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DBGSA: a novel method of distance-based gene set
analysis

Jin Li1,2,5, Limei Wang3,5, Liangde Xu1,5, Ruijie Zhang1, Meilin Huang1, Ke Wang1, Jiankai Xu1,
Hongchao Lv1, Zhenwei Shang1, Mingming Zhang1, Yongshuai Jiang1, Maozu Guo2,4 and Xia Li1

When compared with single gene functional analysis, gene set analysis (GSA) can extract more information from gene

expression profiles. Currently, several gene set methods have been proposed, but most of the methods cannot detect gene sets

with a large number of minor-effect genes. Here, we propose a novel distance-based gene set analysis method. The distance

between two groups of genes with different phenotypes based on gene expression should be larger if a certain gene set is

significantly associated with the given phenotype. We calculated the distance between two groups with different phenotypes,

estimated the significant P-values using two permutation methods and performed multiple hypothesis testing adjustments.

This method was performed on one simulated data set and three real data sets. After a comparison and literature verification,

we determined that the gene resampling-based permutation method is more suitable for GSA, and the centroid statistical and

average linkage statistical distance methods are efficient, especially in detecting gene sets containing more minor-effect genes.

We believe that this distance-based method will assist us in finding functional gene sets that are significantly related to a

complex trait. Additionally, we have prepared a simple and publically available Perl and R package (http://bioinfo.hrbmu.edu.cn/

dbgsa or http://cran.r-project.org/web/packages/DBGSA/).
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INTRODUCTION

With the development of biochip technology and microarrays that
contain tens of thousands of genes, we can determine functional
gene sets that are related to a phenotype using a gene function
enrichment analysis method. There are two primary types of gene
function enrichment analysis methods, individual gene analysis
(IGA) and gene set analysis (GSA).1–3 IGA identifies differentially
expressed genes through a variety of methods and tests the
difference of the proportion of differentially expressed genes
between all genes and a given gene set.4,5 GSA directly calculates
gene subset scores using various statistical methods and calculates
the significance level.6 The IGA method requires an initial
calculation of differentially expressed genes that is influenced by
the statistical methods and their thresholds. Since the emergence
of gene set enrichment analysis (GSEA), an increasing number of
GSA approaches based on various statistical methods have
been rapidly developed, such as GSEA,7,8 globaltest,9 SAM-GS,10

GlobalANCOVA,11 ADGO12,13 and Bayesian network-based
pathway analysis.14

Tian et al.15 classified two types of null hypotheses that test whether
a gene set displays a coordinated association with a phenotype of
interest. The first type hypothesizes that the genes in a gene set have
the same pattern of associations with the given phenotype when
compared with the remaining genes (i.e., Q1). The second type
hypothesizes that the gene set does not contain any genes that are
associated with the given phenotype (i.e., Q2). Geoman and
Buhlmann16 termed competitive and self-contained methods based
on Q1 and Q2, respectively. These methods have been widely used in
previous studies. The genes can be divided into three categories,
disease-related genes, minor-effect genes and disease-unrelated genes.
The disease-related genes are significantly differentially expressed. The
minor-effect genes individually exhibit marginal differential
expression but may have a significant combined effect on the
phenotypic outcome, such as disease.17 The disease-unrelated genes
exhibit no effect on the given phenotype. Usually, there are numerous
genes that have a relatively minor-effect in complex diseases.18,19

Therefore, it is critical to consider the minor-effect genes. Most of
the gene function enrichment analysis methods can detect gene sets
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containing many disease-related genes well. However, they cannot
detect the gene sets containing many minor-effect genes.

Here, we propose a novel distance-based gene set enrichment
analysis method. We use the original gene expression data, not a
summary statistic, in the analysis; therefore, this method utilizes each
level of the gene expression data and is better able to detect functional
sets, especially for gene sets containing more minor-effect genes. By
focusing on gene expression, the distance between two groups with
different phenotypes should be larger if a certain gene functional set is
significantly associated with a particular phenotype. We use four point-
to-point distance measures and two set-to-set distance measures to
calculate the distance between two groups with different phenotypes,
the case and control groups, by focusing on the gene expression profile
of a given gene set. Next, we estimate a significant P-value for this gene
set using permutation methods based on the two hypotheses above (Q1
and Q2) and perform multiple hypothesis testing adjustments using the
false-discovery rate (FDR). We perform these methods on one
simulated data set and three gene expression data sets and compare
them with other methods.

In a parallel side study, we first transformed gene expression data to
pathway activities using pathway-based microarray analysis methods,
including the condition-responsive genes based (CORG-based),20

negatively correlated feature sets with ideal markers (NCFS-i) and
negatively correlated feature sets using the CORG-based method
(NCFS-c) methods,21,22 and then analyzed them with methods such
as GSA or disease classification. In this manuscript, we present an
improvement of these three methods for the detection of disease-
related pathways.

MATERIALS AND METHODS

Data

Gene expression profiles. To analyze whether this method is feasible and

effective, we used one simulated data set and three real data sets.

