
SSU, they are omitted in this study. Among the handful of LD-
incorporated approaches that were specifically proposed for detecting
RV associations, rbPDT and rbFBAT are for family data only, whereas
there are no publicly available softwares for LDSEL or CCRS.
Therefore, none of these methods were used in our study. In addition
to the simulation, we also applied the proposed approaches and the
comparison methods to the Dallas Heart Study (DHS) data to further
evaluate their performances with real data.

MATERIALS AND METHODS
We first give a brief introduction to the KLTs.25 The main idea of the KLTs
is to directly compare the distributional differences of variant frequencies site

by site between cases and controls. Assume that there are M genetic variant
sites within the region of interest where both RVs and CVs may be present.
Two normalized variant frequencies at site m among all sites in the cases
(n1 individuals) and controls (n2 individuals) are defined as fm and gm,
respectively, m= 1, 2, …, M. Then, {fm}≡{fm, m= 1, 2, …., M} and {gm}≡{gm,
m= 1, 2,….,M} become two discrete distributions defined on the same region.
We focus on one of the KLT test statistics, which is defined based on the KL
divergence32 as follows:

KLT ¼ Hð f m
� �

; gm
� �Þ ¼ 1

2

XM
m¼1

ðf m � gmÞlog
f m
gm

" #
: ð1Þ

Obviously, the KLT statistic is 0 when the two distributions are identical and
has a large (positive) observed value when one distribution is different from the
other. The P-value of the KLT statistic is calculated by a permutation procedure
where the case or control status of individuals is permuted. To improve the
power of the KLT when there are a large number of neutral variants, they also
proposed a data-adaptive screening step to distill the variants to obtain an
adaptive KLTs,25 which shows improvement over the KLT in some cases. Two
other KLTs were also proposed. In this study, however, we only discuss the
KLT as defined in (1) to be sufficiently focused, although the block versions of
the other KLTs can be similarly devised.
Although KLT was shown to perform well compared with other methods,

there is room for improvement in settings in which variants being investigated
are in multiple blocks with disparity in signals. To address this limitation of the
KLT test, we propose two block-based association tests, both of which
generalize the KLT and can potentially improve the power without sacrificing
type I error rate when the block structure of variants within a region being
investigated is known.

bKLTmax
The first test that we propose, bKLTmax, is a block-based KLT that attempts to
find maximum information contained within a block. For ease of exposition of
idea, we assume that there are two blocks, block 1 (B1) and block 2 (B2), in the
region to be considered, although the method is applicable to a setting with a
larger number of blocks. In each block, both causal and neutral variants may be
present, and at the same time, both CVs and RVs may also be included. By LD
blocks, we mean that variants within the same blocks are correlated, whereas
variants between blocks are independent or only weakly correlated. In the
setting where all causal variants cluster in one block, whereas the other block
only contains neutral variants, the original KLT is expected to lose power due to
the noise. Some numerical results shown in Figure 2 of Turkmen et al.25 can be
regarded as an illustration of this. Motivated by this shortcoming, we propose
to apply the KLT test to each of the two blocks separately to increase the
information contained in the block with causal variants. Specifically, we define

bKLTmax ¼ maxfKLT1; KLT2g; ð2Þ
where KLT1 and KLT2 are the KLT statistics for B1 and B2, respectively. As the
distribution of the test statistic bKLTmax under the null hypothesis of no
association is not of a known form, we calculate the P-value by a permutation
procedure as described in section ‘Significance Test’. The bKLTmax statistic
may be defined analogously when there are more than two blocks.

bKLT
As we can see from the definition, if causal variants are split fairly evenly among
the blocks, then bKLTmax will lose power as the signals are being fragmented.
Hence, we propose a second statistic, bKLT, which is an attempt to take
advantage of both the robust feature of the original KLT and the greater
sensitivity of bKLTmax. This is a compromise that is most appropriate when it
is unknown, before hand, whether causal variants are contained in only one, or
split among multiple blocks. Specifically, we define

bKLT ¼ maxfKLT1 þ KLT2; KLTg; ð3Þ
where KLT1+KLT2 is the sum of the numerical values of the two KLT statistics
as defined in (2), and KLT is the statistic for the entire region being
investigated. When there are more than two blocks, the bKLT statistic may
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be defined similarly. P-value of the test statistic will also be obtained by
permutation as we discuss in the following.

