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Recurrence risks for different pregnancy outcomes and
meiotic segregation analysis of spermatozoa in carriers
of t(1;11)(p36.22;q12.2)

Alina Teresa Midro1, Barbara Panasiuk1, Beata Stasiewicz-Jarocka1, Marta Olszewska2, Ewa Wiland2,
Marta Myśliwiec1, Maciej Kurpisz2, Lisa G Shaffer3 and Marzena Gajecka2,4

Cumulative data obtained from two relatively large pedigrees of a unique reciprocal chromosomal translocation (RCT) t(1;11)

(p36.22;q12.2) ascertained by three miscarriages (pedigree 1) and the birth of newborn with hydrocephalus and

myelomeningocele (pedigree 2) were used to estimate recurrence risks for different pregnancy outcomes. Submicroscopic

molecular characterization by fluorescent in situ hybridization (FISH) of RCT break points in representative carriers showed

similar rearrangements in both families. Meiotic segregation patterns after sperm analysis by three-color FISH of one male carrier

showed all possible outcomes resulting from 2:2 and 3:1 segregations. On the basis of empirical survival data, we suggest that

only one form of chromosome imbalance resulting in monosomy 1p36.22→pter with trisomy 11q12.2→ qter may be observed

in progeny at birth. Segregation analysis of these pedigrees was performed by the indirect method of Stengel-Rutkowski and

showed that probability rate for malformed child at birth due to an unbalanced karyotype was 3/48 (6.2±3.5%) after

ascertainment correction. The risk for stillbirths/early neonatal deaths was − /48 (o1.1%) and for miscarriages was 17/48

(35.4±6.9%). However, the probability rate for children with a normal phenotype at birth was 28/48 (58.3±7.1%). The results

obtained from this study may be used to determine the risks for the various pregnancy outcomes for carriers of t(1;11)(p36.22;

q12.2) and can be used for genetic counseling of carriers of this rearrangement.
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INTRODUCTION

Carriers of reciprocal chromosomal translocations (RCTs) may be at
risk for abnormal pregnancy outcomes including offspring with
developmental disabilities and malformations, recurrent miscarriages
and/or stillbirths/early neonatal death. Depending on the rearrange-
ment, RCT carriers are at risk of producing different gametes with
unbalanced karyotypes, each of which will have different survival
rates.1,2 In the absence of large pedigrees, to understand the pattern of
the meiotic segregation of individual RCT carriers, the study of sperm
cells is necessary.1–4 The frequencies of particular forms of unbalanced
gametes are dependent on factors including the size of the chromo-
somal segments, the genetic content, location of break points and
survival of certain imbalances, and are characteristic for individual
RCT.1,2 The collection of relatively numerous empirical and cytoge-
netic data of individual RCT carrier pedigrees is necessary to ascertain
the risks of malsegregation associated with particular translocations.5–9

Because the risk of malsegregation is dependent on the size and
chromosomal origins of the segments involved and placement of the
break points, the accuracy of identifying the break point positions for
particular RCT is crucial. High-resolution molecular cytogenetic

techniques, like metaphase, interphase and fiber fluorescent in situ
hybridization (FISH), sequence-tagged site (STS) marker walking and
sequencing of chromosomal regions containing the rearrangement
break points and junctions, may be useful for better characterization of
specific rearrangements.10–14

Here, we present results of segregation analysis of two unrelated
pedigrees carrying similar rearrangements t(1;11)(p36.22;q12.2) and
meiotic segregation patterns after sperm analysis of one male carrier.

MATERIALS AND METHODS
The study group consisted of the collected empirical and cytogenetic data of

two pedigrees with carriers of a t(1;11)(p36.22;q12.2). To the best of our

knowledge, these families are unrelated. The families were ascertained either

because of three miscarriages (Figure 1a—pedigree 1, IV:2–4) or owing to the

death of a two-day-old newborn with many malformations, including hydro-

cephalus and myelomeningocele (Figure 1b—pedigree 2, IV:3).

Cytogenetic study
Conventional Cytogenetics. Cell cultures from peripheral lymphocytes were
performed according to standard procedures. Chromosomes were stained by
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GTG and RBG banding techniques, with resolution of 550–850 bands/

haploid set.

