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Noninvasive fetal trisomy detection by multiplexed
semiconductor sequencing: a barcoding analysis
strategy

Jiawei Shen1,2,3,6, Zujia Wen1,2,6, Xiaolan Qin4 and Yongyong Shi1,2,5

Noninvasive prenatal detection of fetal chromosomal aneuploidies by high-throughput next-generation sequencing proves to be

accurate and sensitive. Currently, most of the data analysis methods involve a Z-score test based on the reference distribution of

at least dozens of normal samples. This is not only costly but also time consuming. Moreover, as the experimental condition

varies between every single run, noises cannot be eliminated and will skew the results. In order to overcome these drawbacks,

we have proposed a new analytical strategy based on the multiplex barcoding sequencing of both normal and unknown samples

in a single run on Ion Torrent PGM. In this method, only one normal sample is required. By applying this method to 13 single

runs with a total number of 44 samples, we achieved the sensitivity and specificity of 100 and 95.181% for T13 detection,

100 and 100% for T18 detection, 90 and 100% for T21 detection, respectively.
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INTRODUCTION

Chromosome aneuploidy is a common cause of birth defects, which is
represented by an extra or missing copy of a certain chromosome in
the patient’s genome. The most common extra chromosomes among
live births are 21, 18 and 13. Noninvasive prenatal diagnosis of
aneuploidy diseases, which is based on the theory that cell-free fetal
nucleic acids can be detected in the maternal circulation during
pregnancy,1 has become a hotspot owing to its safety, accuracy and
sensitivity.
Currently, several methods have been proposed to detect abnormal

ploidy noninvasively. Papageorgiou et al.2 used the methylated DNA
immunoprecipitation methodology in combination with real-time
quantitative PCR (qPCR) to achieve fetal chromosome dosage
assessment. Tong et al.3,4 proposed a novel method of T21 detection
that combines fetal-specific epigenetic and genetic markers.
Chromosome-dosage analysis was then performed by comparing the
dosage of this epigenetic marker with that of the ZFY (zinc finger
protein, Y-linked) gene on chromosome Y. Shoko et al.5 developed a
targeted microarray-based comparative genomic hybridization panel
for detection of chromosome abnormalities.
Recently, it was proved that low-coverage whole-genome sequen-

cing of maternal plasma DNA was highly accurate in detecting
common trisomies and also enabled the detection of other
aneuploides.6,7 Massively parallel sequencing has had an important

role in fetal trisomy diagnosis owing to its deep and comprehensive
sequencing of all the genetic material in maternal plasma. However,
most NGS platforms are costly and time consuming. At least several
working days and dozens of samples are needed for one single run,
which may be unsuitable for small-scale tests and clinical diagnosis.
With the development of semiconductor sequencing, a brand-new
experiment strategy-represented by Ion Torrent (by Life Technologies,
Carlsbad, CA, USA) has turned up, greatly shortening sequencing
time, whereas data size and sequencing accuracy are still well
guaranteed. Ion Torrent Personal Genome Machine can produce 1G
raw data (5M–7M sequencing reads) in a single run with Ion 318 chip,
and 500M raw data (3M–4M reads) with Ion 316 chip. Overall
processing time is o16 h, which is very appropriate for clinical
diagnosis, such as prenatal detection of fetal disorders.
With barcoding and multiplexed sequencing technology, multiple

samples can be sequenced simultaneously, which not only makes full
use of Ion sequencing throughput, but minimizes the environmental
variations among samples during sequencing. For quantitative analysis
on these samples, such as prenatal detection of fetal disorder, a more
reliable result eliminating most of the external noises can be obtained.
The data size of each sample is well-proportioned and proven to be
sufficient to achieve reliable diagnosis result.
Currently, most of the polymorphism-independent methods are

quantitative, that is, to test whether the unknown sample has a higher
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percentage of a specified chromosome, such as 21, 18 or 13, than
normal ones.8,9 It can be described as follows:
Suppose chrN%test is the dosage percentage of chromosome N of the

tested sample, chrN%normal is the average of chrN% in normal
samples, and sd(chrN%)normal is the s.d. of chrN% in normal samples.
The null hypothesis is that the tested sample and the reference samples
are independently identically distributed. Then the statistics T is,

