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Polymorphisms in alcohol-metabolizing enzymes
and esophageal carcinoma susceptibility:
a Dutch Caucasian case–control study

Polat Dura1, Tineke Berkers1, Elke M van Veen1, Jody Salomon1, Rene HM te Morsche1, Hennie MJ Roelofs1,
Jon O Kristinsson1, Theo Wobbes2, Ben JM Witteman3, Adriaan CITL Tan4, Joost PH Drenth1

and Wilbert HM Peters1

Esophageal cancer (EC), mainly consisting of squamous cell carcinoma (ESCC) in the Eastern world and adenocarcinoma

(EAC) in the Western world, is strongly associated with dietary factors such as alcohol use. We aimed to clarify the modifying

role in EC etiology in Caucasians of functional genotypes in alcohol-metabolizing enzymes. In all, 351 Caucasian patients with

EC and 430 matched controls were included and polymorphisms in CYP2E1, ADH and near ALDH2 genes were determined. In

contrast to the results on ESCC in mainly Asian studies, we found that functional genotypes of alcohol-metabolizing enzymes

were not significantly associated with EAC or ESCC in an European population.
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INTRODUCTION

Esophageal cancer (EC) is a gravely lethal malignancy with poor
5-year survival rates. EC can be subdivided into esophageal adeno-
carcinoma (EAC), more prevalent in the Western world with gastro-
esophageal reflux disease (GERD) and obesity as main risk factors.
Esophageal squamous cell carcinoma (ESCC) is more prominent in
Asia, predisposed by the use of tobacco and alcohol (ethanol) and
local dietary habits.1 So tactics in averting contact with environmental
and dietary factors such as alcohol intake are crucial in esophageal
carcinogenesis.
Ethanol, although classified by WHO-IARC as a Group-1 carcino-

gen, in its pure form is less toxic than its principal metabolite
acetaldehyde (AA), which is a carcinogen and partly responsible for
the cancer risk.2 Acetaldehyde is also detectable in tobacco smoke.3

The key enzymes for the oxidation of ethanol and its metabolite
acetaldehyde are the phase I biotransformation enzymes cytochrome
P450 2E1 (CYP2E1), alcohol dehydrogenase (ADH) and acetaldehyde
dehydrogenase (ALDH). The activity of these enzymes influences AA
levels.4 The primarily hepatic CYP2E1 isozyme is induced by ethanol
and is also expressed in the esophagus.5 Of the ADH enzymes classes
1, 3, 4 and 7, which are expressed in the esophageal epithelium,6,7

ADH class 1 is the most relevant as subclasses 3 and 4 have a low
affinity for ethanol.4 Within the ALDH superfamily, the ALDH2

isozyme is most relevant, as it is involved in the oxidation of AA.4

ALDH2 primarily is a liver enzyme, although it is also expressed in
esophageal mucosa where it is involved in the first pass metabolism of
alcohol.8

Functional polymorphisms in the genes of alcohol-metabolizing
enzymes may cause alterations in the phenotypes. These polymorph-
isms can therefore act as a proxy for the exposure to environmental
toxins such as alcohol and its main metabolite acetaldehyde.
Previously, a large Asian meta-analysis showed single-nucleotide

polymorphisms (SNPs) in ADH genes to be associated with an
increased risk of cancer of the upper-aerodigestive tract (UADT).9

Furthermore, a Japanese genome-wide association study (GWAS)
reported ADH1B and ALDH2 polymorphisms to be associated with
an increased ESCC risk.10 Many case–control studies originate from
the Eastern continent, so the correlation between polymorphisms
in alcohol-metabolizing enzymes and modulation of ESCC risk is
well established in Asian countries.11,12 In sharp contrast, at present
only an American and a French case–control study examined the
roles of ADH1C and CYP2E1 genotypes in EAC13 and UADT
cancer risk,14 respectively. However, the number of patients
included in these studies were small; n¼ 13713 and n¼ 15814 for
combined EC and UADT cases. So there is a literary gap concerning
the role of functional polymorphisms in alcohol-metabolizing
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enzymes in Western EAC as well as ESCC cases. Consequently, we
hypothesized that variant genotypes of CYP2E1, ADH1B, ADH1C,
ADH7 and ALDH2 might alter EAC and ESCC risk in a Dutch
Caucasian population. To prove our hypothesis we conducted a
case–control study, including 351 patients with EAC or ESCC of
Dutch Caucasian descent and 430 age-, sex- and race-matched
controls.