Significance test
As the distribution of either of the statistics being proposed, bKLTmax or
bKLT, is not of a known form under the null hypothesis of no association, we
obtain the null distribution by means of permuted samples to estimate the
P-value. Specifically, we permute the case–control status of the individuals,
while keeping the genotype information fixed. Without the loss of generality, let
the statistic be T (which may be bKLTmax or bKLT). We first randomly assign
n1 of the subjects to be cases, whereas the remaining are treated as controls.
Then, we apply the test statistic to the permuted data to get the corresponding
test statistic T(b). This process is repeated B times, that is, b= 1, 2, …., B. The
P-value for the statistic T is estimated as

P ¼
PB
b¼1

IðTðbÞXTÞ
B

; ð4Þ

where I(?) is the usual indicator function. For the simulation study described in
the following section, we generate data under a model and repeat the above
procedure to obtain a P-value P(r). This process is then repeated R times, that is,
r= 1, 2, …, R. Then, for a given significance level α, we compute

Q ¼
XR
r¼1

IðP rð ÞpaÞ=R: ð5Þ

This quantity Q can be interpreted as type I error rate, if the model portraits no
causal variants. On the other hand, if there are variants in the region of interest
that are associated with the disease, then Q is reported as power. The codes
implementing bKLT and bKLTmax are available upon request.

RESULTS

Simulation study
We first compare the two proposed methods, bKLTmax and bKLT,
with three existing methods, KLT, SSU and SKAT-O, in a compre-
hensive simulation study. We consider both independent and corre-
lated genetic variants.

Data generation
Following the paper by Turkmen et al.,25 we generated the data under
various causal mechanisms and MAFs for the causal and neutral
variants, as summarized in Table 1. As can be seen from Table 1, there
are a total of 32 SNVs in the region to be tested, among which 8 SNVs
are causal and the others are neutral. We considered six scenarios. In
scenario 1, the eight causal SNVs are all CVs, whereas in scenario 2,
the eight causal SNVs are all RVs. In scenario 3, the 8 causal SNVs are
all CVs, but the 24 neutral variants consist of 8 rare neutral variants
and 16 common neutral variants. In scenarios 4–6, the make-up of the
eight causal SNVs is two rare causal variants and six common causal

variants, but at the same time, we considered several different MAF
ranges for the neutral variants.
The genotype matrix is simulated as follows. First, we simulated

M= 32 variants with the sample size of 500 cases and 500 controls.
Each variant has a MAF uniformly distributed in the intervals
displayed in Table 1. Following the paper by Basu and Pan,14 we
generated a latent vector Z ¼ ðZ1; Z2; y; ZMÞ0 from a multivariate
normal distribution with mean 0M¼ ð0; 0;y; 0Þ0 and variance
1M¼ ð1; 1;y; 1Þ0. To take the correlation between any two variants
into account, we assume, within a block, that causal variants or neutral
variants are correlated with themselves by a first-order auto-regressive
(AR(1)) structure, but there is no correlation between these two types
of causal or neutral variants. That is, there was a correlation
CorrðZk;ZjÞ ¼ rjk�jj between any two causal variants or any two
neutral variants within the same block. The correlation coefficient ρ
was set to be 0, 0.3, 0.5 and 0.7 to denote independent and various
degrees of correlation. Then, each Zi is mapped to a value between 0
and 1 through inverse transformation and then dichotomized to 1
(minor allele) or 0 (major allele) depending on the corresponding
MAF of the variant. For each individual, combining two Z's lead to the
vector of genotype data X.
The above genotype data simulation was carried out according to

