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Quantifying the uncertainty in heritability

Nicholas A Furlotte1,2,3, David Heckerman1,3 and Christoph Lippert1,3

The use of mixed models to determine narrow-sense heritability and related quantities such as SNP heritability has received

much recent attention. Less attention has been paid to the inherent variability in these estimates. One approach for quantifying

variability in estimates of heritability is a frequentist approach, in which heritability is estimated using maximum likelihood and

its variance is quantified through an asymptotic normal approximation. An alternative approach is to quantify the uncertainty in

heritability through its Bayesian posterior distribution. In this paper, we develop the latter approach, make it computationally

efficient and compare it to the frequentist approach. We show theoretically that, for a sufficiently large sample size and

intermediate values of heritability, the two approaches provide similar results. Using the Atherosclerosis Risk in Communities

cohort, we show empirically that the two approaches can give different results and that the variance/uncertainty can

remain large.
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INTRODUCTION

Intuitively, heritability reflects the idea that traits such as height,
weight or disease status are shared within families as a result of shared
genetics rather than shared environment. More formally, heritability
represents the proportion of the total variance of a given trait that is
attributable to genetics.1 The general term ‘heritability’ can be used to
refer to either of two more specific types: broad-sense or narrow-sense
heritability. Broad-sense heritability refers to the proportion of trait
variation that can be attributed to all types of genetic effects,
including dominance, epistatic interaction and additive effects.
Narrow-sense heritability refers to the proportion of variance
accounted for by only additive genetic effects. It is the latter which
is of most current interest, as there is substantial evidence that most
trait variation introduced by genetics is additive.2

Traditionally, narrow-sense heritability has been estimated using
specific family designs.1 More recently, researchers have used
restricted maximum-likelihood (REML) solutions for a linear mixed
model (LMM) in conjunction with single-nucleotide polymorphisms
(SNPs) to get a coarse sense of this quantity.3 One important issue is
that this approach estimates the heritability tagged only by the SNPs
used, which is a downwardly biased estimate of narrow-sense
heritability. This biased estimate has been referred to as SNP, chip
and pseudo- heritability,4,5 although these terms can be confusing, as
they do not distinguish between a narrow-sense and broad-sense
estimate of heritability. Herein, we shall use ‘SNP heritability’ to refer
to this estimate of narrow-sense heritability.
Point estimates can be misleading, so researchers have begun to

characterize the variance of such estimates. For example, Yang et al.6

estimate the variance of such estimates by using an asymptotic
Gaussian approximation of the maximum-likelihood estimator for
SNP heritability. An apparent problem with such an approach is that
SNP heritability is bounded between zero and one, making symmetric
distributions such as the Gaussian distribution unsuited to describe
SNP heritability close to either extreme. As an alternative to this
frequentist-based approach, one may quantify the uncertainty in
SNP heritability through its Bayesian posterior distribution. In this
approach, the probability distribution of SNP heritability is estimated
by combining both prior beliefs about SNP heritability with the
information from observed data. Although Bayesian methods have
been proposed to evaluate heritability,7 the usefulness of the Bayesian
approach to quantify the uncertainty in heritability has yet to be fully
explored.
Here, we develop the Bayesian approach for representing the

uncertainty in SNP heritability and show how the posterior distribu-
tion can be determined at a low computational cost. We compare this
approach to the frequentist-based approach both theoretically and
empirically. Using the Atherosclerosis Risk in Communities (ARIC)
cohort, we show that, for large sample sizes, the two approaches
typically give similar results. However, we also find that the two
approaches can give different results, that the variance/uncertainty in
SNP heritability remains large and that the variance/uncertainty of the
parameter often is not approximated well by a normal distribution.

MATERIALS AND METHODS
As mentioned, we used genotype and phenotype samples from the ARIC

cohort.8 We used quality-control standards similar to those performed by
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Yang et al.3 We considered 706 949 SNPs from the autosomes and the

X chromosome. SNPs with an estimated genotyping error rate of 40.01

were excluded from the analysis. Genotyping error rates were estimated per

SNP by using a set of 343 duplicate arrays. Finally, we exclude SNPs with a

missing rate 42% or with minor allele frequency o1% and any SNPs failing

Hardy-Weinberg equilibrium with Po1e-3. This quality control procedure was

conducted separately for each race and sex category, and then a final set of

SNPs was obtained by intersecting the resulting sets. The final number of

autosomal SNPs included in the analysis were 346 565. On the sample level, we

excluded individuals with sex inconsistencies determined by X chromosome

heterozygosity.9 We also removed individuals with a missing call rate 42%.