MATERIALS AND METHODS

Patients and controls
The study was approved by the Medical Ethical Review Committee, region

Arnhem-Nijmegen (CMO approval no. 2002/114) and written informed

consent was received from all participants. Blood or tissue samples from 351

Caucasian patients with EC were collected in the period October 2002 to June

2012 at four different hospitals, all located within 30 km distance in the South-

East area of the Netherlands.15 Patients were included in the order of entry to

the hospital. Only patients with a diagnosis of esophageal carcinoma, as

confirmed by a pathologist, were included in the study. As a source of DNA, in

92 cases, tissue biopsies of normal esophagus or stomach from patients were

collected after surgery, whereas in 259 cases EDTA blood was collected. Blood

and tissue samples were frozen at �20 and �80 1C, respectively. DNA

isolation was performed by usage of the High Pure PCR Template Preparation

Kit (Roche, Mannheim, Germany) according to the instructions of the

manufacturer. Post-extraction DNA was stored at 4 1C. Healthy controls

(n¼ 430), matched for age, sex and Caucasian race were recruited from the

same geographical area of The Netherlands, after advertisement in local papers

as described earlier.15

Genotyping
The extracted DNA was used for SNP detection of ADH1B c.143A4G

(rs1229984; Arg48His), ADH1B c.1108C4T (rs2066702; Arg370Cys), ADH1C

c.815G4A (rs1693482; Arg272Gln), ADH1C c.1048A4G (rs698; Ile350Val),

ADH7 c.275G4C (rs1573496; Gly92Ala), CYP2E1 c.-1295G4C (rs3813867),

CYP2E1 c.-1055 C4T (rs2031920) and near ALDH (rs4767364) by means of

real-time PCR (rtPCR) techniques. A specific set of primers, which flank the

region of the SNP, was used to amplify the DNA. In the TaqMan assay, two

probes, labeled with a fluorophore at the 50-end and a quencher at the 30-end
of the probe, were added to the PCR mixture. The PCR primers and TaqMan

probes were designed by Beacon Designer (PREMIER Biosoft International,

Palo Alto, CA, USA) and synthesized by Isogen Life Science (De Meern, the

Netherlands). The sequences of the primers and probes, as well as

the annealing temperatures and MgCl2 concentrations, are given in Table 1.

The gene expression was measured using the CFX96 Real-Time PCR Detection

System (Bio-Rad Laboratories, Hercules, CA, USA).

ADLH2 mutation analysis
The ALDH2 gene consists of 13 exons. A specific set of primers, flanking the

coding region, was designed for each exon, by using Primer3 software

(Whitehead Institute for Biomedical Research, Cambridge, UK). A PCR

followed by melting curve analysis was performed for each exon using the

Bio-Rad CFX96 Real-Time PCR Detection System. The PCR also contained

Table 1 Sequences of primers and probes and annealing temperatures for the investigated SNPs in the ADH, CYP2E1 and (near) ALDH genes

SNP Primer/probe Sequence Annealing temperature/(MgCl2)