T ¼ chrN%test � chrN%normal

sd chrN%normalð Þ BN 0; 1ð Þ ð1Þ

And we can obtain the P-value by

p ¼
Z þN

T
j xð Þdx ð2Þ

where φ(x) is the probability density function of the standard normal
distribution.
This method, however, is costly and time consuming because at

least dozens of normal samples are required to build a reliable
reference distribution. As sequencing is the most time consuming
part of noninvasive fetal trisomy detection, the efficiency of the
standard Z-score test is not satisfying. Moreover, since all these
samples cannot be sequenced in a single run, the experimental
condition (temperature, humidity, air pH, machine status, personal
error and so on) varies so that noises cannot be eliminated and may
skew the results.
For example, for semiconductor sequencer, such as Ion Torrent

PGM, it takes o16 h to obtain about 1G raw data (5M–7M
sequencing reads) on an Ion 318 chip. For traditional NGS platforms
which are based on the theory of fluorescence imaging, the processing
time is much longer.
Trying to overcome the drawbacks mentioned above, we have

proposed a new analytical strategy, that is, normal and unknown

samples are sequenced in one single run using multiplexing barcoding
technology by Ion Torrent PGM. And we proved that one normal
reference sample is enough to tell whether the unknown samples are
of chromosome aneuploidy or not. The cost benefit of our method is
remarkable when the throughput of the chip is high. For example, for
PI chip of Proton, nearly 10G raw data are available, equal to 80M
reads of 200 bp. Thus, at least dozens of samples can be sequenced at
one time, whereas only one known normal sample is required.

MATERIALS AND METHODS

Sample collection
To verify whether this strategy works well, we tested it on 13 sequencing runs

using 44 blood samples of pregnant women with full karyotyping results.

Samples were recruited between 2011 and 2013 from a mother and child care

center in Shanghai, China. The average age of these pregnant women was

31.5 years old (s.d.: 5.7 years old), and their mean gestational age was

21.8 weeks (s.d.: 4.4 weeks), mostly in the second trimester. Karyotype analysis

showed that among these participants, 13 had a fetus with trisomy 21, 2 had a

fetus with trisomy 18, 7 had a fetus with trisomy 13 and 2 had a fetus with sex

chromosome aneuploidy. We showed more detailed sample information in

Supplementary Table S1.

Sample processing and DNA extraction
Fresh maternal peripheral blood was stored in EDTA-anticoagulant tubes at

4 °C for no 48 h. Plasma was separated by a double centrifugation method

(1600 g for 10min at 4 °C followed by 16 000 g for 10min at 4 °C) to ensure

any residual blood cell was removed. Plasma was stored at − 80 °C before

further processing. Cell-free DNA was extracted from 0.6 ml plasma with the

TIANamp Micro DNA Kit (TIANGEN, Beijing, China) according to the

manufacturer’s instructions. All DNA samples were quantified with Qubit

fluorometer (Life technologies, Carlsbad, CA, USA) to assess the extraction

efficiency.
Informed consent was obtained from all subjects. All experiments were

performed in accordance with relevant guidelines and regulations which were

approved by Shanghai Jiaotong University.

Semiconductor sequencing of cell-free DNA
The sequencing library was built with Ion Torrent fragment library construc-

tion protocol. For each sample, a barcode adapter was added to its DNA

fragment for multiplexed sequencing. All libraries had been analyzed with

Agilent 2100 Bioanalyzer (Santa Clara, CA, USA) to assess their length

distribution and whether they were eligible for sequencing analysis. Several

libraries of same molar quantity were pooled together and sequenced on an Ion

316/318 chip with a 480-flow run.

Data analysis
Overview. Figure 1 is the diagram of the analysis workflow.

Quality control of the raw data
The raw data were processed by the Ion Torrent platform-specific pipeline

software Torrent Suite version 3.2.1 (Life technologies). The mapped reads with

mapping quality lower than 10 were filtered using SAMtools,10 and reads

mapped to more than two positions in the genome were also filtered.
Then, the correlation coefficient between the length of each chromosome

and total reads of the corresponding chromosome was calculated to evaluate

the sequencing quality. As genomic DNA of fetus in the maternal circulating

system was totally sequenced, the longer the chromosome was, the more reads

it should contain. In theory, data with high quality should have a correlation

coefficient close to 1. We set the threshold of reliable results to be 0.985

(Figure 2).
The length of each chromosome and total reads of the corresponding

chromosome can be generated by SAMtools. Then the correlation coefficient
Figure 1 Diagram of the workflow. We listed all the detailed on how we did
all the analyses. The process can be automated by simple scripts.
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can be calculated by:

r ¼ Covariance reads; lengthð Þ
s:d: readsð Þ ´ s:d: lengthð Þ

where s.d. is the standard deviation, length is the length of each chromosome
and reads is the total reads of the corresponding chromosome.

