ORIGINAL ARTICLE

Copy number polymorphisms in new HapMap III and Singapore populations

Chee-Seng Ku^{1,2,8}, Shu-Mei Teo^{1,2,3,8}, Nasheen Naidoo^{1,2}, Xueling Sim^{1,2}, Yik-Ying Teo^{1,2,4,5}, Yudi Pawitan⁶, Mark Seielstad⁷, Kee-Seng Chia^{1,2,6} and Agus Salim^{1,2,8}

Copy number variations can be identified using newer genotyping arrays with higher single nucleotide polymorphisms (SNPs) density and copy number probes accompanied by newer algorithms. McCarroll *et al.* (2008) applied these to the HapMap II samples and identified 1316 copy number polymorphisms (CNPs). In our study, we applied the same approach to 859 samples from three Singapore populations and seven HapMap III populations. Approximately 50% of the 1291 autosomal CNPs were found to be polymorphic only in populations of non-African ancestry. Pairwise comparisons among the 10 populations showed substantial differences in the CNPs frequencies. Additionally, 698 CNPs showed significant differences with false discovery rate (FDR) < 0.01 among the 10 populations and these loci overlap with known disease-associated or pharmacogenetic-related genes such as *CFHR3* and *CFHR1* (age related macular degeneration), *GSTT1* (metabolism of various carcinogenic compounds and cancers) and *UGT2B17* (prostate cancer and graft-versus-host disease). The correlations between CNPs and genome-wide association studies–SNPs were investigated and several loci, which were previously unreported, that may potentially be implicated in complex diseases and traits were found; for example, childhood acute lymphoblastic leukaemia, age-related macular degeneration, breast cancer, response to antipsychotic treatment, rheumatoid arthritis and type-1 diabetes. Additionally, we also found 5014 novel copy number loci that have not been reported previously by McCarroll *et al.* (2008) in the 10 populations. *Journal of Human Genetics* (2011) **56**, 552–560; doi:10.1038/jhg.2011.54; published online 16 June 2011

Keywords: Affymetrix SNP Array 6.0; Birdsuite software; copy number polymorphisms; International HapMap III populations; Southeast Asian populations

INTRODUCTION

The term copy number variation (CNV) was first introduced in 2006 and it is generally defined as additions or deletions in the number of copies of a particular segment of DNA (larger than 1 kb in length) when compared with a reference genome sequence.¹ The ubiquitous nature of CNVs in the human genome was underappreciated until 2004,^{2,3} when these reports stimulated a series of efforts to detect and characterise CNVs in different populations.^{4–8} This development has also resulted in several new terminologies such as copy number polymorphisms (CNPs), which have been defined as common CNVs with a population frequency of at least 1%.⁴

CNVs can be detected using microarray-based methods, but these have relatively poor resolution when compared with sequencing-based approaches.^{9,10} The low resolution of microarray-based methods also led to imprecise mapping of the breakpoints. This is important when constructing copy number loci to estimate population frequencies.

Newer genotyping arrays, such as the Illumina Human 1M Beadchip (Illumina, San Diego, CA, USA) and the Affymetrix SNP Arrays 6.0 (Affymetrix, Santa Clara, CA, USA), have higher single nucleotide polymorphisms (SNPs) density and copy number probes, resulting in improved performance of microarray-based methods to detect CNVs. However, even with higher resolution arrays, the challenge of identifying common breakpoints still remains. This is largely due to the early CNV-calling algorithms that identified breakpoints sample-by-sample, resulting in significant variation of breakpoints. The Canary algorithm in the Birdsuite software overcomes this problem by calling CNPs simultaneously across multiple individuals at pre-defined genomic locations.¹¹ McCarroll et al.⁴ used the Canary algorithm to identify 1316 CNPs in the HapMap Phase II populations. These CNPs were well validated and their sizes were in agreement with the results from the fosmid paired-end sequencing experiment.9

E-mail: g0700040@nus.edu.sg or ephaguss@nus.edu.sg

⁸These authors contributed equally to this work.

¹Centre for Molecular Epidemiology, National University of Singapore, Singapore, Singapore; ²Department of Epidemiology and Public Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; ³NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore; ⁴Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore; ⁵Department of Statistics & Applied Probability, National University of Singapore, Singapore,

Correspondence: C-S Ku or Assistant Professor A Salim, Centre for Molecular Epidemiology, Department of Epidemiology and Public Health (MD3), Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117597, Singapore.