The semen samples from a male carrier from pedigree 2 (Figure 1b—III:13),
after ejaculation and washing in PBS, were fixed according to classical

cytogenetic methods.

Informed written consents were obtained from all participating individuals
after explanation of possible consequences of the study, in accordance with the

Declaration of Helsinki. The research protocols were approved by the

Institutional Review Boards at both Medical University of Bialystok and Poznan

University of Medical Sciences.

Fluorescent in situ hybridization of chromosomes from lymphocytes. FISH was
performed with probes corresponding to the break point clones on the 1p36 as

previously described.11 In addition, bacterial artificial chromosome (BAC)

probes were selected using the UCSC [www.genome.ucsc.edu] and NCBI

[www.ncbi.nlm.nih.gov] genome browsers to identify clones to 11q. These

clones were used in metaphase FISH to determine the size of the translocated

chromosome segments (Figure 2, Supplementary Figure 1).

FISH mapping. FISH mapping of break point positions was carried out on
metaphase chromosomes using the following BAC clones covering the 1p36

region: RP5-1115A15 [AL096855; chr1:8 387 143–8 565 545], RP11-476D13

[AL358252; chr1:9 349 187–9 373 344], RP11-498B2 [AC013728; chr1:9 762-

329–9 934 477], RP11-807G9 [AL603962; chr1:9 953 249–9 983 505], RP11-

496H15 [AL590639; chr1:9 981 506–10 077 581], RP4-575L21 [AL096841;

chr1:10 075 582–10 170 003], RP11-874A11 [AP001098; chr1:9885646–

11218505] and the 11q12.2 region: RP11-799F14 [genomic alignments of

BAC ends: AQ525174 and AQ556193; chr11:58 039 510–58 040 025 and chr11:

58 231 103–58 231 589, respectively], RP11-881M11 [AP003721; chr11:60 417-

795–60 621 331], RP11-855O10 [ENST00000506329, ENST00000542121;

chr11:61 355 966–61 375 022 and chr11:61 422 137–61 423 174, respectively],

in accordance with Human March 2006 (NCBI36/hg18) Assembly.

Generation of somatic cell hybrids. To identify the 1p36 break point, somatic
cell hybrids from subject 1p112c were generated as previously described.15

Transformed lymphoblastoid cells from our subject were fused to hypoxanthine
guanine phosphoribosyl transferase-deficient RJK88 hamster cells. Somatic cell

hybrids containing either the derivative chromosome 1 or the normal
chromosome 1 were identified.

STS marker walking, amplification across the junction and junction DNA
sequencing. To identify the 1p36 and 11q12.2 break points in subject
1p112c, (Figure 1a–III:15), STS markers were designed and polymerase chain

reaction analyses were performed using hybrid DNA containing the derivative
chromosome 1. DNA sequences obtained from GenBank [www.ncbi.nlm.nih.
gov] corresponding to the genomic regions containing the 1p36 and 11q12.2

break points were analyzed. Repetitive elements were masked from the
sequence using Repeat Masker [www.repeatmasker.org] and 200–400 bp STS
markers were designed from the unmasked unique sequence using Primer 3

[http://Frodo.wi.mit.edu/cgi-bin]. Break point at 1p36 on derivative chromo-
some 1 was narrowed using markers spaced ~ 20 kb apart along the length of
the chromosome followed by ~ 5 kb apart.

Using several pairs of primers at 11q12.2, the breakpoint was narrowed to
2.5 kb according to the method of break point identification described
previously by Gajecka et al.14 Then, in order to identify the t(1;11) junction,

amplification across the junction was designed with sets of unique-sequence
reverse primers located at 11q12.2 and forward primers from the putative 1p36
break point regions. Obtained products of polymerase chain reactions were cut

from agarose gel and purified. Then, sequencing polymerase chain reactions
before Sanger sequencing were carried out using the same sets of unique-
sequence reverse primers located at 11q12.2 and forward primers from the

putative 1p36 break point regions. Obtained polymerase chain reaction
products containing the putative junctions were sequenced using an ABI
PRISM 3100-Avant genetic analyzer and Big Dye reagents (Applied Biosystems,

Inc., Foster City, CA, USA). Sequencher 4.6 (Gene Codes) was used to analyze
sequences.
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Figure 1 Pedigrees data: (a) pedigree 1; (b) pedigree 2 (pedigree was drawn according to Bennett et al.49).
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FISH procedure to sperm analysis. A three-color FISH method according to the
manufacturer’s protocol was performed. Directly labeled probes (Aquarius,
Cytocell Technologies Ltd., Cambridge, UK) were used; combination of red and
green α-satellite probes of chromosome 11 (locus D11Z1), namely 11c Red and
11c Green, to give a yellow color, and red and green subtelomere probes, namely
1p Red and 11q Green. To determine X:Y ratio, α-satellite probes of chromosomes
X (Xc Green, locus DXZ1) and Y (Yq12 Red, locus DYZ1) were used.