Statistical analysis
An essential factor of our method was to ensure that all the sample data to be
tested together were from one single run, with at least one known normal
karyotype and several unknown.
First, for every single sample, the region in chromosome N was divided into

n windows with the same length according to the genomic position, where n
depended on the total reads of the sample (see next section). Second, reads in
every window were counted and normalized by dividing the total reads of the
sample. Thus, we got the result of the known normal sample Normali
(i= 1∼n), and that of the unknown sample Unknowni (i= 1~n). We
then subtracted Unknowni (i= 1~n) from Normali (i= 1~n) and got
Xi= Normali−Unknowni, (i= 1~n). The null hypothesis was that the mean
of Xi was 0. And the statistical T could be described as,

T ¼ X

sd Xð Þ= ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p Bt n� 1ð Þ ð3Þ

Where X and sd(X) are the mean and the s.d. of Xi, respectively. And we could
obtain the P-value by

p ¼
Z T

�N
tðn�1Þ xð Þdx ð4Þ

Where t(n− 1)(x) is the probability density function of the t distribution with
freedom (n− 1).
Figure 3 shows the plotting of Xi=Diseasei−Normali and

Yi=Normal1i−Normal2i. Obviously, most of the windows in disease had
substantially more reads than windows in normal.
Statistical analysis described above was done by an in-house Perl script and a

C++ program on Linux operating system. The input was the two .sam files
(one for the known normal sample, one for the unknown sample) of the
corresponding chromosome (chr13, chr18 or chr21). The output was the
P-value. For example, to detect T21, the implementation was as follows:
(1) read in the .sam files of chr21; (2) collect the read numbers within each
window and divide them by the total reads of the sample; (3) subtract
Unknowni (i= 1~n) from Normali (i= 1~n) and get Xi=Normali−Unknowni,

(i= 1~n), where n is the total number of windows. The above steps were done
by Perl; (4) calculate P-value based on Xi. This step was done by a C++
program. The source code could be downloaded from the following link:
https://github.com/celaoforever/Sources/blob/master/ttest.cpp
For T13 and T18 detection, the GC correction step should be performed in

step (2).

GC content correction for chr13 and chr18
It was reported that molecules from different region of genome may not be
uniformly sequenced, and the guanine and cytosine (GC) content was reported
to be one major cause of this non-uniformity.11,12 Previous studies have shown
that the average GC content in chr13 and chr18 was relatively lower than that
in chr21,13 which meant that GC correction should be a necessity for the
detection of T13 and T18.
The GC correction was done in this way:13 (1) divide the regions in the

chromosome into windows with the same size, say 50kb. (2) In each window,
count the reads and calculate the GC content. (3) Apply the locally weighted scatter
plot smoothing (LOESS) regression to fit the read count in each window versus the
GC content of the corresponding window so as to get the correction factor. (4)
The GC-corrected read count is calculated by multiplying the original read count
by the correction factor. The corrected read counts are used for further analysis.
GC correction was performed by the LOESS module from R. The parameter

ʻspanʼ, which controls the degree of smoothing, was set to 0.75. All other
parameters were default.

Determining the number of windows
An important step in our method was to determine the number of windows
splitting the chromosome. Too few or too many would weaken the statistical
power or amplify the noises in the analysis, especially with relatively small
number of reads. In order to decide the appropriate number of windows, we
tested the performance of our method under window size ranging from 10 to
500, with step size 10. We plotted the relationship between P-value and window
size and found that when a normal–normal pair is tested, the P-value remains
stable regardless of the windows size, while the P-value of a normal–disease pair
fluctuated a lot. The P-value of the normal–disease pair decreased at first,
followed by a plateau, and then a step change appeared (Figure 4).
That is to say, we should choose the window number before the step change

appears. In our case, no 4280 windows should be selected. On the other hand,
in order to provide enough sample data in the T test step, window number
should not be too few. Although the P-value decreased as the window number
increased, it did not mean that smaller window number would not give the
right results. More windows might give a more significant result, but in our
case of 0.87 million reads per sample on average, dozens of windows were
sufficient to separate the disease status from normal.