Received 26 November 2010; revised 3 May 2011; accepted 6 May 2011; published online 16 June 2011

To provide a more global map of CNPs, our study aims to determine integer copy numbers of the 1316 CNPs set of three Southeast Asian populations in Singapore, namely Chinese (Sing-Chinese), Malay (Sing-Malay) and Asian Indian (Sing-Indian), and the seven populations from the HapMap Phase III.¹² The HapMap III populations studied are people of African ancestry in the southwestern USA (ASW), the Chinese community in Metropolitan Denver, Colorado, USA (CHD), Gujarati Indians in Houston, Texas, USA (GIH), the Luhya in Webuye, Kenya (LWK), people of Mexican ancestry in Los Angeles, California, USA (MEX), the Maasai in Kinvawa, Kenva (MKK) and the Tuscans in Italy (TSI). The characteristics of CNPs in the 10 populations will be described and compared. In addition, the correlation between CNPs and SNPs in the 10 populations will also be characterised and compared. A special emphasis will be given to studying the correlation between SNPs in the genome-wide association studies (GWAS) catalog (GWAS-SNPs) and CNPs in the 10 populations. Additionally, novel copy number loci that have not been reported previously by McCarroll et al.⁴ will also be reported on from the 10 populations.

MATERIALS AND METHODS

DNA samples and genotyping

The detailed information on the sources of DNA samples, demographic data of the samples, sample selection and the origin and migration history of the three Singapore populations (Chinese, Malay and Asian Indian) have been described in our previous publication.^{8,13} This study was approved by the National University of Singapore Institutional Review Board (Reference Code: 07-199E). In total, 292 DNA samples (99 Chinese, 98 Malay and 95 Indian) were genotyped using the Affymetrix Genome-Wide Human SNP Array 6.0. Of the 292 samples, 27 were excluded from subsequent analysis. The final set of 265 samples (93 Chinese, 88 Malays and 84 Indians) was available for analysis using Birdsuite. There were 135 females and 130 males in the final dataset. The detailed information on the quality control and sample filtering have also been described in our previous papers.^{8,13}

HapMap III samples

The CEL-files of the Affymetrix SNP Array 6.0 for the seven populations in HapMap III were downloaded from the ftp site (ftp://ftp.ncbi.nlm.nih.gov/hapmap/raw_data/hapmap3_affy6.0/). All the samples were analysed by Bird-suite, with only unrelated samples included in our study; that is, family-related samples were removed using the 'relationships' file provided by the International HapMap Project. After the sample exclusion step, a total of 594 unrelated samples from the seven HapMap III populations were analysed: ASW (n=52), CHD (n=89), GIH (n=89), LWK (n=90), MEX (n=53), MKK (n=132) and TSI (n=89).

CNP calling using Canary

The Birdsuite software was used to analyse the Affymetrix SNP Array 6.0 dataset, which consisted of two components for detecting copy number changes. The first component, Canary, was used to determine the integer copy number at each of the predefined 1316 CNPs identified by McCarroll et al.4 in the HapMap II samples. These CNPs were found in more than one HapMap II individual and the sizes of these CNPs were also determined. The 1316 CNPs were distributed in all the autosomes and sex chromosomes. However, 25 CNPs located in the sex chromosomes were removed, as CNP calling in sex chromosomes is more problematic and less accurate. Therefore, the results reported in this study comprised of only 1291 CNPs in the 22 autosomes. Confidence statistics was used to identify poor quality calls and only integer copy numbers detected with high confidence (confidence score <0.1) were reported and used for subsequent analyses. We performed the Hardy-Weinberg equilibrium analysis as a quality control measure for biallelic CNPs in all 10 populations. It is recommended that the samples should be analysed on the basis of the genotyping batches using Birdsuite; therefore, the samples for Singapore and HapMap III populations were analysed by batch without separating the samples into each specific population.

FDR correction for population comparisons of the integer copy numbers of the CNPs

Population differences in the integer copy numbers were examined using the Fisher's exact test as implemented by the 'fisher test' command in R. The false discovery rate (FDR) was used in place of the *P*-value to account for the multiple-testing problem. We calculated the FDR using the Benjamini and Hochberg method. We performed two different test procedures: (1) comparing the integer copy numbers among the 10 populations simultaneously and (2) pairwise comparisons of the integer copy numbers among the 10 populations. For each procedure, FDR was computed once to control for all the tests (that is, in the second procedure, we calculated the FDR once by combining the *P*-values from 45×1291 tests).