ADH1B

p.Arg48His

Primer forward

Primer reverse

Probe most common allele

Probe variant allele

50-AACAGCTTCTCTTTATTCTGTAGATGG-30

50-CTCATTGCCTTGGTTTCCTTATCC-30

50-(FAM)CTGTAGGAATCTGTCACACAGATGACCACGT(BHQ1)-30

50-(HEX)CTGTAGGAATCTGTCGCACAGATGACCACGT(BHQ1)-30

67 1C/6 mM

ADH1B p.Arg370Cys Primer forward

Primer reverse

Probe most common allele

Probe variant allele

50-TTAACACAATGTCTCTTCTTTCC-30

50-GGGTAGAGGAGGCTGAAG-30

50-(FAM)ATTGCAGTATCCGTACCGTCCTGAC(BHQ1)-30

50-(HEX)ATTGCAGTATCTGTACCGTCCTGAC(BHQ1)-30

54 1C/3 mM

ADH1C

p.Arg272Gln

Primer forward

Primer reverse

Probe most common allele

Probe variant allele

50-AAATGACTGATGGAGGTGTGG-30

50-CAACCTGGAGGATGCATTTAG-30

50-(FAM)TGAAGTCATCGGTCGGCTTGACACCA(BHQ1)-30

50-(HEX)TGAAGTCATCGGTCAGCTTGACACCA(BHQ1)-30

65 1C/6 mM

ADH1C p.Ile350Val Primer forward

Primer reverse

Probe most common allele

Probe variant allele

50-CTGACTTTATGGCTAAGAAG-30

50-AGATTGAACTGGCAATGG-30

50-(FAM)ATGCATTAATAACAAATATTTTACCTTTTGAAAA(BHQ1)-30

50-(HEX)ATGCATTAATAACAAATGTTTTACCTTTTGAAAA(BHQ1)-30

61 1C/5 mM

ADH7

p.Gly92Ala

Primer forward

Primer reverse

Probe most common allele

Probe variant allele

50-GTCCAAGTTTCCAGTGATTGTG-30

50-GTTTGACACCTGCATATACCTG-30

50-(FAM)CACTGTAGTCACTCCTTCTCCAATGCTC(BHQ1)-30

50-(HEX)CACTGTAGTCACTGCTTCTCCAATGCTC(BHQ1)-30

58.3 1C/3 mM

rs4767364

(near ALDH)

Primer forward

Primer reverse

Probe most common allele

Probe variant allele

50-AGTTGGGATTTCGCTATGTTTC-30

50-GATGGCTTGAGGCACCTG-30

50-(FAM)TAACACTGGGGTACGTATACTCCACAGGT(BHQ1)-30

50-(HEX)TAACACTGGGGTACATATACTCCACAGGT(BHQ1)-30

62 1C/3 mM

CYP2E1-1295 Primer forward

Primer reverse

Probe most common allele

Probe variant allele

50- ACTGGAAAGGAAAGAGAGGA-30

50- AGTCATTGGTTGTGCTGC-30

50-(FAM)CTAACACTGCACCTCTCCTGAACC(BHQ1)-30

50-(HEX)CTAACACTGCAGCTCTCCTGAACC(BHQ1)-30

59 1C/2.5 mM

CYP2E1-1055 Primer forward

Primer reverse

Probe most common allele

Probe variant allele

50- CATCATATTTTCTATTATACATAAAG-30

50- GGTAGTCCATAGGTATTTTG-30

50-(FAM)TGTTAATATAAAAGTACAAAATTGCAACCT(BHQ1)-30

50-(HEX)TGTTAATATAAAAGTATAAAATTGCAACCT(BHQ1)-30

54 1C/4 mM

Abbreviation: SNP, single-nucleotide polymorphism.
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EvaGreen (Biotium, Hayward, CA, USA), a dye staining double-stranded

DNA. The annealing temperature varied between the exons. The melt curves

were analyzed using Bio-Rad Precision Melt Analysis software (Bio-Rad

Laboratories). The PCR products with an abnormal melt curve and some

normal PCR products were isolated after electrophoresis with the Qiaex II Gel

Extraction Kit (Qiagen, Venlo, the Netherlands) and were sequenced. The

outcome of the DNA sequencing was analyzed using ChromasPro,

Technelysium.

Statistical analyses
The independent sample t-test was applied for the differences in continuos

variables between characteristics of patients and controls. The chi-square test

was used for analyzing nominal variables of patient characteristics and to test

for differences of frequencies in predicted enzyme activity genotypes between

two groups. Except for ADH1C, the most common genotype was set as

reference. Odds ratios (OR) with 95% confidence interval (95% CI) were

calculated. Stratified analyses were performed according to tumor histology. All

P-values were two-sided and a probability level of Po0.05 was considered to

be significant. All analyses were performed with the software SPSS for

Windows, version 16.0 (SPSS Inc., Chicago, IL, USA).