RESULTS

Cell-free DNA length distribution
From the analysis results of DNA library, we estimated the cell-free
DNA fragment length in maternal plasma. It turned to be stable that the
DNA length of all pregnant samples fluctuated around 171 bp (164–
177 bp, s.d. was 2.4) and no obvious trend of increasing or decreasing in
size could be detected within samples of different gestational stage.

Variance of sequencing
In our study, two types of Ion chip are used: Ion 316 and Ion 318
chip. We assessed the sequence quality of these two chips by
comparing the mapping rate and Q10/Q20/Q30 (see Supplementary
Table S2). We found that the sequence quality of Ion 318 chip was
usually higher than that of Ion 316 chip when multiple samples were
pooled in a singles run. And even with the same chip, the quality
varied between different runs. Such kind of variance was addressed in
our method, as the reference sample and the unknown sample were
from the same run. Our previous work14 gave a comprehensive
comparison of the performance of Ion Torrent chips.

Figure 2 Sequenced data with correlation coefficient 0.985. As genomic
DNA of fetus in the maternal circulating system was totally sequenced, the
longer the chromosome was, the more reads it should contain. Thus, data
with high quality should have a correlation coefficient close to 1. A full color
version of this figure is available at the Journal of Human Genetics journal
online.
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Fetal trisomy detection by pairwise strategy
We tested every possible combination of pairwise samples in one
single run. The alpha value for the statistical analysis is 0.01. All the
tests are one-tailed. For T13 detection, 79 out of 79 normal–normal
pairs, and 24 out of 27 normal–disease pairs were correctly classified,
with sensitivity 100% and specificity 95.181%. For T18 detection, 101
out of 101 normal–normal pairs, and 10 out of 10 normal–disease
pairs were correctly classified, with sensitivity 100% and specificity
100%. For T21 detection, 45 out of 45 normal–normal pairs, and 52
out of 57 normal–disease pairs were correctly classified, with sensitivity
90% and specificity 100%. For more detailed results refer
Supplementary Tables S3–S6.

DISCUSSION

In this study, we demonstrated a new analysis strategy to noninvasively
detect fetal trisomy by maternal cell-free DNA sequencing. By
multiplexing, one normal control with definite karyotyping result
can be used for aneuploidy determination for at least one unknown

sample. Notably, data needed for analysis is much less than other
methods, implying that sequencing costs decrease severely and will be
more suitable for clinical application. Our results have shown that this
method works well under most circumstances.

Optimal data size for trisomy detection
Generally, the more sequencing data a sample gets, the more precise
the diagnosis result will be. According to previous studies using the
conventional Z-score test strategy, when 5 million reads per sample
were available, 79.1% T21 fetuses could be detected, with the
specificity 98.9%. The positive predictive value and the negative
predictive value were 91.9% and 96.9%. However, when sequencing
reads reached 20 million, the sensitivity and specificity of T21
detection increased to 100% and 97.9%, respectively. The positive
predictive value was 96.6%, whereas the negative predictive value was
100%.9

From our analysis result, it is appreciable that not so many
sequencing reads are necessary for trisomy detection. For pregnant
women in the second to the third trimester, with just 0.87 million
(on average) reads we were able to distinguish positive from negative
in most cases.
Moreover, the optimized read number in semiconductor sequen-

cing needed for diagnosis remains to be explored. Although in our
case, an average of 0.87 million reads were adequate for trisomy
detection, we still do not know whether less data can also give a
satisfying result, which means high sensitivity as well as high
specificity. More importantly, optimal data size of trisomy detection
for women in different gestational weeks needed to be discriminated,
especially for those in the early pregnancy. As fetal DNA content is
relatively low in that stage, deeper sequencing is necessary to reduce
the risk of false-negative rate. More trials of different pooling tactics on
alternative chip types are needed in further studies.

The effect of gestational week on trisomy detection
The gestational week is a principal element in prenatal diagnosis, and
fetal DNA content ratio changes regularly through the entire period of
pregnancy. On the basis of previous report, cell-free fetal DNA exists
in maternal circulation since the seventh week after pregnancy, and
from the eighth week, the consistency rate of plasma fetus-derived
SRY sequence detection result with fetal gender is 100%. However, the
mean concentration of fetal DNA in maternal plasma are 11.5 times
higher in late gestation than in early gestation15 according to a
quantitative analysis. This means that, for a fetal with chromosome

Figure 3 (a) Plot of Xi=Diseasei−Normali. (b) Plot of Yi=Normal1i−Normal2i. Obviously, most of the windows in disease had substantially more reads than
windows in normal. A full color version of this figure is available at the Journal of Human Genetics journal online.