Simulated data set. We simulated a data set of 50 cases and 50 controls that

included 10 000 genes for 100 samples. There was no exact proportion of the

disease-related genes, the minor-effect genes and the disease-unrelated genes,

but we thought there should be more minor-effect genes than significant

disease-related genes. Therefore, we used proportions of 10% (1000 significant

disease-related genes), 30% (3000 minor-effect genes) and 60% (6000 disease-

unrelated genes) in this simulation. Reuben Thomas et al.23 reported that

a priori assumption of any of the considered univariate theoretical probability

distributions across all probe sets was not valid. There was no assumption of

probability distribution in our proposed methods. However, we needed to

build a data set that included significantly differentially expressed genes and

non-differentially expressed genes. The common and effective way to do this was

to assume that the gene expression followed a normal distribution because we

could easily control whether the genes were differentially expressed. The normal

distribution was only used for the simulation purpose and we did not need any

assumption of probability distribution in the proposed methods. We generated

the disease-related genes as follows: 500 were downregulated genes that followed

the normal distributions N (0,1) in the case group and N (1,1) in the control

group. A total of 500 of the genes were upregulated and followed normal

distributions N (1,1) in the case group and N (0,1) in the control group. All of

the genes were significantly differentially expressed using a t-test with a

significance level of 0.001. We generated the minor-effect genes as follows:

1500 of the genes followed normal distributions N (0,1) in the case group and N

(0.5,1) in the control group. Fifteen hundred of the genes followed normal

distributions N (0.5,1) in the case group and N (0,1) in the control group. About

half of the genes were significantly differentially expressed using a t-test with a

significance level of 0.001. So we considered them minor-effect genes. We

generated the disease-unrelated genes as follows: 6000 genes followed a normal

distribution N (0,1) in the case and control groups. None of the genes was

significantly differentially expressed using a t-test with a significance level of 0.001.

Real data sets. Alzheimer’s disease (AD) is a common neurodegenerative

disease that severely affects the quality of life of the elderly. We selected an AD

gene expression data set from Gene Expression Omnibus (GEO, GSE15222).24

This data set included 24 350 probes, 363 samples, 187 controls and 176 cases.

First, we performed pretreatments, including using the mean value of gene

expression when multiple probes corresponded to one gene and removing

missing data lines and outliers. We suggest performing these pretreatments

before the GSA. Finally, we obtained expression values for 17 007 genes.

Non-small cell lung cancer (NSCLC) is a broad term for lung cancers that

are not of the small-cell type. The three most common subtypes of NSCLC

include adenocarcinoma (AC), squamous cell carcinoma (SCC) and large-cell

carcinoma (LCC). We obtained two gene expression profiles of high-grade

human NSCLC specimens. One data set, NSCLC I, included 58 samples (40

AC samples and 18 SCC samples, GSE10245).25 After pretreating the data, we

obtained expression values for 19 801 genes. The other data set, NSCLC II,

included 28 samples (9 AC samples and 19 SCC samples, GSE27388).26 After

pretreating the data, we obtained expression values for 18 302 genes. We

performed a Gene ontology (GO) functional set analysis for these data.

Gene sets. For the simulated data set, we constructed 1600 gene sets with

different set sizes and proportions of different genes. We constructed 200 gene

Table 1 The presumed 200 gene sets with each set size

Gene sets description

Number of

gene sets

Proportion of disease-

related genes (%)

Proportion of minor-

effect genes (%)

Proportion of disease-

unrelated genes (%)

50 Presumed disease-related gene sets containing

more disease-related genes

10 70 30a

10 60 40a

10 50 50a

10 40 60a

10 30 70a

50 Presumed disease-related gene sets containing

more minor-effect genes

10 10 90 0

10 10 80 10

10 10 70 20

10 0 100 0

10 0 90 10

100 presumed disease-unrelated gene sets 40 10 30 60

30 0 30 70

30 0 40 60

aThis indicates the number is the sum of the proportions of minor-effect genes and disease-unrelated genes.
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sets, 50 presumed disease-related gene sets containing more disease-related

genes, 50 presumed disease-related gene sets containing more minor-effect and

100 presumed disease-unrelated gene sets, for set sizes of 10, 20, 30, 40, 50,

100, 150 and 200 genes. The detailed instructions are shown in Table 1.

For the real data sets, the gene sets were derived from the Molecular

Signatures Database (MSigDB).8 There are 6769 gene sets in MSigDB version

3.0 that are divided into five major collections. GO 27 is the most popular and

widely used biomedical ontology. It is the de facto standard for effective

functional annotation and enrichment analysis of high-throughput gene

expression data sets. We used the GO gene sets, which are part of MSigDB

v3.0 in this study. Because gene sets with too many or too few genes are

uninformative, only 1401 GO gene sets with 10 to 500 genes were used.

Methods

Distance-based methods. First, we calculate the distance between the case and

control groups by focusing on the gene expression for a given gene set. Next,

we estimate the significant P-values for this gene set. And then we perform

multiple hypothesis testing adjustments by FDR. The flow chart for this

method is shown in Figure 1. The three key steps of the distance-based gene set

analysis (DBGSA) method are described below.

Step 1: Calculate the distance between two groups with different phenotypes in

a given gene set

First, we combine the gene expression profile and a given gene set from

MSigDB to obtain a gene expression subset. Suppose that there are t

individuals in the gene expression profile, which include t1 individuals from

the case group and t2 individuals from the control group, and there are n genes

in a gene set, which includes m genes in the gene expression profile. Here, we

consider one person’s gene expression values as a point in m dimensional

space. Therefore, we can obtain t1 and t2 points in the case and control groups,

respectively. The distance measures between the points and between the sets

are defined below. We denote dij0 to be the distance between objects i and j and

xik to be the kth gene expression value of person i.