The assessment of meiotic segregation patterns. To analyze the meiotic segrega-
tion patterns, the expected quadrivalent configuration of the translocation at

meiosis I was constructed with the positions of FISH probes shown (see
Supplementary Figure 2).

The assessment of segregation pattern for different categories of pregnancy
outcome. On the basis of segregation analysis, the probability rates of different
categories of pregnancy outcomes (that is, birth of malformed child probably
due to unbalanced karyotype, stillbirth/early neonatal death and miscarriages)
and child without malformations have been calculated according to the method
of Stengel-Rutkowski et al.16 and Stene and Stengel-Rutkowski.17 Ascertainment
correction, elimination of probands and their parents, was calculated according
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Figure 2 Break point-positions localization on the chromosomes involved in the balanced chromosomal translocation t(1;11)(p36.22;q12.2) (pedigree 1,
III:15): (a) partial karyotype studied by GTG and RBG techniques with indication of break point positions on chromosomes and ideograms; (b) break point
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to the method of Stene and Stengel-Rutkowski17 and recently proposed by
Gardner et al.18 The probability estimates for unfavorable pregnancies were
calculated according to the following:

p ¼ a

n
7S S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a n� að Þ

n3

r
and when a ¼ 0 pmax ¼ 1� e�

1
2n

p—risk value of different pregnancy outcome (probability rate of malformed
child at birth, or risk of stillbirth/ neonatal death or risk of miscarriages, a—
number of unfavorable pregnancies after ascertainment correction, n—number
of all pregnancies after ascertainment correction, S—s.d.

pmax—maximum risk, e—2.71828 is the base number for natural logarithms

The empirical data were sufficiently large to allow for direct segregation
analysis of pedigrees, enabling the calculation of the probability rates for
unbalanced offspring at birth, for stillbirths/neonatal deaths and miscarriages.

RESULTS

Cytogenetic study
Karyotype analysis of a proband from pedigree 1 (III:15) revealed the
RCT t(1;11)(p36;q12) and similar RCT carriers involving chromo-
somes 1p and 11q at the same cytological break point positions in the
father of the proband (III:4) of pedigree 2. The interpretation of break
point positions is shown in Figure 2a.
Using FISH, a carrier (III:15) from pedigree 1 revealed the sub-

terminal localization of the break point position at chromosome 1,
mapped between two BAC clones: RP4-575L21 and RP11-874A
~10.2–10.5 Mb from 1pter (Figure 2b). The break point position
for chromosome 11 was mapped using BAC clone RP11-881M11
~60.5 Mb from 11qter (Figure 2c). The karyotype was then
reinterpreted as: t(1;11)(p36.22;q12.2). ish t(1;11)(RP5-1115A15− ,
RP11-476D13− ,RP11-498B2− ,RP11-807G9− ,RP11-496H15− ,RP4-
575L21− ,RP11-874A11+;RP11-855O10− ,RP11-881M11+,RP11-799
F14+). Thus, based on this analysis, carriers of this particular
translocation are predicted to be at risk for double-segment imbal-
ances in offspring. Based on FISH results completed for a carrier from
pedigree 1, (Figure 1a—III:15) similar FISH experiments were
performed for carriers from pedigree 2 (Figure 1b—II:2, III:13,
Supplementary Figure 1). The same hybridization pattern was found
in all carriers, indicating similar rearrangement. STS marker walking
analyses using hybrid containing derivative chromosomes 1 did not
help to define the 1p36 and 11q12.2 break points in these rearrange-
ments at the sequence level due to repetitive elements at the break
points. The break point region at derivative 1 was narrowed by STS
marker walking to a sequence fragment consisting of 43 kb of
repetitive elements and the break point at 11q12.2 contained at least
2.5 kb of repetitive elements. Chromosomal position of 1p36 break
point was narrowed to chr1:10 172 755–10 176 276 region (3522 bp),
whereas the 11q break point to chr11:60 551 802–60 559 898 (8097 bp)
chromosomal area (hg18) using primers listed in Supplementary Table
1. The presence of repetitive elements at the break points prohibited
further break point narrowing and amplification across the junctions,
which was unsuccessful although several sets of primers were used.