Haplotypes were generated using the PLEM program.16 The most common

haplotype was taken as reference in the comparison between cases and

controls. Only participants with complete genotypes were included in the

haplotype analyses. Haploview was used to evaluate the degree of linkage

between the ADH polymorphisms.17

RESULTS

Table 2 displays the characteristics of patients and controls. A total of
351 patients with EC, 260 with EAC and 85 with ESCC and 430
healthy controls were included. For six patients, the exact tumor type
was not mentioned in the pathology reports. Controls were matched
against the whole EC group for ethnicity, age and sex. The female sex
was more present in patients with ESCC in comparison to patients
with EAC (Po0.001), and in comparison to controls (P¼ 0.003).
Otherwise, no significant difference was found between the reported
demographics of patients with EAC or ESSC, and controls.
Polymorphisms in the following alcohol-metabolizing enzymes

were chosen on the basis of functionality and relevance as reported
in earlier EC studies. As ADH1B and ADH1C are the most important
ADH enzymes involved in the oxidation of alcohol in the esophageal
epithelium, the most common functional polymorphisms ADH1B
p.Arg48His, ADH1B p.Arg370Cys, ADH1C p.Arg272Gln and ADH1C
p.Ile350Val were selected for genotyping. The ADH1C*1 allele was
defined as the 272Arg 350Ile variant, whereas the ADH1C*2 allele is

the 272Gln 350Val arrangement.18 ADH7 is also expressed in the
esophagus and has a vital role in the first pass metabolism of ethanol,7

and the allelic variant encoded by the ADH7 p.Gly92Ala poly-
morphism was selected for genotyping. The CYP2E1 c.-1295G4C
(rs3813867) and c.-1055 C4T (rs2031920) genetic polymorphisms
are known to increase the enzyme activity19 and in vitro expression.20

Both polymorphisms are highly linked, leading to either the most
common c1, or the variant c2 allele.20 Consequently, genotypes can be
classified as c1/c1, c1/c2 and c2/c2.
The functional polymorphism ALDH2 p.Glu487Lys leads to the

inactive allelic variant ALDH2*2 (487Lys), which is incapable of
oxidizing acetaldehyde.4 However, this ALDH2*2 variant, although
common in Asia, is rare in Caucasians.21 Therefore, we also
performed mutation analyses of the coding sequences of the
ALDH2 gene to investigate whether other unknown polymorphism
do exist in our Dutch Caucasian population.
Recently, a GWAS reported the 12q24 variant rs4767364, near the

ALDH gene, being directly correlated to fluctuations in breath and
blood concentrations of alcohol and it significantly increased ESSC
risk.22 Consequently, we involved this SNP in our current study.
All polymorphisms were distributed according to the Hardy–

Weinberg equilibrium. The genotype frequencies are depicted in
Table 3. The distribution of the CYP2E1, ADH1B, ADH1C, ADH7 or
near ALDH rs4767364 genotypes were not significantly different
between patients with EAC or ESSC and controls. The ADH1B*3
allele and the ADH1B*2*2 genotype did not occur in our study
population. Furthermore, homozygosity for ADH7 92Ala was not
found in patients with ESCC.
ADLH2 mutation analysis revealed no polymorphisms in the exons

and splice sites of the ALDH2 gene in our study population. The
ADH haplotype with the variant ADH7 92Ala showed a tendency to
decrease EAC risk (OR 0.65; 95% CI 0.42–1.02). No haplotype
significantly modified EAC or ESCC risk (Table 4).
Table 5 shows the results of earlier published case–control studies

on alcohol-metabolizing enzymes associated with EC risk. Most
studies originated from Asia, and thus ESCC was the predominant
histological subtype. Four studies included patients without histolo-
gical specification, however, all studies were from Asia, making ESCC
the most probable subtype. Only Terry et al.13 reported on EAC risk.
Figure 1 shows the linkage disequilibrium (LD) patterns of ADH1B

p.Arg48His, ADH1C p.Arg272Gln, ADH1C p.Ile350Val and ADH7
p.Gly92Ala. A nearly total linkage disequilibrium (LD) exists between
both ADH1C polymorphisms and a complete LD was found between
both the ADH1C and the ADH7 polymorphisms. The ADH1B
p.Arg48His had low LD values with the three other ADH
polymorphisms.