three different block structure specifications, as given in Table 2. Block
structure 1 specifies that all the eight causal variants are clustered in
block 1. Block structure 2 depicts the situation in which six and two
causal variants are contained in blocks 1 and 2, respectively. For block
structure 3, both block 1 and block 2 harbor four causal variants.
These three block structures were devised, in various degrees of
difficulty, to test the performance of the methods. The effect sizes of
the variants, collectively denoted as vector β, are provided in the
footnotes of the table for easy reference. Specifically, for block
structure 1, the eight effect sizes in β are for the eight causal variants
in block 1 under all scenarios. For block structures 2 and 3, causal
variants are contained in both blocks. As such, the effect sizes specified
in β, from left to right, correspond to the order of causal variants
described in each scenario. For example, for block structure 2 under
scenario 1, the first six effect sizes in β are for the six common causal
variants in block 1, whereas the remaining two effect sizes are for the
two common causal variants in block 2.
With the specification of β for each block structure and each

scenario in place, we then simulated the disease status Yi of the ith
individual using the following logistic model

logitPðYi¼ 1Þ ¼b0 þ X0
ib; ð6Þ

where β0, the background disease prevalence, was set to be log(1/4);
Xi ¼ ðXi1; Xi2; y; XiMÞ0 denotes the genotype vector of the ith
individual (Xij¼ 0; 1; 2) over M(= 32) markers. In addition to

Table 1 Summary of the six scenarios utilized in the simulation study

RC RN CC CN

Scenario MR # SNVs MR # SNVs MR # SNVs MR # SNVs

1 NA 0 NA 0 0.1–0.3 8 0.2–0.5 24

2 0.005–0.01 8 0.01–0.05 24 NA 0 NA 0

3 NA 0 0.005–0.01 8 0.1–0.3 8 0.2–0.5 16

4 0.005–0.01 2 0.01–0.05 8 0.1–0.3 6 0.1–0.3 16

5 0.005–0.01 2 0.005–0.01 8 0.1–0.3 6 0.2–0.5 16

6 0.005–0.01 2 0.01–0.05 8 0.1–0.3 6 0.2–0.5 16

Abbreviations: CC, common causal; CN, common neutral; MAF, minor allele frequency; NA, not applicable; MR, MAF range; RC, rare causal; RN, rare neutral; SNV, single-nucleotide variant.
For each variant, the MAF value was generated uniformly from the range given.
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evaluating the power of the various tests using the effect size β
provided in Table 2, we also set β= 0 to gauge the type I error. We
used 1000 replicates to evaluate type I error and power at a
significance level of 0.05. For each replicate, we permuted the case–
control status of the individuals 1000 times.

Type I error rate
Our first series of the simulation study was to compare the two
proposed tests, bKLTmax and bKLT with KLT, SSU and SKAT-O for
all six scenarios and three block structures under the null model.
Within each block, we considered four levels of correlation: ρ= 0, 0.3,
0.5, 0.7. The results are displayed in Table 3. As we can see, the type I
error rates are all around the nominal level of 0.05. Thus, all the five
tests appear to have properly controlled type I error rates.

Power
Our second series of the simulation study was to compare the powers
of bKLTmax, bKLT, KLT, SSU and SKAT-O. First, we considered
block structure 1. In this case, all eight causal variants cluster in one
block (block 1), whereas block 2 only consists of neutral variants, that
is, there is no association signal in block 2. The power results under
the six scenarios given in Table 2 with four different strengths of
correlation are illustrated in Figure 1. As we can see from the figure,
bKLTmax is more powerful than the other four tests in all the six
scenarios considered. Specifically, in scenarios 2, 4, 5 and 6, when
there are only rare causal variants or when there are both rare and
common causal variants, bKLTmax and bKLT perform well compared
with the other three tests. In scenarios 1 and 3, when only common
causal variants are involved, bKLTmax and bKLT still have better
performance than KLT, SSU and SKAT-O, especially with higher

correlation coefficient (ρ= 0.7). The power results for block structure
1 are consistent with what we would expect; bKLTmax is suitable for
settings in which all causal variants are within a block as it maximizes
the information content and reduces the influence of noise.
For block structure 2, the results of the five tests are showed in