The definitions of the distance between points are as follows.

Euclidean distance (-euc)

dijðeucÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
k¼ 1

ðxik � xjkÞ2

s

Statistical distance (-stat)

dijðstatÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
k¼ 1

ðxik � xjkÞ2

skk

vuut
where skk is the sample variance of variable xik. The statistical distance is

considered a weighted Euclidean distance using k1 ¼ 1
s11
; k2 ¼ 1

s22
; . . . km ¼ 1

smm
as

the weight.

Manhattan distance (-man)

dijðmanÞ¼
Xm
k¼ 1

jxik � xjkj

Chebyshev distance (-max) dijðmaxÞ¼ max
1�k�m

jxik � xjk j

The definition of the distance between the case and control sets is as follows.

Average linkage method (avelink-)

The average linkage method specifies that the distance between two sets is

computed as the average distance between the objects from a set (case set Gcase)

and the objects from another set (control set Gcontrol). The averaging is

performed over all pairs (i, j) of objects, where i is an object from case set Gcase

and j is an object from control set Gcontrol. This can be mathematically

described as

DðAvelinkÞ¼ 1

t1t2

X
i2Gcase; j2Gcontrol

dij

where t1 and t2 are the sample numbers of set Gcase and Gcontrol and dij is the

distance between i from Gcase and j from Gcontrol.

Centroid method (cent-)

The centroid method, which specifies the distance between two sets, is

computed as the distance between the centroids of two sets. Mathematically,

this method can be described as

DðcentÞ¼ dxk xL , where xk and xL are the centroid of sets Gcase and Gcontrol.

Each time, we select a definition of the distance measures between the

points and between the sets. Therefore, we obtain eight different combinations

of distance measures. We use the abbreviation of each combination of distance

measures in the following analyses, such as avelink-euc for the average linkage

Euclidean distance method. We denote the distance between the case and

control sets as D0.

Step 2: Estimate the significant level of the gene sets

We use permutation to estimate the significance level of the gene sets and

perform two types of permutations according to Q1 and Q2.

Gene resampling-based permutation

There are two main methods in resampling theory, using subsets of available

data (e.g., jackknifing) and drawing randomly with replacement from a set of

data points (e.g., bootstrapping).28–30 Because the presence of two or more of

the same genes in one gene set is unlikely, we use the resampling method

without replacement.

We randomly resample mi genes from the gene expression profile and

obtain a subset of gene expression profiles with s individuals and mi genes.

Next, we calculate the distances between the two groups with different

phenotypes according to the method described in step 1. This procedure is

repeated nper times to obtain nper distances randomly, which are denoted as

D10 ;D20 ; . . . ;Dj0 ; . . . ;Dn0per .

Figure 1 Flow chart of distance-based gene set analysis (DBGSA).

DBGSA: a distance-based gene set analysis method
J Li et al

644

Journal of Human Genetics



To screen out functional sets that are significantly associated with disease,

we calculate P-values by a rank-based method as follows.

p0 ¼ 1�

Pnper

j¼ 1

d0ðjÞ

nper
where d0ðjÞ¼ 0 if D0 � Dj 0

1 if D0 4Dj 0

�

Label swapping-based permutation

For a specific gene expression profile set, we swap the label of each

individual by controlling the same total number of cases and controls so

as to obtain a new gene expression profile set. Next, we calculate the

distance between the two groups with different phenotypes according to

the method that was described in step 1. Similar to gene resampling, we repeat

this procedure nper times to randomly obtain nper distances, and we

denote them as D1;D2; . . . ;Dj; . . . ;Dnper . We also calculate the P-value as

follows:

p¼ 1�

Pnper

j¼ 1

dðjÞ

nper
where dðjÞ¼ 0 if D0pDj

1 if D0 4Dj

�

Step 3: Adjusted for multiple hypothesis testing

The estimated significance level should be adjusted to account for multiple

hypothesis testing when thousands of gene sets are tested. The calculation of

FDR has been shown to be an effective method. We use fdrtool31 to estimate

the tail area-based FDR (Fdr) and density-based local FDR in this study.

Using these three steps, we can determine whether a gene set is significantly

related to a trait.

Gene set enrichment analysis. GSEA is a widely used gene set analysis method.

We use a gene resampling-based GSEA method for comparison in this study.

CORG-based method, NCFS-i method and NCFS-c method. CORG-based,

NCFS-i and NCFS-c methods are efficient pathway-based microarray analysis

methods.20–22 We present an improvement based on these three methods

for the detection of disease-related pathways. First, we use these original

methods to select a subset for each gene set. Next, we use five-fold cross

validation to calculate the accuracy of the subset in disease classification.

Finally, we classify the top gene sets with high accuracy as the disease-related

gene sets. Instead of P-values, we choose the significance threshold to be a

classification of accuracy.

Precision, recall and the F-measure (F1). We use precision, recall and the

F-measure (F1) to evaluate different methods for detecting disease-related gene

sets. These terms are defined as follows:

Precision¼ TP

TPþ FP

Recall¼ TP

TPþ FN

F1 ¼
2�recall�precision

recallþ precision

The terms TP, TN, FP and FN represent true positives, true negatives, false

positives and false negatives, respectively.