Correlation analysis

All the correlation analyses of CNPs and nearby SNPs were done separately for each of the 10 populations. For each autosomal CNP (restricted to biallelic CNPs with MAF \ge 5%), SNPs in close proximity with the CNP; that is, within a 200-kb window from the start- and end-position of the CNP were considered. The square of the Pearson correlation coefficient (r^2) for each of the SNPs (excluding the SNPs used for CNP-calling) found within the 200-kb windows of the respective CNP was then calculated.

The r^2 is the square of the Pearson correlation coefficient between the copy number genotypes and the SNP genotypes. The copy number genotypes were obtained using Canary in the Birdsuite algorithm. The SNP genotypes were obtained using Larry Bird in the Birdsuite algorithms. Larry Bird outputs the number of allele A (0, 1, 2) and number of allele B (0, 1, 2) for each SNP. We used the number of allele A for the calculation. Larry Bird generates the number of allele A and number of allele B for each SNP. As each SNP has two alleles in total, knowing the number of allele A will inform the number of allele B; for example, if the number of allele A is 2, then number of allele B should be 0.

The same r^2 calculations used for the autosomal CNPs and the SNPs identified by GWAS were used to explore the potential associations of CNPs with human diseases and traits. The list of GWAS–SNPs was downloaded from the National Human Genome Research Institute's website (http://www.genome.gov/gwastudies/) on 24 May 2010.

Copy number loci calling using Birdseye and validation

The Birdseye component in Birdsuite was used to detect additional copy number loci located outside the 1316 CNPs in the 10 populations. Similarly, only the copy number loci in autosomal chromosomes were detected because of the inaccuracy of Birdseye in detecting copy number loci in the sex chromosomes. Copy number calls with low confidence (confidence score <5) were removed. On the basis of the copy number calls generated by Birdseye, we constructed novel copy number loci using the methods that we developed previously.¹⁴ All the downstream analyses after Canary and Birdseye were performed using the software package R (http://www.r-project.org/). The novel copy number loci identified by Birdseye were compared with data from the Database of Genomic Variants (http://projects.tcag.ca/variation/) as a validation step. We defined a copy number locus overlapped with the Database of Genomic Variants, if the locus overlapped by >50% of its length with one or more entries in the Database of Genomic Variants.

RESULTS

Characteristics of CNPs in the 10 populations

In each of the 10 populations, among the polymorphic CNPs (Table 1), most were biallelic, where the integer copy numbers were either exclusively deletions (copy number=0, 1) or exclusively duplications (copy number=3, 4). Among the biallelic CNPs, the majority did not show significant deviation from Hardy–Weinberg equilibrium with less than 2% failing a Hardy–Weinberg equilibrium test at *P*-value <0.01 in all except three populations—Sing–Chinese (2.2%), ASW (4.2%) and LWK (2.8%).

Table 1 The number of loci (and the percentage) with varying population frequencies for the 1291 autosomal CNPs

CNP	Sing-Chinese	Sing-Malay	Sing-Indian	ASW	СНD	GIH	LWK	MEX	MKK	ISI
Not polymorphic (0%)	675ª (52.29) ^b	663 (51.36)	670 (51.90)	341 (26.41)	688 (53.33)	677 (52.44)	487 (37.72)	681 (52.75)	460 (35.63)	650 (50.35)
Population frequencies $\leqslant 10\%$	335 (25.95)	342 (26.49)	324 (25.10)	592 (45.86)	330 (25.58)	318 (24.63)	458 (35.48)	336 (26.03)	507 (39.27)	355 (27.50)
Population frequencies > 10–50%	155 (12.01)	158 (12.24)	170 (13.17)	242 (18.75)	141 (10.93)	174 (13.48)	229 (17.74)	152 (11.77)	208 (16.11)	157 (12.16)
Population frequencies >50%, <100%	109 (8.44)	113 (8.75)	109 (8.44)	103 (7.98)	109 (8.45)	106 (8.21)	101 (7.82)	105 (8.13)	(7.67) 66	113 (8.75)
Completely polymorphic (100%)	17 (1.32)	15 (1.16)	18 (1.39)	13 (1.01)	22 (1.71)	16 (1.24)	16 (1.24)	17 (1.32)	17 (1.32)	16 (1.24)
Abbreviations: ASW, African ancestry in the south Mexican ancestry in Los Angeles, California, USA; ^a Number of loci. ^D Percentage (number of loci/1291 autosomal CNP	western USA; CHD, Chi MKK, Maasai in Kinya 's).	nese community in M wa, Kenya; Sing, Sing	letropolitan Denver, (gapore; TSI, Tuscans	Colorado, USA; CNPs, in Italy.	copy number polym	orphisms; GIH, Gujar	ati Indians in Housto	n, Texas, USA; LWK,	Luhya in Webuye, K«	:nya; MEX,