Figure 2. In this case, six of the eight causal variants cluster in block 1
and the remaining two are located in block 2. bKLTmax and bKLT
still perform well, as with block structure 1. Specifically, in scenarios 1
and 2, bKLTmax and bKLT are more powerful than KLT, SSU and
SKAT-O. In scenarios 3–6, bKLTmax, bKLT and KLT all have similar
power, although with a higher correlation coefficient (ρ= 0.5, 0.7),
bKLTmax and bKLT are less powerful than KLT in scenarios 5 and 6,
but they are still much more powerful than SSU and SKAT-O.
For block structure 3, half of the causal variants are in block 1 and

the other half are in block 2, which represents the worse case scenario
for bKLTmax. The results are displayed in Figure 3. Surprisingly, we
still see that bKLTmax and bKLT are the most powerful tests for
scenario 1. Under scenario 2, bKLT has the highest power among the
tests. In scenarios 3–6, KLT performs the best, which is followed by
bKLT, whereas bKLTmax still outperforms SSU and SKAT-O. These
results are once again as expected. As the signals for the association are
split between two blocks, bKLT, proposed as a compromise between
bKLTmax and KLT, has better power than bKLTmax.

Robust analysis
In the simulation study presented thus far, bKLTmax and bKLT are
shown to work well in various settings based on the assumption that
we know the true block structure of the region of interest. Notwith-
standing the superior performance, the question arises as to how will
bKLTmax and bKLT behave under the perturbation of block structure

Table 2 Distribution of variants and their association effect sizes under three block structures for each of the six scenarios given in Table 1