DISCUSSION

This study aimed to clarify the role of altered activity genotypes of
alcohol-metabolizing enzymes in EC susceptibility in Caucasians. We
did not detect significant associations between variant genotypes of
CYP2E1, ADH1B and ADH1C, ADH7 or near ALDH (rs4767364) and
EAC or ESSC risk in a Dutch population. Moreover, mutation
analysis revealed no polymorphisms in the ALDH2 gene in our study
population. Our results are in contrast to many reports on EC from
Asian countries, where polymorphisms in alcohol-metabolizing
enzymes have a modulating role in cancer risk (Table 5). Strong
associations in European populations between the ADH1B, ADH1C
and ADH7 polymorphisms and the risk of UADT squamous cell
carcinomas have also been appreciated by a large European GWAS
and the subgroup analyses demonstrated the associations were

Table 2 Characteristics of patients with esophageal cancer and

controls

Characteristics ESCC EAC

All EC

patients Controls

Number (% of total) 85a (24.2%) 260a (74.1%) 351a (100%) 430

Age (years;

mean±s.d.)

63.7±10.3 65.3±11.1 65.0±10.9 64.9±11.1

Gender

Male 56 (65.9%) 221 (85.0%) 282 (80.3%) 346 (80.5%)

Female 28 (32.9%) 39 (15.0%) 68 (19.4%) 84 (19.5%)

Abbreviations: EAC, esophageal adenocarcinoma; EC, esophageal cancer; ESCC, esophageal
squamous cell carcinoma.
aNote that for six patients the exact tumor type was not mentioned in the pathology report,
whereas for one ESCC patient the gender is unknown.
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consistent regarding the anatomical site of esophagus.22,23 However, a
major limitation of these studies is the lack of stratified analyses
according to histology, as the GWAS solely included SCC type
esophageal tumors. At present, one case–control study investigated
the association between ADH and EAC.13 However, their Western
study population was small (n¼ 114), patients with gastric cardia
carcinomas were also included and only associations with ADH1C
were examined. So a large case–control study emphasizing EAC risk
was still lacking.
We found the ADH1B*3 allele to be absent in our Caucasian

population, which is in accordance to the literature, as it is reported
to be an African-specific allele.24 The distribution of the ADH1B*1*2
genotype is in agreement with the frequency reported in Europeans.25

Although we found no significant association between the ADH1B
genotypes and EC etiology in our European population, the
ADH1B*2 allele was found to be protective for ESCC in most Asian
studies, except in those of Yang et al.26 and Ding et al.27 This
association is most likely due to alcohol avoidance,28–30 as an

increased flushing response has been associated with the ADH1B*2
allele.31 This flushing response is due to the combination of ADH1B*2
and ALDH2*2 alleles. The latter allele is predominant in Asians32 and
correlates with increased acetaldehyde blood levels after alcohol
consumption.33 The ALDH2*2 allele is not present in our
Caucasian study population, we analyzed 781 Dutch Caucasians,
both patients and controls, and this may also explain the absence of
an ADH1B*2 association with EC in our study. In Asian populations,
the ADH1B gene is known to act synergistically with ALDH2.34

Furthermore, nearly all studies described a significantly increased
ESCC risk of heterozygous ALDH2 genotypes. The absence of a role
for ALDH2 in EC etiology in our Dutch population may also be
explained by the extremely high prevalence of the ADH1B*1 allele,
associated with a low conversion rate of ethanol to acetaldehyde.25

Furthermore, the combined variant genotypes of the ADH1B and
ADH1C, when set off against the wild-type genotypes, had no
synergistic effects in increasing EAC risk. Terry et al.13 reported that
the ADH1C*1*2 and ADH1C*2*2 genotypes had a tendency to

Table 3 Genotype distribution in alcohol-metabolizing enzymes and corresponding odds ratios and confidence intervals for patients with ESCC

or EAC, compared with controls

ESCC EAC Controls

Gene class Genotypes n¼85 (%) OR (95% CI) n¼260 (%) OR (95% CI) n¼430 (%)

ADH1B *1/*1 83 (97.6%) Ref 242 (93.1%) Ref 406 (94.4%)

*1/*2 2 (2.4%) 0.43 (0.10–1.84) 18 (6.9%) 1.31 (0.69–2.48) 23 (5.3%)

*2/*2 0 — 0 — 0

ADH1C Arg272Arg 32 (37.6%) Ref 99 (38.1%) Ref 160 (37.2%)

Arg272Gln 36 (42.4%) 0.91 (0.54–1.54) 112 (43.1%) 0.92 (0.65–1.29) 197 (45.8%)