Overlap coefficient. While measuring the similarity of two sets with large

differences in set sizes, we should pay more attention to the smaller set. The

overlap coefficient32,33 is a proper similarity measure in this situation that

computes the overlap between two sets and is defined as follows:

overlapðX;YÞ¼ X\Yj j
minð Xj j; Yj jÞ

where X and Y are two sets and |X| indicates the set size of X.

RESULTS AND DISCUSSION

In this section, the proposed method was compared with other
methods. First, we evaluated the label swapping-based permutation
method and found that it was improper. Next, we evaluated the gene
resampling-based permutation method in the simulated data set and
found that the avelink-stat and cent-stat methods were appropriate
for GSA. Additionally, we compared these methods with GSEA, the
CORG-based method, the NCFS-i method and the NCFS-c method
using various evaluation measures in the simulated data set and the
real data sets. The details are shown in Figure 2.

Results from the label swapping-based permutation
For the AD data, we found that most of the functional sets were
significantly associated with AD by our label swapping-based permu-
tation method; the results are shown in Table 2.

Precision

Recall

Correlation

Comparison of
significant results

Repeatability

Correlation coefficient

Overlap coefficient

Verification
Literature verification for AD

GOstat verification for NSCLC I

Simulated
data

Real data

Too many False
Positives

Avelink-stat

Cent-stat

GSEA

Corg-based

NCFS-i

NCFS-c

Avelink-euc

Avelink-max

Avelink-man

Avelink-stat

Cent-euc

Cent-max

Cent-man

Cent-stat

Label swapping
based method

Gene resampling
based method F1 score

Dropped

Figure 2 Flow chart of the comparison and evaluation.
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To understand these results, we performed a simulation experi-
ment. We selected different numbers of disease-unrelated genes and
disease-related genes from the simulated data set to form gene sets
(gene set sizes ranging from 10 to 200 genes in 5 gradients). And then
we calculated P-values using the avelink-euc method by performing
1000 permutations. We repeated this procedure 10 times for each case
and observed the number of significant results. These results are
shown in Table 3.

If there are more disease-related genes in a gene set with a given set
size, then there is a higher probability that the gene set detected is
disease-related. In the simulated data, the proportion of the disease-
related genes is 10%. However, the results indicate that although there
were only two disease-related genes in a tested gene set containing 200
genes (the proportion of the disease-related genes is just 1%), we
could still detect the gene set significantly related to disease.

We also evaluated this method in the real AD data set. We
randomly selected several genes (gene set sizes ranging from 10 to
200 genes in 5 gradients) to form a putative functional category,
calculated P-values using the avelink-euc distance method by per-
forming 1000 permutations, and repeated the procedure 100 times for
each case. Next, we calculated the number of significant results using
a significance level of 0.001. These results are shown in Table 4.

Based on the results, even the random selection of genes from the
AD data set would produce significant results with a probability of
485%, indicating that many false disease-related gene sets (false
positives) may be found. The simulated and real data indicated that
this label swapping-based permutation method was too sensitive and
may result in high false-positive rates in the detection of significant
disease-related functional gene sets.

Results from the gene resampling-based permutation
Comparison of the simulated data set. We performed gene resam-
pling-based GSEA, the CORG-based method, the NCFS-i method, the
NCFS-c method and our proposed gene resampling-based permuta-
tion method on the simulated data set. We selected Po0.05 as the
significance threshold for the gene resampling-based GSEA and our
gene resampling-based permutation method. Because there is no
empirical threshold for the CORG-based, NCFS-i and NCFS-c
methods, we selected a 5-fold accuracy 40.9, 40.85 and 40.8 as
thresholds. We counted the number of statistically significant disease-
related gene sets using these methods and calculated the precision,
recall and F1 scores. These results are shown in Table 5.

We aimed to select the most efficient of our eight proposed
methods. From the results, we found that the avelink-stat method
performed best out of the average linkage methods, and the cent-euc,
cent-man and cent-stat methods performed similarly out of the
centroid methods. Because the variance in our simulated data set was

set to 1 for all the genes, we replaced 10 of the minor-effect genes
with larger variances to test the robustness of our methods for
unnormalized data. In these 10 genes, the expression followed a
normal distribution N (10,1000) in the case group and a normal
distribution N (0,1000) in the control group. We constructed 100
disease-unrelated gene sets within 100 genes as follows. In each gene
set, we randomly selected 10 disease-related genes (10%), 1 minor-
effect gene with a variance of 1000 and 29 minor-effect genes with a
variance of 1 (30%), and 60 disease-unrelated genes (60%). We
suggested that these 100 gene sets were unrelated to disease because
the proportions of different gene types were the same as the total data
set. We performed the proposed gene resampling-based methods on
this data set, selected Po0.05 as the significance threshold and
counted the number of significant disease-related gene sets. The
results indicate that only the avelink-stat and cent-stat methods
are robust for the dimensions of the gene expression values; therefore,
we used these two methods in the following analyses. The results are
shown in Table 5.