Block 1 Block 2

Scenario Block structure RC RN CC CN RC RN CC CN

1a 1 0 0 8 8 0 0 0 16

2 0 0 6 8 0 0 2 16

3 0 0 4 8 0 0 4 16

2b 1 8 8 0 0 0 16 0 0

2 6 8 0 0 2 16 0 0

3 4 8 0 0 4 16 0 0

3a 1 0 8 8 0 0 0 0 16

2 0 8 6 0 0 0 2 16

3 0 8 4 0 0 0 4 16

4c 1 2 8 6 0 0 0 0 16

2 2 8 4 0 0 0 2 16

3 2 8 2 0 0 0 4 16

5c 1 2 8 6 0 0 0 0 16

2 2 8 4 0 0 0 2 16

3 2 8 2 0 0 0 4 16

6c 1 2 8 6 0 0 0 0 16

2 2 8 4 0 0 0 2 16

3 2 8 2 0 0 0 4 16

Abbreviations: CC, common causal; CN, common neutral; MAF, minor allele frequency; MR, MAF range; RC, rare causal; RN, rare neutral.
ab ¼ ðlogð3=2Þ; logð2=3Þ; logð23=20Þ; logð23=20Þ; logð23=20Þ; logð20=23Þ; logð20=23Þ; logð20=23ÞÞ.
bb ¼ ðlogð3Þ; logð1=3Þ; logð2Þ; logð2Þ; logð2Þ; logð1=2Þ; logð1=2Þ; logð1=2ÞÞ.
cb ¼ ðlogð3Þ; logð1=3Þ; logð23=20Þ; logð23=20Þ; logð23=20Þ; logð20=23Þ; logð20=23Þ; logð20=23ÞÞ.
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when variants are grouped into blocks incorrectly. We seek to provide
answer to this question with additional simulation. Without loss of
generality, we considered three settings: block structure 1 in scenario
2, block structure 2 in scenario 4 and block structure 3 in scenario 6.
All the true and analysis models in these three settings are summarized
in Table 4. The true model of block structure 1 in scenario 2 is that
there are 8 rare causal and 8 rare neutral variants in block 1, whereas
block 2 contains 16 RVs that are all neutral. However, we may falsely
ascertain the LD blocks. For example, we may group only 6 of the rare
causal variants together with 8 rare neutral variants into block 1,
whereas the other 2 causal variants are being grouped with the 16
neutral variants into block 2. This scenario is what we referred to as
‘analysis model’. The true and analysis models for the other two
settings, block structure 2 in scenario 4 and block structure 3 in
scenario 6, provided in Table 4, can be interpreted similarly.
Specifically, in this study, the data are generated based on the true
models, whereas the powers of tests bKLTmax and bKLT are
calculated based on the analysis models, from which the robustness

of these two proposed tests can be investigated. Note that as the other
three tests are not influenced by the inferred block structure, their
results remain the same, but they are reproduced in Figure 4 for ease
of comparison. Table 5 reports the type I error rates for bKLTmax and
bKLT for the three settings. As can be seen, the empirical type I error
rates are all around the nominal level of 0.05, indicating that
misspecification of the block structures has minimal effect on the
validity of the two proposed tests.
The power results are showed in Figure 4. For block structure 1 in

scenario 2, although bKLTmax and bKLT lost some power compared
with that using the true model, they were still more powerful than
KLT, SSU and SKAT-O. For block structure 2 in scenario 4, as the
analysis model only falsely assigned two common neutral variants
originally in block 1 to block 2, there was no ‘drift’ of association
information. As a result, bKLTmax and bKLT have similar perfor-
mances as those based on the true model. For block structure 3 in
scenario 6, the analysis model made the mistake of assigning two
common causal variants in block 2 to block 1, resulting in enriching

Table 3 Empirical type I error rates (%) at the nominal significance level α=5% based on 1000 replicates for five tests, six scenarios, three