Gln272Gln 17 (20.0%) 1.18 (0.62–2.26) 49 (18.8%) 1.10 (0.71–1.71) 72 (16.7%)

ADH1C Ile350Ile 31 (36.5%) Ref 98 (37.7%) Ref 161 (37.4%)

Ile350Val 37 (43.5%) 0.98 (0.58–1.65) 114 (43.8%) 0.96 (0.68–1.34) 196 (45.6%)

Val350Val 17 (20.0%) 1.23 (0.64–2.36) 48 (18.5%) 1.10 (0.70–1.71) 72 (16.7%)

ADH7 Gly92Gly 71 (83.5%) Ref 221 (85.0%) Ref 342 (79.5%)

Gly92Ala 14 (16.5%) 0.85 (0.46–1.59) 37 (14.2%) 0.73 (0.47–1.11) 79 (18.4%)

Ala92Ala 0 — 2 (0.8%) 0.39 (0.08–1.84) 8 (1.9%)

rs4767364 G/G 39 (45.9%) Ref 138 (53.1%) Ref 207 ( 48.1%)

(near ALDH) G/A 38 (44.7%) 1.06 (0.65–1.72) 102 (39.2%) 0.80 (0.58–1.11) 191 (44.4%)

A/A 8 (9.4%) 1.37 (0.59–3.20) 20 (7.7%) 0.97 (0.53–1.77) 31 (7.2%)

CYP2E1 c1/c1 79 (92.9%) Ref 241 (92.7%) Ref 398 (92.6%)

c1/c2 5 (5.9%) 0.84 (0.32–2.23) 16 (6.2%) 0.88 (0.47–1.65) 30 (7.0%)

c2/c2 0 — 1 (0.4%) 1.65 (0.10–26.5) 1 (0.2%)

Abbreviations: CI, confidence interval; EAC, esophageal adenocarcinoma; ESCC, esophageal squamous cell carcinoma; Ref, reference; OR, odds ratio.

Table 4 ADH haplotypes with corresponding odds ratios and confidence intervals for patients with ESCC or EAC compared with controls

ADHa ESCC EAC Controls

Haplotypes n¼170 OR (95% CI) n¼520 OR (95% CI) n¼860

0000 84 (49.4%) Ref 262 (50.4%) Ref 425 (49.4%)

0110 69 (40.6%) 1.08 (0.75 –1.33) 200 (38.5%) 1.02 (0.83–1.26) 324 (37.7%)

1000 13 (7.6%) 0.93 (0.50–1.71) 28 (5.4%) 0.65 (0.42–1.02) 71 (8.3%)

0001 2 (1.2%) 0.67 (0.15–2.98) 12 (2.3%) 1.32 (0.61–2.85) 15 (1.7%)

1110 1 (0.6%) 0.32 (0.04–2.40) 7 (1.3%) 0.72 (0.30–1.77) 16 (1.9%)

1001 0 — 5 (1.0%) 1.03 (0.34–3.18) 8 (0.9%)

0010 0 — 3 (0.6%) 4.96 (0.51–47.8) 1 (0.1%)

0100 1 (0.6%) — 1 (0.2%) — 0

1100 0 — 1 (0.2%) — 0

0101 0 — 1 (0.2%) — 0

Abbreviations: CI, confidence interval; EAC, esophageal adenocarcinoma; ESCC, esophageal squamous cell carcinoma; Ref, reference; OR, odds ratio.
aIn the order of ADH7 Ala92Gly, ADH1C Ile350Val, ADH1C Arg272Gln, ADH1B Arg48His.
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decrease ESCC and EAC risk. However, the ADH1B gene was not
analyzed, as ADH1B variants are in linkage disequilibrium with
ADH1C polymorphisms.11 Yokoyama et al.25 reported the ADH1C*2

low activity allele to increase ESCC risk and explained this association
by the high degree of LD with the ADH1B*1 allele, which was
confirmed by Hashibe et al.35 and Li et al.36 Our findings suggest that

Table 5 Results of this study in comparison to earlier case–control studies on polymorphisms in alcohol-metabolizing enzymes and

esophageal cancer risk

Case–control studies (year)

Patients—controls

OR (95% CI)

ADH1B*1/*2

OR (95% CI)