Family studies
Pedigree 1. A familial RCT was ascertained in 27-year-old woman
(III:15) from a couple studied because of three miscarriages (IV:2–4)
(Figure 1a). Further family studies revealed additional carriers of the
same balanced RCT in her father (II:12), two uncles (II:4, II:10) and in
one of the uncle’s son (III:9). Four pregnancies resulted in miscarriage
(III:10–13) in proband’s parents and one miscarriage (III:2) in her
uncle (II:4).

Pedigree 2. This familial RCT was ascertained in 34-year-old father
(III:4) investigated because of early death of a 2-day-old girl (IV:3)
with malformations including hydrocephalus with myelomeningocele
(Figure 1b). Further family studies revealed that this RCT occurred in
her aunt (III:11) and two children (IV: 10, IV:15), her uncle (III:13),
son of her uncle (IV:17), grandmother (II:2) and of grandmother’s
sister (II:10). The developmental malformations of the nervous system
have been observed also in the sister (III:8) of the father. Unfortu-
nately she died at 20 weeks of age and she was not karyotyped. In
addition, a similar phenotype with myelomeningocele and hydro-
cephalus included has been observed in the other female relative from
the grandmother’s side (II:7, II:12, III:30). Several miscarriages were
observed in each family from both pedigrees, including the parents of
proband (IV:1,5–6), in family of an aunt (IV:11–14), family of an
uncle (IV:18), grandparents of proband (III:1–3) and grandmother’s
sister (II;10).

Segregation analysis of pedigrees
Ascertainment correction. Among 23 pregnancies in pedigree 1, five
pregnancies have been omitted after ascertainment correction: three
miscarriages (IV:2–4), proband (III:15) and her father (II:12). Among
33 pregnancies in pedigree 2, three pregnancies were omitted after
ascertainment correction: proband (IV:3), her father (III:4) and
grandmother (II:2). Finally, there were 48 pregnancies as a total
number after ascertainment correction used in the cumulative data.

Malformed child at birth probably due to unbalanced karyotype. As
karyotype data were not available from the children with develop-
mental malformations born at term and with limited survival rate, we
used the pedigree information to calculate the rate for malformed
child at birth probably due to karyotype imbalance. For pedigree 1,
this probability rate was − /18 and for pedigree 2 was 3/30 after
ascertainment corrections. Cumulative data from the two pedigrees
showed that the probability rate of having an unbalanced child with
malformations at birth for carriers of this translocation was 3/48
(6.2± 3.5%) (Table 1).

Stillbirths/neonatal deaths. In families from pedigree 1 and pedigree
2, no stillbirth/early neonatal death among 48 pregnancies after
ascertainment correction was found. Using data from both pedigrees,
we demonstrated that the risk for stillbirths/early neonatal deaths after
ascertainment correction was − /48 (o1.1%) (Table 1).

Miscarriages. Eight miscarriages were observed in pedigree 1. Three
of them were omitted for ascertainment correction (Figure 1a—IV:
2–4), resulting in a total of 18 pregnancies after ascertainment
correction. The risk for miscarriages after ascertainment correction
was 5/18 (28± 13%). For pedigree 2, 12 miscarriages among 30
pregnancies were used for the calculations after ascertainment correc-
tion. Hence, the rate for miscarriages in pedigree 2 was 12/30
(40± 8.9%). Using data from two pedigrees, 48 pregnancies and 17
miscarriages after ascertainment correction were used to calculate the
risk resulting in 17/48 (35.4± 6.9%) (Table 1).