block structures and four levels of correlation

Block structure 1 Block structure 2 Block structure 3

ρ ρ ρ

Scenario Method 0 0.3 0.5 0.7 0 0.3 0.5 0.7 0 0.3 0.5 0.7

1 bKLTmax 4.4 5.5 4.5 5.4 5.1 4.6 5.2 4.7 4.6 4.9 4.3 6

bKLT 3.3 5.8 5.1 4.9 4.5 5.1 5.8 4.8 5 5.4 4 5.7

KLT 3.4 5.6 4.9 4.9 5.1 5.9 5.2 4.6 5 5.4 5.1 6.1

SSU 3.4 5.3 5.1 4.5 4.2 5.7 3.9 4.2 4.8 5.1 4.9 6.2

SKAT-O 5.2 4.5 5.6 4.7 4.6 4.4 4.7 6 4.9 5 5.7 4

2 bKLTmax 5.3 6 5 4.3 4.6 6.1 5.3 5.4 5.8 6 5.3 4.9

bKLT 4.9 5.9 4.9 4.7 5.4 5.6 3.9 5.1 5.2 5.7 5.8 5.5

KLT 4.5 5.7 4 5.7 5.9 4.2 4.2 4.9 5.6 5.6 5.6 5.2

SSU 5.3 5.1 3.7 5.6 5.6 4.1 5 4.6 3.7 6 4.8 4.8

SKAT-O 5.6 5.8 4.3 5.9 5.9 3.7 5.5 5.1 4.6 5.7 4.6 5.4

3 bKLTmax 4.6 5.2 5.9 4.7 5.3 5 3.9 5.1 4.6 4.7 4.7 4.8

bKLT 4.5 5 6 4.3 5 5.2 4.1 5.1 4.6 4.7 4.6 4.3

KLT 4.7 5.8 4.7 4.8 4.6 5.4 5.7 5.7 5.2 4.2 3.7 5

SSU 5.1 5.4 3.5 4.7 4.8 4.7 4.7 5.1 4.1 4.6 4.8 4.8

SKAT-O 5.2 5.7 6 4.5 4.2 5.7 4.6 5.9 5.2 3.3 4.4 5.8

4 bKLTmax 4.2 4.1 4.7 4.7 3.2 4.3 3.1 5.4 5.9 6 5.3 3.9

bKLT 4.6 4.6 4.8 4.4 3.4 4.3 3.2 5.3 5.9 5.9 5.1 4.2

KLT 4.8 5.1 4.4 4.4 3.9 4.8 4 5 5.3 6 4.5 4.5

SSU 5.4 4.2 4.2 5.8 5.2 3.9 4.9 5.9 5.1 4.7 4.4 5.3

SKAT-O 4.9 5 3.8 4.7 3.7 4.6 3.7 5.6 5 4.6 4.6 4.9

5 bKLTmax 3.3 4.9 4.5 5 5.1 4.5 4.5 5.8 5.6 4.9 4.8 5.1

bKLT 3.5 4.5 4.3 5 5 4.1 4.1 5.9 5.5 4.8 5 5.2

KLT 3.6 4.1 4.4 5.6 5.5 4.5 4.9 5.5 6.1 4.6 5.5 5

SSU 5.7 3.6 4.7 5.1 4.8 5.4 4.4 5.7 3.6 4.8 5.1 4.1

SKAT-O 5.5 5.2 4.1 5.2 3.9 4.4 3.8 5 4.6 4.4 5.1 4.7

6 bKLTmax 4.4 5.9 5.4 4 5.8 4.7 4.4 5.2 4.8 5.8 5 4.4

bKLT 4.6 5.8 5.3 3.6 5.8 4.3 4.6 5.1 4.3 6.1 4.8 4.7

KLT 5.5 5.9 5.8 3.2 4.5 5 5.2 4.8 6.1 6 4.4 6.9

SSU 4.2 6.4 5 3.1 4.1 4.2 5.1 5.6 4.3 5.4 4.6 5.3

SKAT-O 4.9 4.6 4.8 4.6 4.4 5.5 5.6 5.3 4.4 6.1 4.8 6
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the association signal in block 1. In this case, bKLTmax and bKLT in
fact improved their power, and are seen to have the same power as
KLT. Despite the slight power loss in the first two settings, bKLTmax
and bKLT still outperform SSU and SKAT-O. In summary, results
from this study indicate that power may be slightly influenced by the
incorrect specification of blocks while type I errors are well
maintained.

Application to data from DHS
We applied the two methods proposed in this study, bKLTmax and
bKLT, together with KLT, SSU and SKAT-O, to the sequence data
from the DHS.33,34 We focused on testing for association between
serum triglyceride level and gene ANGPTL5. Although the data were
also available for two other genes, we did not analyze them here as the
association signals are extremely strong and hence are not good
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Figure 1 Power comparisons among bKLTmax, bKLT, KLT, SSU and SKAT-O in block structure 1. Empirical power was calculated at the 5% significance
level. The total sample size in each scenario is 1000 (500 cases and 500 controls). A full color version of this figure is available at the Journal of Human
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examples for comparing methods. Following the paper by Epstein
et al.,35 individuals with the top 20% of triglyceride values are treated
as cases, whereas the bottom 20% are designated as controls, which
results in a binary trait with 628 cases and 621 controls. After deleting
variants that have no sequence variation (all homozygous for the
common allele) in all cases and control samples, 15 SNVs in
ANGPTL5 are left. As the bKLTmax and bKLT are block-based tests,
we need to learn about the block structure of the gene if blocks do
exist. Traditionally, haplotype blocks are learned through studying the