Next, we compared the avelink-stat, cent-stat, CORG-based,
NCFS-i and NCFS-c methods and gene resampling-based GSEA.
The gene set size influenced the results, such that more significant
results were obtained with larger gene set sizes. In the CORG-based,
NCFS-i and NCFS-c methods, the influences of the threshold in the
gene sets with different gene set sizes differed. When the gene set size
was small, more truly significant disease-related gene sets were
obtained using a lower acc threshold (acc40.8). But when the gene
set size was large, too many false significant disease-related gene sets
were obtained using a lower acc threshold (97, 99 and 99 false

Table 2 Result of the number of significant sets from the label

swapping-based permutation

Method

Number of significant

gene sets, Po0.001 (%) Method

Number of significant

gene sets, Po0.001 (%)

Avelink-euc 1307 (93.3)a Cent-euc 1197 (85.4)a

Avelink-man 1373 (98.0)a Cent-man 1322 (94.4)a

Avelink-max 1241 (88.6)a Cent-max 1053 (75.2)a

Avelink-stat 1400 (99.9)a Cent-stat 1392 (99.4)a

aThe number in the parentheses indicates the proportion of detected significant gene sets in all
the gene sets.

Table 3 The number of significant results by selecting different

numbers of disease-unrelated and -related genes in the simulated

data

Number of disease-unrelated and -related

genes

Number of significant results at

Po0.001

9–1 10

8–2 10

19–1 10

18–2 10

49–1 7

48–2 10

99–1 7

98–2 10

199–1 2

198–2 9

Table 4 The number of significant results by selecting different

numbers of genes from the AD data

Number of genes selected from

the AD data

Number of significant results at

Po0.001

10 85

20 89

50 88

100 99

200 100

Abbreviation: AD, Alzheimer’s disease.
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positives in 100 negative gene sets when the gene set size is 200 using
acc 40.8 as the threshold). In the gene set analysis, we wanted more
accurate results with a lower FDR. Therefore, we selected the higher
acc threshold (acc40.9) for these three methods. For precision, the
avelink-stat and cent-stat methods resulted in higher values than
GSEA when the gene set sizes were small (o50); the avelink-stat and
cent-stat methods resulted in higher values than the CORG-based,
NCFS-i and NCFS-c methods when the gene set sizes were large
(4100) because the CORG-based, NCFS-i and NCFS-c methods
resulted in more false-negative gene sets than the proposed two
methods (e.g., 30, 48 and 50 false negatives in these three methods vs
no false negatives in our two methods when the gene set size is 200).
The overall precisions (1600 gene sets) of these six methods were 1, 1,
0.86, 0.92, 0.85 and 0.86, respectively. For recall, the avelink-stat and
cent-stat methods resulted in higher values than the four other
methods for all gene set sizes. The overall recall values for these six
methods were 0.83, 0.85, 0.39, 0.37, 0.56 and 0.56, respectively,
because our methods resulted in more true-positive gene sets,
especially those gene sets containing more minor-effect genes (e.g.,
42 and 43 true positive gene sets containing more minor-effect genes
in our methods vs 9, 4, 10 and 18 in the other 4 methods when the
gene set size was 50). The overall F1 scores of these six methods were
0.91, 0.92, 0.54, 0.53, 0.68 and 0.68, respectively, which demonstrates
that our methods were best. We also compared these methods in
negative gene sets with unnormalized data. The significant false-
positive gene sets from the 100 negative gene sets were 0, 0, 3, 22, 64
and 67 using these six methods, respectively. Therefore, our two
methods and gene resampling-based GSEA were robust for the
unnormalized data. Taking into consideration the overall precision,
recall and F1 score of the 1600 gene sets, we believe that both the
avelink-stat method (1, 0.83 and 0.91, respectively) and the cent-stat
method (1, 0.85 and 0.92, respectively) are better suited for GSA and
perform better than other methods, especially in detecting disease-
related gene sets containing more minor-effect genes and in their
robustness for handling unnormalized data. We obtained a signifi-
cantly higher overall recall of the 1600 gene sets using the cent-stat
method (0.85) compared with the avelink-stat method (0.83) or other
methods (GSEA, 0.39; the CORG-based, 0.37; NCFS-i, 0.56; and
NCFS-c, 0.5625). Therefore, the cent-stat method was more sensitive
than the avelink-stat and other methods. Thus, we performed these
two methods on three real data sets.

A comparison of the avelink-stat method and the cent-stat method
in real data sets
We calculated the average distance between each point from two gene
sets for the average linkage distance method. Next, we determined the
centroid of each gene set and calculated the distances between the two
centroids for the centroid distance method. To further compare the
detection ability of the two methods, we selected a Fdro0.05 as the
significance threshold of association between the gene sets and traits
in the real data sets. For the AD data, we obtained 10 statistically
significant functional sets using the avelink-stat method and 116 sets
using the cent-stat method; 8 of these sets were included in both of
the methods. For the NSCLC I data, we obtained 91 statistically
significant functional sets using the avelink-stat method and 129 sets
using the cent-stat method; 68 of these sets were included in both of
the methods. For the NSCLC II data, we obtained 321 statistically
significant functional sets using the avelink-stat method and 495 sets
using the cent-stat method; 304 of these sets were included in both of
the methods. In these examples, we obtained more significantT
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functional sets using the cent-stat method than the avelink-stat
method. Detailed results are shown in Table 6.

A comparison of the distance-based method and other methods
in real data sets
In addition, we performed gene resampling-based GSEA, the CORG-
based method, the NCFS-i method and the NCFS-c method using
these three data sets. We calculated the correlation coefficients of the
GSEA, avelink-stat and cent-stat methods. The results are shown in
Table 7. The correlation between the cent-stat method and the
avelink-stat method was greater than the correlations between the
cent-stat method and GSEA and between the avelink-stat method and
GSEA. The detailed computational results for the AD data are shown
in Supplementary Table 1.