Parental origin of t(1;11)(p36.22;q12.2)
We found three maternal carriers (Figure 1a—III:15; Figure 1b—
III:11, II:2; II;10) and five paternal carriers (Figure 1a—II:4,10,12;
Figure 1b—III:4,13) of this translocation. In two pedigrees in which
the karyotypes were unknown (Figure 1a–I:1,2; Figure 1b–I: 1,2,3), the
carrier state could be established on the basis of pedigree analysis. For
female carriers, the probability rate for a malformed child at birth was
1/16 (6.2± 6.1%), for stillbirths/early neonatal death was − /16
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(o2.9%), and for miscarriages was 8/16 (50± 12.5%) after ascertain-
ment correction. For male carriers, the probability rate for malformed
child at birth was − /19 (o2.6%), for stillbirths/early neonatal deaths
was also − /19 (o2.6%) and for miscarriages was 9/19 (47.4± 11.5%)
after ascertainment correction (Table 2).

Child without malformations
In pedigree 1, 13 children without malformations among a total
number of 18 pregnancies after ascertainment correction were
identified. Therefore, the probability rate for this pregnancy outcome
was 13/18 (72.0± 8.5%) (Figure 1a, Table 3). In pedigree 2, 15
children without malformations among 30 pregnancies after ascertain-
ment correction were identified. Thus, the probability rate for this
pregnancy outcome was 15/30 (50± 9.1%) (Figure 1b, Table 3). Using
data from two pedigrees, 48 pregnancies and 28 children without

malformations after ascertainment correction were identified. Finally,
the probability rate for children without malformations at birth was
28/48 (58.3± 7.1%) (Table 3).

Meiotic segregation pattern
The frequencies of different types of sperm segregation are listed in
Supplementary Table 1. In total, 3151 sperm cell nuclei were used for
meiotic segregation analysis, and 5971 for X:Y ratio were analyzed with
efficiency of FISH hybridization of 98%. The frequencies of alternate,
adjacent I, adjacent II and 3:1 segregations were 40.4, 37.5, 5.4
and 11.3%, respectively. All possible outcomes after 2:2 and 3:1
segregations were observed (Supplementary Figure 2, Supplementary
Table 2). The most common segregation types were alternate and
adjacent I (similar frequencies). A low number was observed for
adjacent II, which was in contrast to 3:1 segregation, which showed a
high proportion of unbalanced gametes. The color patterns for normal
and balanced karyotypes were indistinguishable, so we are not able to
determine the ratios for these possibilities. Atypical signals in 5.4% of
spermatozoa were found. Probable recombination signals can be
inferred from two yellow signals and no green or red, whereas lack
of any signals could be the result of a hybridization failure. The
frequencies of spermatozoa with chromosome X or Y was 51.8 and
47.5%, respectively. The incidences of spermatozoa bearing two
chromosomes XX, YY or XY were: 0.0837%, 0.0502% and 0.5024%,
respectively, of which the first two are within the normal range of
normozoospermic samples (n= 7 controls), whereas the XY hyperha-
ploidy was significantly higher in the carrier as compared with the
control value of 0.08 (Po0.05).

Table 1 The probability rates for malformed child at birth, stillbirth/neonatal death and miscarriages of maternal (MAT), paternal (PAT) and of

unknown parental origin (?MAT/PAT) of RCT carriers with t(1;11)(p36.22;q12.2)