In terms of the proportion of non-polymorphic loci and loci with varying population frequencies, the Singapore populations were similar to the HapMap III populations of non-African descent (CHD, GIH, MEX and TSI) (Table 1 and Supplementary Figure 1). More than half of the CNPs were non-polymorphic in the Singapore and HapMap III populations of non-African descent. This was in contrast to the populations of African descent (ASW, LWK and MKK), where only 26.41-37.72% of the CNPs were not polymorphic. They also had higher proportions of CNPs with frequencies ranging from 1 to 10%, ASW (45.86%), LWK (35.48%) and MKK (39.27%), compared with the other populations (ranging from 24.63 to 27.50%). In addition, among all the populations, there were no substantial differences in the proportion of CNPs with a population frequency >10%. The discrepancy between populations of African descent and others is largely due to these populations having a larger number of rarer CNPs with a population frequency <10%. Hence, the differences between populations of African descent and the others were primarily in the proportion of non-polymorphic loci and those with population frequencies <10%. It is also worth noting that the Sing-Indian and Sing-Chinese populations have almost similar distributions of polymorphic loci, when compared with the HapMap III populations with whom they share a similar ancestry (that is, GIH and CHD, respectively) (Table 1 and Supplementary Figure 1).

The proportion of common (MAF≥0.05) biallelic CNPs that were highly correlated with at least one SNP ($r^2 > 0.8$) was approximately 50% for non-African populations, but a lower proportion for African populations; that is, ASW (35.34%), LWK (34.84%) and MKK (37.39%). The majority of the common biallelic CNPs were 'deletions'. There was a substantial difference in the proportion that was highly correlated with at least one SNP for CNPs categorised as 'deletions' and 'duplications'. However, this substantial difference could be biased because of the small number of 'duplications' (Table 2). The strength of correlation or the r^2 value decreased with distance between the CNP and SNP (Supplementary Figure 2).

We further investigated whether CNPs that were not well tagged were located in the genomic regions where SNP markers are sparse. The correlation patterns did not seem to be affected by the number of nearby SNPs and the MAF of CNPs. There was no apparent difference in the number of nearby SNPs and the MAF of CNPs between (a) the CNPs that were in strong correlation ($r^2 > 0.8$) and (b) CNPs that were not in strong correlation with SNPs (Supplementary Figures 3a and b). However, smaller sizes of CNPs were generally in strong correlation with more SNPs than the larger CNPs (Supplementary Figure 3c). These results were consistent across the 10 populations.

Population differences in the integer copy numbers of the CNPs

Out of the 698 CNPs (FDR < 0.01) that differed between the 10 populations, several loci encompassed known disease- or traits-associated or pharmacogenetic-related genes (Supplementary Table 1). These included WWOX, ERBB4 and TP63 (cancers), ADAMTSL3 (height), CFHR3 and CFHR1 (age-related macular degeneration), GSTT1 (metabolism of various carcinogenic compounds and cancers), UGT2B17 (prostate cancer and graft-versus-host disease) and CYP2A6 (metabolism of various drugs). There was a large interpopulation difference in the frequencies of some of the CNPs overlapping these genes. For example, CNP2203, which overlaps with the tumour suppressor gene WWOX, was not polymorphic in CHD, whereas it had a deletion frequency of 2.38% in Sing-Chinese and 7.32% in Sing-Malay (Table 3 and Supplementary Table 2). In contrast, the deletion frequency was 51.81% in Sing-Indian and 48.86% in GIH. Similarly, CNP147, which overlaps with the CFHR3 and CFHR1 genes, had