Principal components analysis was used in order to identify and remove

individuals of non-European descent. This left a total of 12 636 individuals

(4481 Caucasian males, 5057 Caucasian females, 1159 African American males

and 1939 African American females). The sample size used for a given

phenotype varied, however, because of missing values. Additionally, for each

phenotype, individuals were pruned from the set so that no two pairs of

individuals were closely related. In particular, individuals were pruned such

that no pair of individuals i and j have a value Kij in the kinship matrix

40.025, as in Yang et al.3 This was done on a per phenotype basis, so as to

maximize the potential sample size for each phenotype.

We used five continuous phenotypes from the ARIC cohort: height, weight,

body mass index, vonWillebrand factor, and QT interval (QTi). Detailed

information about these phenotypes can be found at http://www2.cscc.unc.

edu/aric/. All phenotypes were age corrected by a smooth non-linear multi-

plicative function in the form of a maximum-likelihood fit of a Gaussian

process to the logarithm of the phenotype, with a squared-exponential

covariance function computed on age.10

RESULTS

SNP heritability
A trait y can be decomposed into a fixed mean m, a random genetic
effect G and a random environmental effect E.3 For the moment,
let us assume that each individual in the study has been genotyped at
the variants known to be causal for this particular trait. We use
an LMM for the likelihood of y. Assuming the variants act linearly
and additively, Gn, the genetic effect for individuals n¼ 1,y,N,
can be written as Gn ¼

PM
m¼1 Wn;mbm, where Wn,m represents the

normalized minor allele count for genetic variant m in individual
n such that E[Wn,m]¼ 0 and var(Wn,m)¼ 1, and bm represents
the additive effect attributed to this variation. (This choice of
normalization reflects the general prior observation that minor
allele frequency and effect size are roughly inversely related.11) In
matrix notation, we have

y ¼ mþWbþE; ð1Þ

where m is an offset that may include covariates. We assume that
the effect vector b is random with b � Nð0; s

2
g

M IÞ. Therefore,
G ¼ Wb � Nð0; 1

M s2gWWTÞ ¼ Nð0; s2gKÞ, where the matrix K is a
kinship matrix.12 We also assume that the environmental effects
attributed to each individual can be represented by independent
Gaussian noise, E � Nð0; s2e IÞ. Consequently, we obtain

y � N m; s2gKþ s2e I
� �

: ð2Þ

Given this LMM, the narrow-sense heritability of a trait, defined as
the heritability attributed to additive genetic effects and denoted as h2,
equals the ratio of the genetic trait variance s2g

� �
to the total trait

variance (s2) or, equivalently, the sum of the genetic variance and the
residual error variance s2g þ s2e

� �
1:

h2 ¼
s2g

s2g þ s2e
: ð3Þ

As mentioned, we typically do not know the causal variants.
Consequently, the genotyped SNP markers are often used as a proxy
for the causal variants, knowing that the resulting estimates of
heritability, often referred to as SNP, chip or pseudo- heritability,
will be biased downwards due to the potential exclusion of causal
variants.3 Herein, we shall use SNP heritability (or h2) to refer to this
(narrow-sense) estimate.

The frequentist approach to estimating SNP heritability and its
variation
To obtain ĥ2, a REML estimate of SNP heritability, we substitute the
REML estimates for s2g and s2e into Equation 3. We compute these
estimates using FaSTLMM,13 which for this task has computational
time quadratic in the size of the data per phenotype plus a one-time
cost of O(N3).
To obtain an estimate of the variance of ĥ2, we use the Cramer-Rao

lower bound.14 In particular, if we neglect the fact that the REML
estimator of heritability is biased due to a bounded parameter space,
its sampling distribution becomes asymptotically normal with mean
centered at the true parameter and a lower bound for the variance
(approximated using the delta method14) given by

var ĥ2
� �

�
@h2

@s2g
@h2

@s2e

" #T

F� 1 s2g ; s
2
e

� � @h2

@s2g
@h2

@s2e

" #
;

where F(Y) the expected information matrix with respect to
parameters Y.