Malformed child at birthA Stillbirth/Neonatal deathB MiscarriagesC Pregnancies

No. Carrier Sex T C T C T C T C RateA RateB RateC

Pedigree 1
1 III:15 MAT — — — — 3 0 4 1 − /1 − /1 0/1

2 II:12 PAT — — — — 4 4 6 5 − /5 − /5 4/5

3 II:10 PAT — — — — — — 2 2 − /2 − /2 − /2

4 II:4 PAT — — — — 1 1 3 3 − /3 − /3 1/3

5 I:1, I:2 ?MAT/PAT — — — — — — 8 7 − /7 − /7 − /7

Total — — — — 8 5 23 18 − /18 − /18 5/18

Risk 28±13%o2.7%

o2.7%

Pedigree 2
6 III:4 PAT 1 0 — — 3 3 6 5 0/5 − /5 3/5

7 III:11 MAT — — — — 4 4 6 6 − /6 − /6 4/6

8 III:13 PAT — — — — 1 1 4 4 − /4 − /4 1/4

9 II:2 MAT 1 1 — — 3 3 9 8 1/8 − /8 3/8

10 II:10 MAT — — — — 1 1 1 1 − /1 − /1 1/1

11 I:1, I:2 ?MAT/PAT 2 2 — — — — 7 6 2/6 − /6 − /6

Total 4 3 — — 12 12 33 30 3/30 − /30 12/30

Risk 10±5.5% o1.7% 40±8.9%

Total rate 4 3 — — 20 17 56 48 3/48 − /48 17/48

Total risk 6.2±3.5% o1.1% 35.4±6.9%

Abbreviations: C, number of pregnancies after ascertainment correction; MAT, maternal; PAT, paternal; T, total number of pregnancies.
AProbability rate for malformed child at birth. BProbability rate for stillbirth/neonatal death. CProbability rate for miscarriagess.

Table 2 The probability rates of malformed child at birth, stillbirth/

neonatal death and miscarriages in relation to parental origin of

progeny of t(1;11)(p36.22;q12.2) carriers

No.

Parental

origin RateA RateB RateC

1 MAT 1/16 (6.2±6.1%) − /16 (o2.9%) 8/16 (50±12.5%)

2 PAT − /19 (o2.6%) − /19 (o2.6%) 9/19 (47.4±11.5%)

3 ?MAT/PAT 2/13 (15.4±10%) − /13 (o3.1%) − /13 (o3.1%)

Total 3/48 (6.2±3.5%) − /48 (o1.1%) 17/48 (35.4±6.9%)

Abbreviations: RateA, probability rate for malformed child at birth; RateB, probability rate for
stillbirth/neonatal death; RateC, probability rate for miscarriages; MAT, maternal, PAT, paternal;
?MAT/PAT, unknown parental origin of RCT.
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DISCUSSION

Unique RCT and the risk for double segment imbalance in progeny
We described carriers of an unique familial chromosomal reciprocal
translocation t(1;11)(p36.22;q12.2) in nine Polish families from two
pedigrees. Although these families are living in the same region
(Podlasie), we could not establish that they are related. These families
presented with multiple miscarriages or with a newborn with
malformations, including hydrocephalus and myelomeningocele.
Detection of the break point position of the RCT in 1p was
subterminal, at 1p36.22 determined by FISH using BAC clones. The
location of this break point allowed us to presume that these carriers
of t(1;11)(p36.22;q12.2) would be at risk for double segment
imbalances in the progeny. The 1p36 region is characterized by
molecular instability resulting in terminal and interstitial deletions,
complex rearrangements and unbalanced translocations.11,14 The use
of new genomic methods opens up the possibilities to find more
examples of RCT involving this region of 1p36. In this study, the
application of FISH using BAC probes was helpful for determining the
break points and resulted in a revision of both break point positions
(terminal or subterminal in 1p and in defining the 11q breakpoint).
In our search of the literature, we did not find any other

publications describing this particular RCT between segment
1p36.22p36.3 and 11q12.2→ qter, although there are several other
case reports of translocations involving other segments of 11q or other
chromosomes translocated with 1p36-pter.11,19–23 Similarly, a shorter
segment involving 11q13→ qter band found in a RCT has been
observed.24–26

Meiotic segregation pattern
To identify the various possible genetic imbalances that can be
produced by carriers of chromosomal translocations, the meiotic

segregation patterns in sperm cells can be evaluated. To date, the
meiotic segregation patterns in sperm cells from 4200 different RCTs
have been studied.3,4,27,28 One case of an RCT carrier with similar (but
not identical) break points [t(1;11)(p36.3;q13.1)] to our translocation
[t(1;11)(p36.22;q12.2)] was analyzed and described in three different
studies.29–31 Spriggs et al.30 used the in vitro human sperm penetration
assay with total of 548 sperm karyotypes identified. Spriggs and
Martin31 analyzed segregation pattern on sperm cells by using two-
color FISH with centromeric probes (n= 13 061). In the study of
Goldman and Hulten,29 FISH was used with paracentromeric probes
to evaluate the expected gametic proportions from the meiotic analysis
(including number of chiasmata and quadrivalent behavior) in germ
cells (n= 80) obtained from testicular biopsy. Results obtained in this
study were similar to the previously published report of Spriggs et al.30