correlation structure of variants based on well-known software such as
Haploview.36 However, such software tools are not useful when the
majority of the variants involved are rare ones, as RVs can be
negatively correlated but are treated as uncorrelated based on
traditional LD measures.37 As such, we adopted a different strategy
for finding blocks in the spirit of bKLTmax. Briefly, we first searched
the region for a group of consecutive SNVs that shows the maximum
association signal, that is, produces the largest KLT statistic as defined
in (1). Specifically, our search resulted in the group composed of
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Figure 2 Power comparisons among bKLTmax, bKLT, KLT, SSU and SKAT-O in block structure 2. Empirical power was calculated at the 5% significance
level. The total sample size in each scenario is 1000 (500 cases and 500 controls). A full color version of this figure is available at the Journal of Human
Genetics journal online.
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22604_R269G, 22623_L275X, 25956_D293H, corresponding to SNVs
8, 9 and 10 among the 15 SNVs listed linearly according to their
genomic locations. We then considered the correlation between SNV7
(22602_T268M), the only variant whose MAF 40.1, with the rest
of the 14 variants. It turns out that the correlation between SNV7
and SNV1 (11727_L98P) is positive (0.035), and much larger than
that between SNV7 and any of the other variants. As such, we divided
the region into three blocks: SNV1-SNV7, SNV8-SNV10 and
SNV11-SNV15, for the analysis by bKLTmax and bKLT. Note that

the sum in the definition of the bKLT statistic is over all three separate
KTL statistics in the three blocks. For the other three methods, KLT,
SSU and SKAT-O, how the blocks are formed is inconsequential as
they analyze all the SNVs jointly without referring to the blocks. The
results, as reported in Table 6, show that bKLTmax and bKLT achieve
the smallest P-value (based on 10 000 permutations) compared with
the other three methods. It is not surprising to see that bKLTmax and
bKLT turn out to have the same P-value as bKLT will closely track
bKLTmax if association signals are concentrated in one block, as it
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Figure 3 Power comparisons among bKLTmax, bKLT, KLT, SSU and SKAT-O in block structure 3. Empirical power was calculated at the 5% significance
level. The total sample size in each scenario is 1000 (500 cases and 500 controls). A full color version of this figure is available at the Journal of Human
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appears to be the case in this particular data set. If it is indeed the case
that most of the variants in block 1 and 3 are neutral as it is suggested
from our results, then KLT will be less powerful compared with the
two block versions, as KLT is more susceptible to the influence of
noise. To show that our results for KLT, SSU and SKAT-O are
consistent with those obtained by Turkmen et al.,25 we also
reproduced their results in Table 6. The minor discrepancy can be
attributed to random variation (say, due to different random seeds).

DISCUSSION

The importance of LD for studying associations between genetic
variations and common diseases has been clearly documented in the
literature for two decades since the seminal work of Risch and
Merikangas.26 However, LD has not been front and center in RV
association studies despite the fact that their ignorance may result in
false positives,28 whereas accounting for them can lead to an increase
in power for detecting associations. This lack of focus on RV LD is
likely due to the existence of controversy views of LD37,38 and the
paucity of tests that are able to account for LD to increase their
statistical power. To address the latter, we present two RV association
tests that can make use of information available on LD block structure
among the SNVs being studied. Both tests generalize the previous
work of Turkmen et al.25 by incorporating block structure information
in the region of interest, thereby achieving improved power in some
cases. Our first proposed test, bKLTmax, is aimed at maximizing the
power of the originally proposed KLT when causal variants congregate
within a segment of the region being studied. However, the advantage
of bKLTmax will diminish if association signals scatter across multiple
blocks; in such cases, the original KLT may gain an upper hand. To
take advantage of the robust feature of KLT and the higher sensitivity
of bKLTmax with more concentrated signals, we proposed our second
block-based method, bKLT, which appears to perform well in a variety
of settings considered. Compared with the results from KLT, SSU and
SKAT-O, the performances of the two proposed tests are encouraging.
Specifically, for block structures 1 and 2, when all the causal variants
or most of the causal variants cluster in only one block, whereas the
other block has no or a small proportion(p 25%) of causal variants,
the two proposed tests have the highest power. For block structure 3
where association signals are evenly distributed, the two proposed tests
are only a little less powerful than KLT and are still much more
powerful than SSU and SKAT-O. As one can see from the simulation
study, although bKLT is rarely the most powerful method among the
three KLT-based methods, it is never too far behind the best one. As