The Bayesian approach to SNP heritability and its uncertainty
In the Bayesian approach, we continue to use the LMM and the
expression for h2 given by Equation 3, but we now view the
parameters as uncertain and express our uncertainty over h2 with a
probability distribution. From Bayes theorem, we have

p h2 j y
� �

¼ pðy j h2Þpðh2ÞR
pðy j h2Þpðh2Þ dh2 ; ð4Þ

where p(h2) and p(h2|y) are the prior and posterior distribution for y,
respectively, and p(y|h2) is the likelihood of h2 given y. To obtain this
likelihood, we frist rewrite Equation 2 as follows:

p y j s2g ;s2e
� �

¼ N y j m;
s2g

s2g þ s2e
� �Kþ s2e

s2g þs2e
� � I

0
@

1
A s2g þs2e
� �0

@
1
A;

¼ N y j m; h2Kþð1� h2ÞI
� �

s2
� �

;

¼ p y j h2; s2
� �

;

where s2 ¼ s2g þ s2e . Next, we marginalize over s2:

p y j h2
� �

¼
Z

p y j h2; s2
� �

pðs2 j h2Þ ds2:

Now we assume s2 is independent a priori of h2, which is possible
as h2 ¼ 1

1þ s2e=s2g
(a monotonic function of the ratio of the variances

s2e and s2g) and s2 (the sum of the variances) are variationally
independent. Consequently, p(s2|h2)¼ p(s2). Finally, we assume
an arbitrary prior for h2 and an inverse-Gamma prior for s2,
p(s2)¼G�1(s2|a,g), where a and g are hyperparmeters.
The likelihood of h2 from Equation 4 equals15

p y j h2
� �

/
Z

N y j m; ðh2Kþð1� h2ÞIÞs2
� �

�G� 1 s2 j a; g
� �

ds2

¼ Stn y j m; ðh2Kþð1� h2ÞIÞg=a; 2a
� �

ð5Þ
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Figure 1 Posterior distributions of SNP heritability for five phenotypes in the ARIC cohort on different subsets of the data. (a) Caucasian males,

(b) Caucasian females, (c) African American males, (d) African American females, and (e) the complete data. Posterior distributions were calculated

assuming a uniform prior over h2 and a relatively flat prior, G�1(1,1), over the variance s2. The maximum a posteriori value for heritability is indicated by a

red dot. The plots reveal a large degree of uncertainty in heritability.
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where Stn(A,B,C) is the multivariate Student-t distribution with
mean A, variance B, and degrees of freedom C. Thus, the posterior
distribution given by Equation 4 can be determined numerically by
evaluating Equation 5 over a grid of possible values for h2 and
subsequently normalizing the posterior distribution to integrate to 1.
The naive computation of the posterior distribution is computa-

tionally expensive, as it would require an O(N3) re-evaluation of
Equation 5 for every value of h2. However, it is straightforward to use
a recent result by Pirinen et al.7 and Lippert et al.13 in order to reduce
the computation to a one-time cost of O(N3) followed by a cost of
O(N). In particular, we can rewrite the likelihood from Equation 5 in
the following way, where we have let the eigendecomposition of K
equal to HLHT and factored the eigenvectors from the covariance
matrix:

Z
N y j Xb; ðh2Kþð1� h2ÞIÞs2
� �

�G� 1 s2 j a; g
� �

ds2;

¼
Z

N y j Xb;Hðh2Lþð1� h2ÞIÞHTs2
� �

�G� 1 s2 j a; g
� �

ds2:

We can then apply the rule PYBN(PXb, PRPT) for YBN(Xb, S)
in order to transform the data vector y. Letting y*¼HTy and
X*¼HTX, the likelihood becomes

Z
N y� j X�b; ðh2Lþð1� h2ÞIÞs2
� �

�G� 1 s2 j a; g
� �

ds2:

With this transformation, it is then straightforward to show
that the log likelihood can be computed in O(N) given the

eigendecomposition of K:

logðpðy� j h2ÞÞ ¼ logðcÞ� 1

2
logðgÞþ 1

2
logðaÞ� 1

2
Cðh2Þ

� ðaþ n=2Þlog 1þ 1

2g
Qðh2Þ

� �
;

where

logðcÞ ¼ logðGðaþ n=2ÞÞ� logðGðaÞÞ� n=2logð2apÞ;

Cðh2Þ ¼
X
i

logðh2Li þð1� h2ÞÞ;

and

Qðh2Þ ¼ ðy� �X�b̂ÞTðh2Lþð1� h2ÞIÞ� 1ðy� �X�b̂Þ

¼
XN
n¼1

y�n �ðX�
n b̂Þ

h2Ln þ 1� h2
:

Comparing the frequentist and Bayesian approaches
In Supplementary Material, we show that both the Bayesian posterior
distribution as well as the frequentist distribution asymptotically
follow similar normal distributions, where the Bayesian posterior
variance is a function of the observed information and the frequentist
sampling variance is a function of the expected information. Here, we
describe an empirical comparison using (finite) simulated data and
real data.
In our simulations, the causal SNPs were known, and all variance

was due to linear additive effects, so that our estimates of
SNP heritability correspond to estimates of both narrow-sense and

Table 1 Summary statistics for heritability posteriors in the ARIC cohort

Cohort Phenotype

Sample

size

Max.

posterior

Posterior

expectation

Posterior

s.d.