ADH1B*2/*2

OR (95% CI)

ADH1C*1/*2

OR (95% CI)

ADH1C*2/*2

OR (95% CI)

ALDH2*1/*2

OR (95% CI)

ALDH2*2/*2

Dura (present study)

(the Netherlands, 2012

260 EAC—430

1.31 (0.69–2.48) Not present I350V: 0.96 (0.68–1.34)

R272Q: 0.92 (0.65–1.29)

V350V: 1.10 (0.70–1.71)

Q272Q: 1.10 (0.71–1.71)

NA NA

Dura (present study)

(the Netherlands, 2012)

85 ESCC—430

0.43 (0.10–1.84) Not present I350V: 0.98 (0.58–1.65)

R272Q: 0.91 (0.54–1.54)

V350V: 1.23 (0.64–2.36)

Q272Q: 1.18 (0.62–2.26)

NA NA

Bye et al.43

(Black South Africans, 2011)

342 ESCC—461

NA NA NA NA 1.03 (0.77–1.38) 0.84 (0.45–1.55)

Wang et al.44 (China, 2011)

81 ESCC (female)—162

0.58 (0.26–1.29) 0.48 (0.21–1.07) NA NA 3.24 (1.45–5.36) 0.65 (0.22–2.18)

Cui et al.10 a (Japan, 2009)

1067 ESCC—2763

0.29 (0.22–0.37) 0.24 (0.19–0.31) NA NA 3.48 (2.99–4.06) 0.47 (0.28–0.78)

Akbari et al.45 (Iran, 2009)

746 ESCC—1373

0.83 (0.69–1.01) 0.49 (0.30–0.80) NA NA NA NA

Oze et al.46 (Japan, 2009)

265 EC—530

NA NA NA NA 5.55 (3.56–8.65) 0.71 (0.09–5.61)

Ding et al.27 (China, 2009)

221 EC—191

1.86 (0.77–4.47) 2.42 (1.02–5.77) NA NA 1.71 (1.10–2.66) 4.84 (2.25–10.61)

Lee et al.47 (Taiwain, 2008)

406 ESCC—656

0.21 (0.14–0.32) 0.16 (0.11–0.24) NA NA 1.99 (1.50–2.64) 0.63 (0.33–1.20)

Li et al.36

(Mixed South Africans, 2008)

238 ESCC—268

NA NA 1.37 (0.90–2.09) 1.91 (1.23–2.97) 1.24 (0.62–2.46) 2.73 (0.70–10.69)

Guo et al.48 (China, 2008)

80 ESCC—480

0.21 (0.10–0.44) 0.19 (0.09–0.38) NA NA 2.89 (1.11–5.64) NA

Yang et al.49 (China, 2007)

183 ESCC/8 EAC—198

0.70 (0.38–1.31) 0.52 (0.28–0.96) NA NA 1.67 (1.02–2.72) 0.26 (0.06–1.09)

Terry et al.13 b (USA, 2007)

114 EAC—160

NA NA 0.63 (0.37–1.09) 0.52 (0.25–1.05) NA NA

Chen et al.50 (Taiwan, 2006)

330 ESCC—592

0.22 (0.14–0.33) 0.18 (0.12–0.27) NA NA 2.84 (2.11–3.81) 0.78 (0.38–1.62)

Hashibe et al.35

(Eastern Europe, 2006)

176 ESSC—1083

NA NA I350V: 1.61 (1.07-2.43)

R272Q: 1.62 (1.07-2.44)

V350V: 1.74 (1.02–2.98)

Q272Q:2.03 (1.18-3.47)

NA NA

Yokoyama et al.51 (Japan, 2006)

52 ESCC (females)—412

0.64 (0.23–1.79) 0.48 (0.18–1.31) NA NA 1.18 (0.65–2.15) 1.63 (0.52–5.09)

Yang et al.52 (China, 2005)

159 ESCC/6 EAC—495

1.86 (0.72–4.75) 0.89 (0.35–2.28) NA NA 4.29 (2.85–6.46) 0.15 (0.02–1.14)

Wu et al.53 (Taiwan, 2005)

134 ESCC—237

0.22 (0.11–0.44) 0.16 (0.08–0.31) NA NA 3.54 (2.19–5.70) 0.94 (0.25–3.52)