Figure 4 The relationship between P-value and window number: solid line:
disease–normal pair. dashed line: normal–normal pair. The results show that
the P-values in normal–normal pairs remain stable regardless of the window
number, whereas those of the disease–normal pairs change a lot. A full color
version of this figure is available at the Journal of Human Genetics journal
online.
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aneuploidy, it is likely to achieve a more statistically significant result
in late gestation than in early. In other words, the false-negative rate
may be higher when the tested sample is in early gestation as extra fetal
chromosome is too difficult to be identified in a mass of maternal
DNA background. In our research, all samples recruited had a
gestational age of 412 weeks (average 21.8 weeks) with definite
karyotyping result to eliminate the deviation caused by too small
gestational age.

Application of multiplexing in fetal sex test
Our method proves effective when applied to detect whether there is
an extra amount of chromosome content in the maternal DNA sample
than normal references. Similarly, this method can also be used to
perform sex differentiation when we have some noninvasive diagnosis
sample with definite gender as references. The percentage of chromo-
some X is the target, owing to the fact that the amount of
chromosome Y fluctuates a lot even between mothers all pregnant
with boys. As it is not accurate to quantify the content of chrY, our
method fails to diagnose Klinefelter syndrome with karyotype XXY for
sex chromosome. In this case, the result given by our method will only
indicate that it is a female fetus. On the other hand, as we use
ʻpercentageʼ to normalize the differences in total reads count between
samples, for fetus carrying a full extra set of chromosomes, namely a
total of 69 chromosomes, these extra amount of chromosomes will be
eliminated during normalization so that our method will lose power.

Limitation of the test sample size
Limited to finite sample collection, there are still some defects in our
research. First, the test scale is not large enough. Although this strategy
proves to be effective in limited range, it is hard to say that it will be
accurate for all cases in consideration of the influence of individual
differences and experimental error. In fact, a crucial problem in fetal
trisomy diagnosis is false-negative rate. For trisomy 21, which has the
highest survival rate, the incidence is almost 1 in 800 neonates, not to
mention trisomy 18 and trisomy 13, which affect 1 in 6000 neonates
and 1 in 10 000 neonates severally. So we have to recruit and test more
cases to verify and perfect our multiplexing method.
In our method, although only one normal sample is required to tell

disease and normal apart, more known samples will give a more
confident result, owing to the fact that the content of chromosome
may float slightly among samples, even for normal samples. For
example, three known normal and three unknown samples are pooled
in a single run. For an unknown sample, if the comparing results with
the three known normal samples are all significant, we are able to
conclude that this sample is of very high risk for chromosomal
aneuploidy. Alternatively, the reference normal data can be the mean
of the three known normal samples. That is, the number of reads in
every window is averaged among these samples. On the other hand,
the DNA of several normal samples can be mixed together and
assigned the same barcode, and then pooled with other unknown
samples in one run. In this way, not only a more typical value that
reduces the accidental error can be acquired, but also the throughput
could be made full use of, in that more unknown samples can be
sequenced in a single run, compared with assigning every normal
sample a single barcode.

The prospect of semiconductor sequencing in noninvasive prenatal
diagnosis
Semiconductor sequencing has become a powerful tool for prenatal
fetal aneuploidy detection owing to its application flexibility, remark-
able sequencing speed and relatively lower cost. However, for 318 chip

of Ion PGM, throughput of 11 million addressable wells is still a little
lower for more extensive study. The coming Ion Proton—an upgraded
version of Ion PGM, will solve this problem by its greater sequencing
throughput. Relevant experiments are in progress to test its perfor-
mance. With Ion PI chip, at least dozens of samples can be sequenced
together and 8–10G raw data are achievable by now. As the perfection
of data size and sequencing quality as well, more unexpected statistical
facilitation will be brought to data analysis.

Trends in disease diagnosis
Recently, machine learning has become the most rapidly developing
subfields of artificial research. It has been the subject of tremendous
interest in biomedical community because it offers promise for
improving the sensitivity and specificity of detection and diagnosis of
disease.16–20 Machine learning has already been successfully applied to
diagnose diabetes, thyroid disease, Alzheimer’s disease, ischemic heart
disease, cancers and so on,21–26 and the performance is promising. We
believe that machine learning can also be applied to prenatal diagnosis.
We suggest that more studies are required to investigate the potential
power of machine learning for prenatal diagnosis.
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