Posterior

skewness

Posterior

kurtotis

REML

estimate s.e.

Caucasian male Height 3617 0.49 0.49 0.08 0.03 2.98 0.49 0.08

BMI 3607 0.13 0.15 0.08 0.4 2.82 0.13 0.09

Weight 3607 0.2 0.21 0.08 0.15 2.87 0.2 0.08

QTi 461 0.01 0.25 0.21 1.13 3.8 0 0.61

vWF 3608 0.09 0.11 0.07 0.6 3.03 0.09 0.08

Caucasian female Height 4000 0.54 0.54 0.08 0.009 2.98 0.5 0.08

BMI 3983 0.35 0.35 0.08 0.008 2.99 0.35 0.08

Weight 3983 0.25 0.25 0.08 0.04 2.94 0.25 0.08

QTi 444 0.99 0.7 0.23 �0.9 3.09 1 0.63

vWF 3988 0.33 0.33 0.08 0.03 2.98 0.32 0.08

African American male Height 892 0.33 0.44 0.26 0.21 2.02 0.25 0.4

BMI 870 0.21 0.39 0.25 0.42 2.25 0.14 0.38

Weight 870 0.05 0.33 0.23 0.69 2.72 0.01 0.35

QTi 125 0.01 0.43 0.28 0.26 1.91 0 1.6

vWF 871 0.08 0.32 0.23 0.71 2.8 0.03 0.33

African American female Height 1307 0.01 0.15 0.12 1.32 5.01 0 0.23

BMI 1248 0.3 0.35 0.19 0.47 2.85 0.28 0.23

Weight 1248 0.37 0.41 0.21 0.3021 2.53 0.34 0.25

QTi 160 0.76 0.51 0.28 �0.06 1.83 0.69 1.35

vWF 1251 0.22 0.3 0.18 0.66 3.07 0.2 0.23

All Height 5867 0.44 0.44 0.04 0.002 2.99 0.38 0.06

BMI 5844 0.21 0.21 0.05 0.006 2.99 0.21 0.06

Weight 5844 0.19 0.19 0.05 0.02 2.97 0.18 0.06

QTi 857 0.19 0.37 0.22 0.47 2.37 0.17 0.37

vWF 5845 0.2 0.2 0.05 0.009 2.99 0.13 0.06

Abbreviations: ARIC, Atherosclerosis Risk in Communities; BMI, body mass index; QTi, QT interval; vWF, vonWillebrand factor.
The Bayesian posterior expectation corresponds to the frequentist restricted maximum-likelihood estimate. The Bayesian posterior s.d. corresponds to the frequentist s.e.
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broad-sense heritability. We generated two sets of 1000 data sets, one
with h2¼ 0.5 and another one with h2¼ 0. Each data set was
generated with 500 individuals and 100 SNPs with no population
structure and minor allele frequencies drawn uniformly from
(0.05,0.4). Using a randomly chosen data set, we calculated the
variance of the heritability estimate using both the Bayesian and
frequentist approaches and compared these estimates with the
empirical variance of all 1000 heritability estimates. For a true
heritability of 0.5, both the Bayesian and frequentist approaches
resulted in a s.e. of 0.05, matching the empirical s.e. of 0.05. However,
for a true heritability of 0, the frequentist s.e. was given by 0.03,
whereas the Bayesian s.e. was 0.016, a value much closer to the
empirical s.e. of 0.013. This result highlights the fact that, near the
boundary of h2¼ 0, the assumptions behind the frequentist estimation
procedure break down, resulting in an overestimation of variance.

In our experiments with real data, we compared the two approaches
using five phenotypes from the ARIC population cohort.8 The total
number of available individuals was 13 115, and the total number of
available autosomal SNPs was 706949. We applied extensive filtering
(see Methods) to avoid biases in our SNP heritability estimations
owing to; for example, low minor allele frequencies or population
substructure.3 After filtering the set of individuals and SNPs, we were
left with 12636 total individuals and 346 565 SNPs. We analyzed
Caucasians and African Americans separately, and males and females
separately, as allelic effects may vary by both sex and race16,17 and, as a
result, so will SNP heritability. The maximum sample size for each
race–sex cohort is reported in the Methods section, although the
actual sample size is phenotype dependent as it varies with the
number of missing values. We also analyzed all individuals together,
using sex and race as covariates.