555

Table 2 The number and proportion (%) of common (MAF \ge 0.05) biallelic (a) CNPs, (b) deletions, (c) duplications that were highly correlated with at least one SNPs ($r^2 > 0.8$)

Population	No. of CNPs (MAF≥5%)	No. of CNPs correlated (r ² >0.8)	Proportion (%)	No. of deletions (MAF≥5%)	<i>No. of</i> <i>deletions correlated</i> (r ² > 0.8)	Proportion (%)	No. of duplications (MAF≥ 5%)	No. of duplications correlated (r ² >0.8)	Proportion (%)
Sing-Chinese	194	104	53.61	174	103	59.20	20	1	5.00
Sing–Malay	190	106	55.79	170	105	61.76	20	1	5.00
Sing–Indian	210	115	54.76	190	112	58.95	20	3	15.00
ASW	266	94	35.34	241	94	39.00	25	0	0.00
CHD	201	112	55.72	181	110	60.77	20	2	10.00
GIH	216	117	54.17	197	117	59.39	19	0	0.00
LWK	263	89	33.84	242	87	35.95	21	2	9.52
MEX	229	105	45.85	204	104	50.98	24	1	4.17
МКК	230	86	37.39	210	86	40.95	20	0	0.00
TSI	205	105	51.22	183	103	56.28	22	2	9.09

Abbreviations: ASW, African ancestry in the southwestern USA; CHD, Chinese community in Metropolitan Denver, Colorado, USA; CNPs, copy number polymorphisms; GIH, Gujarati Indians in Houston, Texas, USA; LWK, Luhya in Webuye, Kenya; MAF, minor allele frequency; MEX, Mexican ancestry in Los Angeles, California, USA; MKK, Maasai in Kinyawa, Kenya; Sing, Singapore; SNPs, single-nucleotide polymorphisms; TSI, Tuscans in Italy.

 r^2 , Square of the Pearson correlation coefficient.

Table 3	CNPs (FD	R<0.01) 1	that overlap	with known	disease-associated	or pharm	acogenetic-re	elated genes
---------	----------	-----------	--------------	------------	--------------------	----------	---------------	--------------

CNP	Gene	Sing-Chinese	Sing–Malay	Sing–Indian	ASW	CHD	GIH	LWK	MEX	МКК	TSI
CNP2203	WWOX	2.38ª	7.32	51.81	66.67	0.00	48.86	40.00	67.31	28.35	68.18
CNP340	ERBB4	0.00	2.33	12.05	7.69	0.00	17.24	0.00	0.00	0.00	4.49
CNP530	TP63	64.84	48.24	27.38	30.77	68.54	31.82	31.82	9.62	32.06	6.90
CNP2118	ADAMTSL3	67.05	46.84	11.54	38.46	51.19	4.49	49.40	24.32	48.80	19.51
CNP147	CFHR3, CFHR1	11.83	12.64	53.57	59.62	15.73	58.43	59.09	18.87	42.42	43.82
CNP2560	GSTT1	96.77	85.06	56.63	72.00	92.13	70.79	75.56	71.70	80.15	67.06
CNP603	UGT2B17	100.00	95.40	82.14	48.08	98.88	86.42	63.33	58.49	67.18	58.43
CNP2415	CYP2A6	18.89	36.25	5.13	6.00	23.86	11.49	8.05	2.04	8.80	4.60

Abbreviations: ASW, African ancestry in the southwestern USA; CHD, Chinese community in Metropolitan Denver, Colorado, USA; CNPs, copy number polymorphisms; FDR, false discovery rate; GIH, Gujarati Indians in Houston, Texas, USA; LWK, Luhya in Webuye, Kenya; MEX, Mexican ancestry in Los Angeles, California, USA; MKK, Maasai in Kinyawa, Kenya; Sing, Singapore; TSI, Tuscans in Italv.

^aPopulation frequency (%)=deletion frequency+duplication frequency.

deletion frequencies in Sing–Chinese (10.75%), Sing–Malay (12.64%) and CHD (15.73%) that was substantially lower than the other populations.