We selected a Fdr o0.05 as the significance threshold for the GSEA
analysis. Moreover, we selected an acc40.9 as the significance
threshold for the CORG-based, NCFS-i and NCFS-c methods based
on the analysis of the threshold choice in the simulated data.

For the AD data, we obtained 42 statistically significant functional
gene sets using GSEA. One of these sets was shared between GSEA
and the avelink-stat method, and 23 sets were shared between GSEA
and the cent-stat method; one set was shared by all three methods.
The results are shown in Table 6. More functional sets were obtained
using the cent-stat method than GSEA, which included more detailed
portions of the functional sets. For example, we obtained ‘regulation
of transcription, DNA dependent’ using GSEA. We obtained some
additional depth nodes by the cent-stat method, such as ‘regulation of
transcription factor activity’ and ‘negative regulation of transcription
DNA dependent’. We did not obtain any statistically significant
functional gene sets using the CORG-based, NCFS-i and NCFS-c

methods. Even when we set the acc 40.8 as the significance threshold,
we could not obtain any statistically significant functional gene set
using these methods.

For the NSCLC I data, we obtained 63 statistically significant
functional sets using GSEA. A total of 31 of these sets were shared
between GSEA and the avelink-stat method, 51 were shared between
GSEA and the cent-stat method, and 30 were shared by all three
methods. For the NSCLC II data, we obtained 399 statistically
significant functional sets using GSEA. Overall, 189 of these sets were
shared between GSEA and the avelink-stat method, 278 were shared
between GSEA and the cent-stat method, and 189 were shared by all
three methods. These results are shown in Table 6 and show that more
significant disease-related gene sets are obtained using the cent-stat
method than gene resampling-based GSEA.

For the NSCLC I data, we obtained 194, 181 and 179 statistically
significant functional sets using the CORG-based, NCFS-i and
NCFS-c methods, respectively. A total of 63 of these sets were shared
by the three methods. For the NSCLC II data, we obtained 393, 438
and 425 statistically significant functional sets using the CORG-based,
NCFS-i and NCFS-c methods, respectively. Overall, 268 of these sets
were shared by the three methods. These results are shown in Table 6.
We obtained as many significant gene sets using the CORG-based,
NCFS-i and NCFS-c methods as using the distance-based methods.

Literature verification
We performed a literature verification to determine whether the
significant functional gene sets obtained from different methods were
associated with the trait. For the AD data, we acquired 10 significant
functional sets from the avelink-stat method. We found that 9 out of
the 10 gene sets were already recognized in a large number of AD

Table 6 Number of significant functional gene sets in the real data sets using different methods

Methods AD

Verified by

literature Precision NSCLC I

Verified by

GOstat Precision Recall NSCLC II

Overlap

coefficient (%)

Avelink-stat 10 9 0.90 91 10 0.11 0.43 321 52.8

Cent-stat 116 68 0.59 129 11 0.09 0.48 495 70.5

Avelink-stat and Cent-stat 8 8 1.00 68 10 0.15 0.43 304 85.3

GSEA 42 22 0.52 63 7 0.11 0.30 399 77.8

Avelink-stat and GSEA 1 1 1.00 31 6 0.19 0.26 189 51.6

Cent-stat and GSEA 23 13 0.57 51 7 0.14 0.30 278 60.8

Avelink-stat, Cent-stat and GSEA 1 1 1.00 30 6 0.20 0.26 189 50.0

CORG-based method 0 0 — 194 5 0.03 0.22 393 64.4

NCFS-i 0 0 — 181 8 0.04 0.35 438 63.0

NCFS-c 0 0 — 179 9 0.05 0.39 425 63.1

CORG-based method, NCFS-i and NCFS-c 0 0 — 63 2 0.03 0.09 268 60.3

Avelink-stat and CORG-based method 0 0 — 39 5 0.13 0.22 192 51.3

Avelink-stat and NCFS-i 0 0 — 30 5 0.17 0.22 202 53.3

Avelink-stat and NCFS-c 0 0 — 31 7 0.23 0.30 205 58.1

Avelink-stat, CORG-based method, NCFS-i and NCFS-c 0 0 — 12 2 0.17 0.09 152 58.3

Cent-stat and CORG-based method 0 0 — 45 5 0.11 0.22 253 66.7

Cent-stat and NCFS-i 0 0 — 34 5 0.15 0.22 270 67.6

Cent-stat and NCFS-c 0 0 — 34 7 0.21 0.30 275 73.5

Cent-stat, CORG-based method, NCFS-i and NCFS-c 0 0 — 17 2 0.12 0.09 197 70.6

Avelink-stat, Cent-stat, CORG-based method, NCFS-i and NCFS-c 0 0 — 9 2 0.22 0.09 151 55.6

