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A novel homozygous YARS2 mutation causes severe
myopathy, lactic acidosis, and sideroblastic anemia 2

Junya Nakajima1,2, Tuba F Eminoglu3, Goksel Vatansever4, Mitsuko Nakashima1, Yoshinori Tsurusaki1,
Hirotomo Saitsu1, Hisashi Kawashima2, Naomichi Matsumoto1 and Noriko Miyake1

Mitochondrial diseases are associated with defects of adenosine triphosphate production and energy supply to organs as a result

of dysfunctions of the mitochondrial respiratory chain. Biallelic mutations in the YARS2 gene encoding mitochondrial tyrosyl-

tRNA synthetase cause myopathy, lactic acidosis, and sideroblastic anemia 2 (MLASA2), a type of mitochondrial disease.

Here, we report a consanguineous Turkish family with two siblings showing severe metabolic decompensation including

recurrent hypoglycemia, lactic acidosis, and transfusion-dependent anemia. Using whole-exome sequencing of the proband

and his parents, we identified a novel YARS2 mutation (c.1303A4G, p.Ser435Gly) that was homozygous in the patient and

heterozygous in his parents. This mutation is located at the ribosomal protein S4-like domain of the gene, while other reported

YARS2 mutations are all within the catalytic domain. Interestingly, the proband showed more severe symptoms and an earlier

onset than previously reported patients, suggesting the functional importance of the S4-like domain in tyrosyl-tRNA synthetase.
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Aminoacyl-tRNA synthetases (ARSs) are essential enzymes that attach
specific amino acids to the corresponding tRNAs (aminoacylation).
Among a total of 36 human ARSs , YARS (tyrosyl-tRNA synthetase)
and YARS2 (tyrosyl-tRNA synthetase 2; mitochondrial ARSs are
nominally numbered ‘2’) catalyze the binding of tyrosine to their
cognate cytoplasmic and mitochondrial tRNAs, respectively.1 YARS2
is encoded by the nuclear gene YARS2 (NM_001040436.2) at
12p11.21. ARSs do not complement each other. Mutations in 11 of
17 mitochondrial ARS genes cause a wide variety of diseases
according to PubMed (http://www.ncbi.nlm.nih.gov/pubmed) and
the Human Genome Mutation Database professional (https://
portal.biobase-international.com/hgmd/pro/start.php).2 For example,
biallelic mutations in DARS2, RARS2, FARS2, and AARS2 cause
leukoencephalopathy with brain stem and spinal cord involvement
and lactate elevation (MIM#611105), pontocerebellar hypoplasia, type
6 (MIM#611523), combined oxidative phosphorylation deficiency 14
(MIM#614946) showing fatal epileptic encephalopathy, and combined
oxidative phosphorylation deficiency 8 (MIM#614096) presenting
with lethal infantile cardiomyopathy, respectively.3–6 YARS2 defects
also cause loss of mitochondrial tyrosyl-tRNA (mt-tRNATyr) leading
to the failure of protein production in mitochondria.1,7 YARS2
mutations cause myopathy, lactic acidosis, and sideroblastic anemia

2 (MLASA2, MIM#613561),8–10 which is an autosomal recessive
disorder characterized by relatively mild symptoms of oxidative
phosphorylation defects including progressive muscle weakness and
sideroblastic anemia.8–10 To our knowledge, only four families with
YARS2 mutations have thus far been reported.8–10

The proband (II-4) is the fourth child of healthy Turkish parents
who are first cousins (Figure 1a). He was born by normal delivery at
39 weeks of gestation with a birth weight of 2900 g. The pregnancy
and birth history were uneventful. On the 4th day of life, he
showed poor feeding, tachypnea (80 breaths/min), metabolic acidosis
(pH 7.14, PCO2 26.7mmHg, HCO3

� 5.1mmol l�1, base excess
18.6mmol l�1), and hyperlactacidemia (lactate 3.74mmol l�1) while
carnitine, acylcarnitine, and quantitative amino acid analysis of
plasma and urine were normal. Following a few weeks without any
symptoms after the discharge, he suffered the rapid progression of
normocytic anemia and recurrent metabolic decompensation includ-
ing lactic acidosis, ketosis, and hyperammonemia (Supplementary
Table 1). At 7 weeks of age, red blood cells were transfused due to the
rapidly progressive anemia (Supplementary Table 2). At 2 months of
age, he showed axial hypotonia. His ophthalmologic examination at
this age was normal, although a brain magnetic resonance imaging
scan showed thinning of the corpus callosum with normal progress of
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myelination. An echo cardiogram revealed hypertrophy of the
interventricular septum and left ventricle. The presence of proteinuria
and hypercalciuria may indicate proximal renal tubulopathy
(Supplementary Table 3). The glomerular filtration rate and serum
levels of calcium, phosphate and vitamin D were within normal
range. Although 4OH-phenyllactate and 4OH-phenylpyruvate were
elevated, the transaminase level was within normal range. He was
admitted to the hospital total of five times because of episodic
metabolic decompensation, while there were no obvious triggering
factors like infection.
During the episodic metabolic decompensation, serum lactate,