in which sperm meiotic segregation patterns were analyzed after
spermatozoa penetrated the oocyte thus disclosing their karyotypes.
The results reported by Goldman and Hulten29 and Spriggs et al.30

were as follows: alternate 38.1/33.2%, adjacent I 39.4/42.9%, adjacent
II 13.75/15.9% and 3:18.75/8.00%, respectively. When comparing
results of Goldman and Hulten29 with the third study of Spriggs and
Martin,31 marked differences in proportion of adjacent II segregants
were observed (13.75% vs 8.3%, respectively). Moreover, our results
for adjacent II segregation type (5.4%) (Supplementary Table 1) were
similar to this study.30 To compare our results with the observations
obtained by Spriggs and Martin,31 we summed the frequencies of
alternate and adjacent I segregation outcomes. Because Spriggs and
Martin31 used a two-color FISH, they could not identify which sperm
were the result of alternate or adjacent I segregation—normal
chromosome and its derivative contained the same centromeric
sequences (82.5% vs 77.8%—in our study). Also in the case of 3:1
segregation, there were no differences in gamete frequencies between

Table 3 The probability rate for the birth of child without malformations for carriers of t(1;11)(p36.22;q12.2) related to total pregnancies after

ascertainment correction

Child without malformations at birth Pregnancies

No. Carrier Parental original T C T C Rate

Pedigree 1
1 III:15 MAT 1 1 4 1 1/1

2 II:12 PAT 2 1 6 5 1/5

3 II:10 PAT 2 2 2 2 2/2

4 II:4 PAT 2 2 3 3 2/3

5 I:1, I:2 ?MAT/ PAT 8 7 8 7 7/7

Total Risk 15 13 23 18 13/18

72±8.5%

Pedigree 2
6 III:4 PAT 2 2 6 5 2/5

7 III:11 MAT 2 2 6 6 2/6

8 III:13 PAT 3 3 4 4 3/4

9 II:2 MAT 5 4 9 8 4/8

10 II:10 MAT — — 1 1 − /1

11 I:1, I:2 ?MAT/ PAT 5 4 7 6 4/6

Total Risk 17 15 33 30 15/30

50±9.1%

Total rate 56 48 8/48

Total risk 58.3±7.1%

Abbreviations: C, number of pregnancies after ascertainment correction; MAT, maternal; PAT, paternal, (?MAT/PAT) unknown parental origin of RCT; T, total number of pregnancies.
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our results and that obtained by Spriggs and Martin31 (9.2% vs 11.3%
obtained in our study). On the basis of our results of meiotic
segregation patterns, we can see that all forms of meiotic malsegrega-
tion are produced by our RCT carrier of t(1;11)(p36.22;q12.2).

Comparison of meiotic segregation patterns and segregation
analysis of empiric data from two pedigrees
We speculated that progeny with almost all possible outcomes of
karyotypic imbalances probably have limited survival. Indeed, among
48 pregnancies of carriers, there have been 17 recognizable mis-
carriages, four malformed children at birth probably due to unba-
lanced karyotype. After ascertainment correction, the probability rate
of miscarriages for carriers of t(1;11)(p36.22;q12.2) was high, 17/48
(35.4± 6.9%). The high number of miscarriages detected in compar-
ison with the high rate of unbalanced gametes (54%) suggests a strong
selection against the unbalanced karyotypes during fetal development.
This assumes that the ability for fertilization has been preserved
in any unbalanced spermatozoa (54%).2 Unfortunately, we were not
able to karyotype any of the miscarriages, all presumed to be
unbalanced for the purpose of our risk calculations. It is possible that
the fertilized eggs with unbalanced translocation were negatively
selected before noticing pregnancy, which is sometimes manifested
as a delayed menstruation. This type of information was not
available in the examined families. However, in both studied families,
in II:1 in pedigree 1 (Figure 1a) and II:5 in pedigree 2 (Figure 1b), the
offspring was not observed. Because the material was not available for
karyotype testing, the diagnosis of infertility of unknown reasons was
concluded.
Hydrocephalus, myelomeningocele and other malformations of the