Another CNP of interest was CNP2560, a 46-kb deletion that overlaps with *GSTT1. GSTT1* is an important detoxification enzyme and has a key role in metabolism of carcinogenic compounds. The total deletion frequency of this CNP was high in all the 10 populations ranging from 56.63 to 96.77% (Table 3 and Supplementary Table 2). Sing–Indians had a considerably lower total deletion frequency (56.63%) than Sing–Malays (85.06%) and Sing–Chinese (96.77%). This difference is attributable to two-copy deletion, as the difference in two-copy deletion frequency ranged from 15.66% in Sing–Indian, 32.18% in Sing–Malay and 46.24% in Sing–Chinese. The two Chinese populations had the highest two-copy deletion frequency (CHD, 41.57%). Conversely, both the Indian populations had the lowest two-copy deletion frequency (GIH, 17.98%).

CNP603 is a 125-kb deletion that overlaps with *TMPRSS11E* and *UGT2B17*. The entire *UGT2B17* gene is within the deletion locus, but only one exon from *TMPRSS11E* was deleted. The deletion frequency of CNP603 was very different in Asian and non-Asian populations (Table 3 and Supplementary Table 2). Asian populations (Sing-Chinese, Sing-Malay, Sing-Indian, CHD and GIH) had higher frequencies, which ranged from 82.14 to 100%, when compared with populations of European and African ancestry (48.08–67.18%). The

differences were even more apparent for two-copy deletions with the highest frequencies in CHD (70.79%), Sing–Chinese (65.59%) and Sing–Malay (52.87%), followed by the two Indian populations, GIH (37.04%) and Sing–Indian (30.95%), whereas the European and African populations were in the lower end of the spectrum with frequencies <20%. Generally, this trend was reversed for the frequency of one-copy deletions especially in the Singapore populations (Sing–Chinese 33.33%, Sing–Malay 42.53% and Sing–Indian 51.19%).

The number of CNPs that showed significant differences (FDR < 0.01) in pairwise comparisons of the 10 populations are shown in Table 4. Only 19 CNPs showed significant differences between Sing-Chinese and CHD, and 12 CNPs between Sing-Indian and GIH, suggesting that the CNPs profile in the two Chinese and two Indian populations were very similar (Supplementary Figure 4). Through these pairwise comparisons (Table 4 and Supplementary Figure 4), the 10 populations can be divided into three groups representing Asian, European and African ancestry: (a) Sing-Chinese, Sing-Malay and CHD, (b) Sing-Indian, GIH, MEX and TSI, (c) ASW, LWK and MKK. The CNPs profiles of Sing-Indian and GIH were closer to European populations (MEX and TSI).

Correlation analysis between CNPs and GWAS-SNPs

To investigate the potential role of CNPs in the aetiology of complex diseases or traits, we computed the r^2 between CNPs and the SNPs in

CNPs in HapMap III and Singapore populations C-S Ku et al

556

Table 4 The	e number of CN	IPs that showed	significant of	differences (FDR < 0).01) in	the pairwise	comparisons	among the	10	populations
-------------	----------------	-----------------	----------------	---------------	---------	----------	--------------	-------------	-----------	----	-------------

Population	Sing-Chinese	Sing–Malay	Sing–Indian	ASW	CHD	GIH	LWK	MEX	МКК	TSI
Sing-Chinese	_	6	84	137	19	106	209	81	199	141
Sing–Malay	_	_	46	125	26	72	197	59	180	126
Sing–Indian	_	_	_	93	88	12	186	32	147	54
ASW	_	_	_	_	132	95	13	69	18	90
CHD	_	_	_	_	_	113	196	77	192	130
GIH	_	_	_	_	_	_	170	35	155	52
LWK	_	_	_	_	_	_	_	123	33	176
MEX	_	_	_	_	_	_	_	_	97	27
МКК	_	_	_	_	_	_	_	_	_	146
TSI	—	_	_	—	—	—	—	—	—	—

Abbreviations: ASW, African ancestry in the southwestern USA; CHD, Chinese community in Metropolitan Denver, Colorado, USA; CNPs, copy number polymorphisms; FDR, false discovery rate; GIH, Gujarati Indians in Houston, Texas, USA; LWK, Luhya in Webuye, Kenya; MEX, Mexican ancestry in Los Angeles, California, USA; MKK, Maasai in Kinyawa, Kenya; Sing, Singapore; TSI, Tuscans in Italy.