Yokoyama et al.25 (Japan, 2002)

234 ESCC—634

0.20 (0.12–0.34) 0.17 (0.11–0.29) 1.93 (1.23–3.03) 5.90 (0.53–65.4) 3.66 (2.62–5.10) 0.25 (0.06–1.07)

Boonyaphiphat et al.54

(Thailand, 2002)

202 ESCC—261

0.58 (0.39–0.85) 0.50 (0.25–0.99) NA NA 1.34 (0.82–2.17) 0.22 (0.03–1.87)

Matsuo et al.55 (Japan, 2001)

102 EC—241

NA NA NA NA 2.48 (1.52–4.03) 0.19 (0.02–1.47)

Hori et al.56 (Japan, 1997)

94 ESCC—70

0.27 (0.10–0.71) 0.16 (0.06–0.41) NA NA 2.82 (1.40–5.66) 0.87 (0.19–4.06)

Abbreviations: EAC; esophageal adenocarcinoma; EC; esophageal carcinoma; ESCC; esophageal squamous cell carcinoma; NA, not available.
For specification of the ADH1B*1, ADH1B*2, ADH1C*1, ADH1C*2, ALDH2*1 and ALDH2*2 alleles, see Materials and Methods.
ADH2 and ADH3 were interpreted as ADH1B and ADH1C, respectively.
The ORs were generally reported with the high activity genotypes ADH1B*1/*1, ADH1C*1/*1 and ALDH*1/*1 as references, or re-calculated57 in this manner using absolute data in the articles.
aGWAS study design.
bIncludes gastric cardia adenocarcinomas.
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ADH1C and ADH1B are not in LD, and no significant association
between EAC or ESCC risk and ADH1C polymorphisms exists. We
also found no association with EAC or ESSC susceptibility and
CYP2E1 genotypes in Caucasians. A Western study and a large Asian
meta-analysis failed to confirm such an association in Brazilian and
Chinese ESCC patients as well.37,38

All in all it is likely that variant genotypes of the alcohol-
metabolizing enzymes ADH1B, ADH1C, ALDH2 and CYP2E1 have
a role in ESCC in Asians but not in EAC or ESSC in Caucasians.
Explanations may be a different ancestry gene pool, interracial
differences in enzyme activity or the difference in dietary habits.
ADH7 92Ala was found to be a protective allele in upper-

aerodigestive cancer risk23 and also for ESCC risk.22 We now report
the same effect for EAC risk, although our association did not reach
statistical significance, probably due to insufficient patient numbers
(OR 0.73; 95% CI 0.47–1.11). Interestingly, the haplotype with the
variant ADH7 92Ala also showed the same tendency to decrease EAC
risk (OR 0.65; 95% CI 0.42–1.02).
Although altered activity genotypes can act as a proxy for the

relative risk of ingested carcinogens, that is, alcohol, a limitation of
our study is the absence of data on alcohol usage. This is mainly due
to ethical reasons, restricting the collection of data on tobacco and
alcohol use in patients newly diagnosed with a lethal disease.
However, in an earlier study by us on Dutch Caucasian patients with
head and neck cancer, having largely similar risk factors, it was
established that at least 1–4 alcoholic beverages per day were
consumed in 88% of the patients with head and neck cancer and
83% of the controls.39 This indicates that, despite of the missing data,
by far most of our EC patients may have consumed alcohol and only
a few may have not.
Another limitation is the small group of ESCC patients and the

subsequent power of our results on ESCC. This is caused by
stratifying according to histology, but was necessary, as most case–
control studies concerning polymorphisms in alcohol-metabolizing

enzymes originate from Asia and results on adenocarcinoma risk are
scarce.
Although acetaldehyde induces development of adenocarcinomas

in animal models,10 in humans the role of ethanol in the genesis of
EAC is still under debate, as in contrast to earlier reports,40 recent
studies suggest that alcohol consumption does not have a role in EAC
etiology.41,42 This may largely explain why no effects of functional
polymorphisms in alcohol-metabolizing enzymes were found in
modulating EAC risk.
In conclusion, this study suggests that polymorphisms in alcohol-

metabolizing enzymes, having a role in ESCC etiology, are not
associated with EC susceptibility in an European population.
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