Figure 2 Comparison of maximum-likelihood estimator distribution with posterior distribution for the examples of (a) height in Caucasian males, (b) height

in African American females, and (c) QTi in Caucasian females. Shown are frequentist estimates of the variation of the heritability estimate obtained from

GCTA (constrained to values of heritability between 0 and 1) and Bayesian posterior distributions. The area under each distribution is 1. A red dot indicates

the maximum of each curve.
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Figure 1 shows graphically the marginal likelihood of the data y
given SNP heritability for each phenotype in each sex and race
category. Note that, when a uniform prior distribution (that is, a
Beta(1,1) distribution) for h2 was used, the posterior distribution was
just the (normalized) marginal likelihood. Herein, we will use these
two interchangeably, in effect assuming such a prior for h2. In
practice, however, any prior for h2 may be used.
A comparison of Bayesian and frequentist point estimates are

shown in Table 1. Note that some of the frequentist estimates for h2

are rather unreasonable. For example, the REML estimate is zero for
the height phenotype in African American females. In contrast, the
expectation of the Bayesian posterior distribution reflects heritability
substantially away from zero. Also, the REML estimates for QTi swing
from zero to one depending on the cohort, whereas the Bayesian

point estimates do not have such dramatic swings, because the sample
size is low and hence these estimates are substantially influenced by
the flat prior over h2.
A comparison of Bayesian and frequentist distributions is shown in

Figure 2 and Table 1. Under some but not all conditions, the
distributions were quite similar. Generally, differences were larger
for smaller sample sizes. For example, for the analysis of QTi in
African American females (N¼ 160), the s.d. of the Bayesian posterior
was 0.28, whereas the s.e. from the frequentist approach was 1.35. In
some cases, the posterior distributions were highly non-normal, as
can be seen by the higher moments skewness and kurtosis of the
distribution in Table 1, which provides additional summary statistics
such as the sample size, the maximum a posteriori (MAP) heritability
and the expected value given the posterior distribution.

Sensitivity to hyperparameters
Finally, we evaluated the sensitivity of the posterior distribution to the
hyperparameters attributed to the inverse-Gamma distribution on s2.
We measured the difference in posterior by evaluating the change in
the MAP estimate for heritability, while varying the hyperparameters
a and g. The MAP was evaluated for a range of these parameters from
small to large for two data sets: Caucasian male height (N¼ 3617)
and African American female QTi (N¼ 160).
Figure 3 shows heatmaps of the MAP for different hyperparameter

settings. For male height, we see that the MAP estimates were
insensitive to the choice of prior when the hyperparameter values
were moderate but were influenced greatly when they became
extreme. For the female QTi data, which had a small sample
size, the MAP was more sensitive to the prior. Thus, not
surprisingly, results should be interpreted cautiously when sample
sizes are small.

DISCUSSION

We have shown how the variation in heritability can be quantified
through its Bayesian posterior distribution and how this distribution
can be approximated accurately and in a computationally feasible
manner. In addition, we have shown how the Bayesian approach for
quantifying uncertainty is related to the more commonly used
frequentist-based approach, which assumes that the expected spread
in heritability estimates can be quantified through a (sometimes
problematic) asymptotic Gaussian approximation. We have explained
theoretically and shown empirically that these two approaches for
quantifying variation in SNP heritability often produce similar results
but that even for large sample sizes their results may deviate
significantly.
The rather substantial variabilities seen in our experiments

on real data highlight the importance of considering such variation.
In the current environment, there are many papers focused on
achieving point estimates of SNP heritability that are close to those
expected from family-based studies. However, as we have shown, the
variation in these estimates can often be large and should be
taken into account when looking for consistency with family-based
studies.
In this paper, we used only continuous phenotypes. However, it is

possible to extend this methodology to estimate SNP heritability
for case–control phenotypes as in Lee et al.18 This extension is
accomplished with the use of a liability transform, wherein a case-
control phenotype is assumed to be determined by an underlying
continuous phenotype.

Figure 3 Heatmaps showing the change in maximum a posteriori estimates

of SNP heritability and the influence of the variance prior. In both

heatmaps, MAP values for different hyperparameter settings for the prior

distribution on s2 are given. Each grid point represents one hyperparameter

setting, and the intensity represents the MAP value, as indicated by the

color bar. (a) Height in Caucasian males (sample size is 3617). (b) QTi in

African American females (sample size is 160).
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