Abbreviations: AD, Alzheimer’s disease; Avelink, average linkage; Cent, centroid; euc, Euclidean distance; GSEA, gene set enrichment analysis; NSCLC, Non-small cell lung cancer;
stat, statistical distance.
Precision was calculated as the total number of actual disease-related gene sets found by the method (verified by literature or GOstat), divided by total disease-related gene sets
found by the method.
Recall was calculated as the total number of actual disease-related gene sets found by the method (verified by GOstat), divided by total disease-related gene sets found by GOstat.
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literature sources. Additionally, we searched for the top 10 significant
GO terms obtained by GSEA, CORG-based method, NCFS-i and
NCFS-c, respectively.34–62 We confirmed that eight of them from
GSEA, seven of them from CORG-based method, eight of them from
NCFS-i and seven of them from NCFS-c were verified in the

literature. There was a linear relation between the recall and the
total number of actual disease-related gene sets found by the method
in the same data. So the recall of the avelink-stat method was higher
than others. There was only one overlapping GO term between the
avelink-stat method and GSEA, and no overlapping GO term between

Table 7 Correlation of P-values (or acc values) among the methods in the real data sets

GSEA Avelink-stat Cent-stat

(a) Correlation of P-values in the AD data

GSEA 1.0000 0.2729 0.4979

Avelink-stat 0.2612 1.0000 0.6801

Cent-stat 0.4735 0.6532 1.0000

GSEA in I Avelink-stat in I Cent-stat in I GSEAin II Avelink-stat in II Cent-stat in II

(b) Correlation of P-values in the NSCLC data I and NSCLC data II

GSEA in I 1.0000 0.3104 0.3664 0.1326 0.0607 0.0704

Avelink-stat in I 0.2175 1.0000 0.8547 0.4422 0.4421 0.4754

Cent-stat in I 0.2781 0.8297 1.0000 0.3737 0.4513 0.4785

GSEA in II 0.0485 0.3822 0.2772 1.0000 0.4723 0.5726

Avelink-stat in II 0.0239 0.4290 0.4430 0.3140 1.0000 0.9058

Cent-stat in II 0.0298 0.4192 0.4365 0.3701 0.8595 1.0000

CORG in I NCFS-i in I NCFS-c in I CORG in II NCFS-i in II NCFS-c in II

(c) Correlation of acc values in the NSCLC data I and NSCLC data II

CORG in I 1.0000 0.7280 0.6900 0.4015 0.4354 0.4126

NCFS-i in I 0.7378 1.0000 0.8667 0.4027 0.3957 0.3910

NCFS-c in I 0.6954 0.8736 1.0000 0.3638 0.3713 0.3731

CORG in II 0.4316 0.4230 0.3891 1.0000 0.7683 0.7244

NCFS-i in II 0.4483 0.4028 0.3818 0.7813 1.0000 0.8760

NCFS-c in II 0.4258 0.3982 0.3844 0.7374 0.8818 1.0000

Abbreviations: AD, Alzheimer’s disease; Avelink, average linkage; Cent, centroid; GSEA, gene set enrichment analysis; NSCLC, non-small cell lung cancer; stat, statistical distance.
In these tables, Pearson’s correlation coefficients were shown in the lower triangular table, and Spearman correlation coefficients were shown in the upper triangular table.

Table 8 Literature verification of the top 10 significant gene sets that were obtained from different methods in AD

Avelink-stat method GSEA CORG-based method NCFS-i NCFS-c

Mitochondrion34 a Mitochondrion34 a Biosynthetic process35 a Biosynthetic process35 a Biosynthetic process35 a

Energy derivation by oxidation of

organic compounds36,37 a

Aerobic respiration38 a Cytoskeleton39 a Muscle development40 a Muscle development40 a

Endoplasmic reticulum part36,41 a Cellular respiration42 a RNA processing43 a Endoplasmic reticulum44,45 a Endoplasmic reticulum44,45 a

Organelle membrane46 a Mitochondrial inner

membrane47 a

Serine hydrolase activity48 a Membrane lipid metabolic

process49 a

Membrane lipid metabolic

process49 a

Negative regulation of programmed

cell death50 a

Mitochondrial membrane

part51 a

Serine-type endopeptidase

activity52 a

Nervous system development53 a Nervous system development53 a

Membrane organization and

biogenesis54 a

Mitochondrial membrane51 a Macromolecule biosynthetic

process35 a

Phospholipid metabolic

process55 a

UDP glycosyltransferase

activity56 a

Regulation of binding46 a Mitochondrial part57 a Cytoskeleton organization

and biogenesis58 a

Transferase activity transferring

glycosyl groups59 a

Transferase activity transferring

glycosyl groups59 a

Regulation of molecular function60 a Organelle inner membrane61 a RNA binding Cellular biosynthetic process35 a Positive regulation of develop-

mental process

Regulation of DNA binding62 a Mitochondrial envelope Transport vesicle Electron carrier activity Electron carrier activity

DNA catabolic process Proton transporting two sector

ATPase complex

Serine-type peptidase

activity

Protein heterodimerization

activity

Substrate-specific transmembrane

transporter activity

Abbreviations: AD, Alzheimer’s disease; Avelink, average linkage; GSEA, gene set enrichment analysis; stat, statistical distance.
The overlapping gene sets of two methods were shown in bold.
aThese functional sets were verified in the literature.
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the avelink-stat method and CORG-based method, NCFS-i and
NCFS-c. However, there were seven overlapping GO terms between
NCFS-i and NCFS-c. The results are shown in Table 8, the functional
sets verified in the literature are marked with the letter ‘a’, and the
overlapping gene sets are shown in bold.