pyruvate, the lactate/pyruvate ratio, ketone bodies, Krebs cycle
intermediates, ammonia and creatine kinase levels were all increased.
Plasma amino acid analysis revealed remarkably high alanine levels
(Supplementary Table 1). He was treated with supportive therapies
including the intravenous infusion of glucose (10mg kg�1min�1)
and sodium bicarbonate according to the calculation of HCO3�

deficit (0.5� body weight (kg)� 24h-serum HCO3� (mEq/l)), and
responded promptly within one hour after starting the therapy. As a
defect of the mitochondrial respiratory chain (MRC) was suspected,
he was treated with sodium dichloroacetate (50mg kg�1 day�1),
coenzyme Q10, carnitine, biotin, and riboflavin. Unfortunately, he
died at the age of 3 months from a cardiopulmonary arrest that
occurred during a metabolic decompensation. The other affected sib
(II-2) died at the age of 2 days following a similar clinical course to
the proband. Unfortunately, detailed clinical information about this
patient was unavailable.
To identify the genetic cause of their condition, we performed

whole-exome sequencing on the proband (II-4) and his parents (I-1
and I-2) as described in Supplementary Methods. This study was
approved by the institutional review board of Yokohama City
University School of Medicine. As two of the four children from

healthy parents were affected, we hypothesized that the disorder was
an autosomal recessive disease and focused on homozygous variants
of the WES data. After excluding synonymous variants and variants
registered in dbSNP137, ESP6500, and our in-house database (exome
data of 408 individuals), five homozygous variants remained
(Supplementary Tables 4, 5). As four variants predicted as ‘benign’
by PolyPhen-211 and/or ‘polymorphism’ by MutationTaster12 were
excluded, only one homozygous missense mutation, c.1303A4G,
p.Ser435Gly, in exon 5 of the YARS2 gene was highlighted
(Supplementary Table 5), which is known to cause MLASA2.
Sanger sequencing revealed that only proband had homozygous
YARS2 mutation while the parents and unaffected sibs had
a heterozygous one (Figures 1a and b). HomozygosityMapper13

(http://www.homozygositymapper.org/) confirmed that this
mutation was located within a 3.5Mb homozygous stretch.
Interestingly, two affected patients in this study showed more

severe clinical phenotypes than previously reported patients with
MLASA2,8–10 including recurrent metabolic decompensation,
proximal renal tubulopathy, and brain abnormalities which are
rarely seen in MLASA2 patients8,9,14 (Table 1, Supplementary
Table 6). Early onset severe progressive anemia necessitating a blood
transfusion was common to both our patient and the previously
reported MLASA2 patients; this is most likely a result of the severe
metabolic impairment of erythropoiesis. Unfortunately, we were
unable to perform a bone marrow aspirate and a peripheral blood
smear test to determine whether our patients had sideroblastic anemia
because of their rapid deterioration.
Human YARS2 has a catalytic domain and an anticodon-binding

region (Figure 1c). This anticodon-binding region consists of an a-
helical anticodon-binding domain and a ribosomal protein S4-like
domain (S4-like domain).15 The S4-like domain is essential to
recognize tRNA, and is evolutionarily well conserved from

Figure 1 Genetic analysis of the YARS mutation in this pedigree. (a) Pedigree tree of the affected family and mutation segregation. (b) Electropherograms

of the YARS2 mutation (c.1303A4G). The mutated base is marked by a square. Evolutionary conservation is shown at the bottom. MT, mutant allele;

WT, wild type allele (c) Schema of YARS2 protein with mutational localization. The patient’s mutation is colored in red below the diagram of the protein,

while previously reported mutations (p.Gly46Asp and p.Phe52Leu) are in black. MTS, mitochondrial target sequence; N-core and C-core, N and C part

of the catalytic domain, respectively; CP1, connective peptide; a-ACB, a-helical anticodon-binding domain; S4-like, ribosomal protein S4-like protein;

a.a., amino acid.
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eubacteria to humans.16,17 The mutation in our patient was located
in the S4-like domain whereas all other previously reported
YARS2 mutations were in the catalytic domain (Figure 1c).8–10

The difference of mutation location may explain the clinical
differences among the patients. Furthermore, the mutated amino
acid serine 435 is highly conserved from frog to human (Figure 1b).
The change from a hydrophilic serine to a hydrophobic glycine
residue might alter the protein static structure and impair the
physiological function of YARS2.18 Thus, an abnormal S4-like
domain would impair the tyrosylation of mitochondrial tRNA
resulted in MRC dysfunction.
In this study, WES technique appears to be the powerful method,

especially for suspected mitochondrial diseases showing various
clinical phenotypes. This is because the involvement of many mutant
genes in MRC disorders hampers regular Sanger sequencing of
candidate genes,19,20 and biopsies and enzymological analysis of
affected organs may be difficult because of the severity and rapid
progression of the disease.
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