nervous system in the phenotype of five unkaryotyped children have
been observed. On the basis these clinical observations, we can
speculate that they resulted from chromosome imbalances because
of the similar phenotypes observed in children at birth monosomy
1p36 or trisomy 11q13→ qter.21,24–26,32–37 Therefore, we can presume
that five children (Figure 1b—IV:3, III:8, II:7 and II:12, III: 30) with
hydrocephalus and myelomeningocele observed in pedigree 2 could
represent the phenotypic effects of the unbalanced karyotype resulting
in monosomy 1p36.22→ pter with trisomy 11q12.2→ qter. However,
because of the lack of karyotypic evidence, additional cases must be
ascertained and karyotyped to prove our hypothesis. Monosomy
11q12.2→ qter or trisomy 11q12.2→ cen→pter have not been
observed so far and is likely not compatible with survival until birth,
therefore taking into consideration the phenotypic effects of the
chromosome imbalance, we suggest that only monosomy 1p36.22→
pter with trisomy 11q12.2→ qter, may be observed in malformed
progeny at birth with presumably limited survival after delivery.

Size of imbalanced segments and survival rate
1p36-pter region. Monosomy 1p36 syndrome is one of the most
commonly occurring contiguous gene syndrome. The size of the
imbalance is variable with 1p36 deletions arising de novo or resulting
from malsegregation of a parental RCT.38–41 The clinical findings in
our pedigrees of neonatal have been reported with monosomy
1p3619,32,34,35,38,40–42 as well as reported with trisomy 11q13.26

Monosomy of 1p36 of ~ 16Mb in size was described by Nicoulaz
et al.35 in a child born at 31 week of gestation who passed away at 48 h
after delivery. It is interesting that, in general, 10–11Mb deletions of
1p36 typically do not result in lethality.39,42–44 However, deletions over
11–16Mb may be lethal.36,37 As in our case, unbalanced segregants
that result in double segment imbalances will impact the survival rate
and is dependent on the size of the two segments and genetic content.

There is usually a higher rate for complex malformations, which may
result in early lethality, in comparison with single segment
imbalances.7,16

Our observation confirms two previous suggestions of Saito et al.37

and Nicoulaz et al.35 that 1p36 region for pure distal terminal
deletions, 411Mb is the haplolethal. Although many large 1p36
deletions ~ 10–11Mb in size are likely nonlethal,39,42–44 additional
observations are necessary to determine if monosomy 1p36-pter sized
411Mb is risk factor for limited survival rate.

11q12.2-qter region. According to our knowledge, there are no
reports of offspring with pure trisomy 11q12.2.→ qter to determine
if such type of imbalance would be a risk factor for limited survival at
birth. It should be emphasized that the resolution of banding
techniques used for evaluation of break point positions is limited; in
many cases, break points in either 11q13 and 11q12.2 bands cannot be
distinguished. Liveborn children with trisomy 11q13→ qter have been
observed.24–26 However, Brewer et al.45 after analysis of data from
Human Cytogenetics Database, proposed that band 11q12 is haplo-
and triplolethal. Thus, the presence of 11q12.2→ qter in double
segment imbalances likely contributes to limited survival at birth.
Among others, there are genes that may be contributing to the
phenotypes observed in our cases. The gene HGNC is responsible for
hydrolethalus syndrome and was assigned to 11q24.2 band46,47 and
FOLR1, a gene located at 11q13.4 band whose overexpression was
observed in neural tube defects.48

Parental origin of RCT carrier and value of probability estimation
There were no differences (Table 2) in risk values of different
categories of pregnancy outcomes dependent on paternal or maternal
origin of RCT carriership. The such type of differences in risk value
may be expected especially in case the prevalence of production of
gametes after 3:1 disjunction and interchange segregation.16 Our
results of meiotic segregation pattern show high frequencies of
alternate (40.4%) and adjacent I (37.5%) segregations in comparison
with low frequency of 3:1 (11.3%) segregations. It explains any
differences between risk values obtained from pedigree data.
Risk estimates of different pregnancy outcomes for carriers of

t(1;11)(p36.22;q12.2) and the results of meiotic segregation analysis
may be used for genetic counseling of such RCT carriers. The analysis
of meiotic segregation patterns in sperm provides information about
the types of unbalanced gametes, which may be generated in male
carriers of RCT. Survival rate of progeny with different forms of
unbalanced karyotypes in the perinatal period varies depending on the
particular form of imbalance. Therefore, the results of meiotic
segregation pattern together with the empiric data from pedigrees
supplement each other.
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