Moreover, we performed literature verification for the significant
functional gene sets obtained from the cent-stat method for AD. We
verified 68 out of 116 (58.6%) gene sets in the literature. From the 23
sets in common with GSEA, 13 (56.5%) were verified; from the 93
sets that were different from GSEA, 55 (59.1%) were verified. From
GSEA, 22 out of 42 gene sets were verified in the literature. The recall
of the cent-stat method was significantly higher than the avelink-stat
method and GSEA. In other words, the cent-stat method was more
sensitive than the avelink-stat method and GSEA. We obtained a
significantly higher precision value using our proposed methods (0.90
and 0.59) than GSEA (0.52). Particularly, we obtained a precision of 1
using a combination of the avelink-stat method and the cent-stat
method. Additional functional gene sets that were not verified in the
literature may be associated with AD. For example, prior studies
found that ‘actin binding’,63 ‘actin cytoskeleton organization and
biogenesis’,64 ‘actin filament binding’63 and ‘actin filament
organization’65 were related to AD, and we identified two additional
functional gene sets, ‘actin filament based process’ and ‘actin filament
bundle formation’. From the relationships between these sets, we
believed that the two newly discovered functional sets were related to
AD. This example demonstrated the effectiveness of these methods.
The detailed results of this analysis are shown in Supplementary
Table 2.

Using the NSCLC I data, Ruprecht Kuner25 found 23 significant
functional GO terms using GOstat66 at a significance level of
Po0.0001. From these 23 GO terms, 10, 11, 7, 5, 8 and 9 terms
were detected by the avelink-stat method, the cent-stat method,
GSEA, the CORG-based method, the NCFS-i method and the
NCFS-c method, respectively. Our proposed methods yielded more
verified disease-related gene sets than other methods, even if
we obtained more significant gene sets using the CORG-based,
NCFS-i and NCFS-c methods. We obtained a significantly higher
precision value using a combination of the avelink-stat method
and the cent-stat method (0.15) than other methods (o0.11). In
addition, we obtained significantly higher recall values using our
proposed methods (40.43) than other methods (o0.39).
Specifically, the term ‘cell junctions’ that was previously
described25 was detected by both of our methods but was not
found using GSEA, the CORG-based method or the NCFS-i
method. These results are shown in Table 6.

Computational complexity and repeatability
In the gene resampling-based permutation methods, gene resampling
is the most time-consuming step. Suppose that we randomly resample
mi genes from a gene expression profile including m genes, calculate
the distances between the two groups with different phenotypes and
repeat this procedure nper times. The computational complexity of
these steps is approximately O (Npermmi). Even when nper and m are
large, the computational time is still acceptable.

The repeatability of the method is very important when
detecting disease-related gene sets. We used the overlap coefficient
and correlation coefficient between the two NSCLC data sets to
describe the repeatability. These results are shown in Table 6 and
Table 7b and c. We obtained a greater overlap coefficient while
considering a combination of the avelink-stat and cent-stat
methods (85.3%) compared with GSEA (77.8%) and the three

other methods (a maximum of 64.4%). The Pearson’s and Spear-
man correlation coefficients between the two data sets using the
avelink-stat method (0.4290 and 0.4421, respectively) and the cent-
stat method (0.4365 and 0.4785, respectively) were significantly
larger than that with GSEA (0.0485 and 0.1326, respectively) and
the CORG-based, NCFS-i and NCFS-c methods (Pearson’s correla-
tion coefficients of 0.4316, 0.4028 and 0.3844, and Spearman
correlation coefficients of 0.4015, 0.3957 and 0.3731, respectively).
These results confirmed that our proposed methods had better
repeatability than other methods.

CONCLUSION

Compared with the IGA methods, we do not need to set a threshold
for expression difference to classify genes between the case and control
samples. In addition, we use the original gene data and not a
summary statistic during analysis, whereas most GSA methods use
summary statistics, such as the rank statistic used by GSEA. Therefore,
this method fully utilizes each level of the gene expression data and is
better able to detect functional sets, especially for gene sets containing
more minor-effect genes. By analyzing simulated and real data, we
determined that the label swapping-based permutation method is too
sensitive and may result in high false-positives during the detection of
significant disease-related functional gene sets; by evaluating preci-
sion, recall and the F1 scores in the simulated data, we believe that the
gene resampling-based permutation method is more suitable for gene
set analyses. For the gene resampling-based permutation method, we
determine that the statistical distance method is robust for the
dimensions of the gene expression values.

Compared with GSEA and the CORG-based, NCFS-i and
NCFS-c methods in the simulation experiment, we find that both
the cent-stat and avelink-stat methods perform best, especially in
detecting the disease-related gene sets containing more minor-
effect genes.

When using the real data sets, we find that the cent-stat method is
more sensitive than the avelink-stat method and other methods. The
precision obtained from a combination of the avelink-stat and cent-
stat methods is higher than the precision of other methods. Through
validation using duplicate data sets, we determine that the repeat-
ability of a combination of these two methods is better than other
methods. Therefore, we recommend the use of the cent-stat method
for the identification of more functional gene sets and a combination
of these two methods for the more accurate identification of disease-
related functional gene sets.

In this study, we perform distance-based gene set analysis with
strong feasibility and effectiveness using GO as examples. In addition,
we can analyze other functional sets, such as KEGG pathways
and motif gene sets. We have prepared a simple and publically
available Perl and R package for the centroid statistical distance
method and the average linkage statistical distance method
(http://bioinfo.hrbmu.edu.cn/dbgsa or http://cran.r-project.org/web/
packages/DBGSA/).
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