Table 4 The true and analysis models in three settings used for the robust analysis

Block 1 Block 2

Scenario Block structure Model RC RN CC CN RC RN CC CN

2 1 TRUE 8 8 0 0 0 16 0 0

Analysis 6 8 0 0 2 16 0 0

4 2 TRUE 2 8 4 0 0 0 2 16

Analysis 2 8 4 2 0 0 2 14

6 3 TRUE 2 8 2 0 0 0 4 16

Analysis 2 8 4 0 0 0 2 16

Abbreviations: CC, common causal; CN, common neutral; RC, rare causal; RN, rare neutral.
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such, bKLT would be recommended in a real data analysis unless there
is a priori information on the concentration of causal variants.
Despite the clear advantage of bKLT being robust yet having greater

power, the limitation is that it relies on known or estimated LD blocks.
As such, block ascertainment undoubtedly has an important role in the
implementations of these methods. In the robust analysis, we
investigated the performances of these two tests when we mis-
represented the true underlying block structure. The results show that
both bKLTmax and bKLT are not significantly affected: the type I error
rate remains well controlled with small differences in power. As RVs
behave quite differently than common ones, typical LD block finding
programs no longer work. As such, further research is needed to find
an adequate solution for uncovering LD structures when RVs are
present. For example, several clustering methods focusing specifically
on detecting the window in which causal variants cluster more than
they do in the rest of the region have been proposed recently 39–41.
These methods may be promising for our purpose here, although
careful consideration is needed. However, this is out of the scope of
the current research and will be taken up in a future study. For the
analysis of the DHS data, we adopted a search strategy coupled with
traditional correlation involving a CV, and we were able to divide
variants in the ANGPTL15 into three blocks. The results based on this
preliminary blocking strategy are promising, as bKLTmax and bKLT
were able to conclude more significant associations compared with the
other tests that do not utilizing block information.
Theoretically, both bKLT and bKLTmax can handle any number of

blocks and any number of variants within each block. There are two
practical considerations, though. The first is that we need to compute
the KLT statistic within each block and with all the variants combined.
If there are many blocks and the number of variants within each block
is large, then the computational demand would be an important factor

to consider. Using the computational time documented for KLT,25 for
a sample with 1000 individuals and 1000 permutations for significance
assessment, the computational times would be ~ 1.5 and 3.2 s for an
analysis of 32 and 64 variants, respectively. In the work by Yazdani
et al.,30 it is believed that 50 variants are sufficient to capture LD
blocks. Whereas in our analysis of the DHS data, we determined three
LD blocks with o10 variants per block. Therefore, it is likely that the
computational time may be just seconds for each block in a real data
analysis. As the whole genome is typically broken up into regions (for
example, genomic regions of 5 kb), the number of blocks is typically
small, say up to 10 blocks using existing work as a guideline.31 As
such, the number of blocks and the number of variants within each
block in a real data scenario does not seem to pose undue
computational burden on the block KLT methods.
Although the proposed method can handle any number of blocks,

the tests may not be powerful enough if there are indeed multiple
(42) blocks and there is a proper subset of the blocks (but greater
than one block) that contains ‘causal’ variants. To address this
problem, one may expand the set of KLT statistics in the definition
of bKLT to include those that are over a combination of blocks. This is
a non-trivial extension and its feasibility will be studied in a future
investigation.
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