the National Human Genome Research Institute GWAS catalog. Out of the >2500 GWAS-SNPs that have been found to be associated with various complex diseases and traits, only 17 GWAS-SNPs were found to be in strong correlation with 12 CNPs (Table 5 and Supplementary Tables 3 and 4). In this analysis, we defined a strong correlation as $r^2 > 0.5$, following Conrad *et al.*⁵ These 17 SNPs were reported to be associated with 14 diseases or traits and the notable phenotypes that were observed consistently across the populations were body mass index, Crohn's disease, multiple sclerosis, myocardial infarction and prostate cancer. Several SNPs were in strong correlation with a single CNP; for example, three SNPs (rs13361189, rs1000113, rs11747270) were found to be in strong correlation with CNP874. Of the 33 copy number loci identified by Conrad *et al.*,⁵ which were in strong correlation with GWAS-SNPs, seven were also identified in our study which had >50% overlap in length. The remaining five CNPs in our study were associated with childhood acute lymphoblastic leukaemia, age-related macular degeneration, breast cancer, response to antipsychotic treatment, rheumatoid arthritis and type-1 diabetes (Table 5 and Supplementary Tables 3 and 4).

Several SNPs were consistently found to be in strong correlation with four CNPs (CNP60, CNP874, CNP877 and CNP333) in all populations. The most notable was rs2815752 near the NEGR1 gene (associated with body mass index), which is in perfect correlation $(r^2=1)$ with CNP60 in all the 10 populations (Table 5 and Supplementary Table 3). This locus is a 42-kb deletion located in chromosome 1, which did not overlap with any of the UCSC (University of California, Santa Cruz) genes and it is located only 1.3 kb away from the SNP. The total deletion frequency in the three Singapore populations was high (Figure 1a and Supplementary Table 5). There were, however, differences in the frequency of twocopy deletion. More than 80% of the Sing-Chinese and Sing-Malay samples were deleted in both copies, but only about 41% for the Sing-Indian samples. The pattern is similar between Sing-Chinese and CHD, as well as Sing-Indian and GIH. The frequency of twocopy deletion frequency varied substantially across the 10 populations, from the lowest in the LWK population (26.97%) to the highest in Sing-Chinese (87.10%). A significant difference in the two-copy deletion frequency of CNP60 was seen between Asian populations (>80% for Sing-Chinese, Sing-Malay and CHD) compared with African populations (<35% for ASW, LWK and MKK), whereas the frequency of the Sing-Indian and GIH resembles European populations (MEX and TSI) (Supplementary Table 5).

CNP874 was found to be in strong correlation with three GWAS– SNPs located near the *IRGM* gene, which is associated with Crohn's disease. This strong correlation pattern was consistent across the 10 populations (Table 5). Most of the individuals carried either deletions or had a diploid copy. This locus spans 13 kb in chromosome 5 and did not overlap with any of the UCSC genes. The SNPs were located 4.8 kb (rs13361189), 21.4 kb (rs1000113) and 40.2 kb (rs11747270) away from the deletion. The differences in the frequency of two-copy deletion of CNP874 appeared to divide the 10 populations into two clusters. The populations of European ancestry (MEX and TSI) and Indian populations (Sing–Indian and GIH) had a frequency $\leq 6.41\%$, but the other populations had higher frequencies, which ranged from 10% to 20.69% (Figure 1b and Supplementary Table 5). We also found a substantially lower frequency of two-copy deletion in the Sing–Indian (6.41%) compared with the Sing–Chinese (15.22%) and the Sing–Malay (11.49%) populations.

The CNP877 locus has been implicated in multiple sclerosis. It was however not polymorphic in the Sing–Chinese (Figure 1c and Supplementary Table 5). The total deletion frequencies for Sing–Malay and CHD were 2.30 and 1.14%, respectively. However, we found a much higher total deletion frequency for the other seven populations, which ranged from 17.05 to 42.53%.

Novel copy number loci in the 10 populations

The second component of the Birdsuite software, Birdseye, was used to identify novel copy number loci in the 10 populations. We subsequently found 5947 copy number loci, of which 933 loci were excluded because of overlap with the 1291 autosomal CNPs identified by McCarroll *et al.*⁴ As a result, only 5014 were novel copy number loci; that is, had not been previously found by McCarroll *et al.*⁴ Of these, 1448 loci were detected in two or more individuals in the 10 populations (Table 6). The list of these loci is available in Supplementary Table 6. Using a more stringent definition of 'common' novel copy number loci (population frequency $\ge 1\%$), there were only 170 loci and of these, 42 loci had a population frequency $\ge 5\%$.

Of the 1448 novel copy number loci, 763 (52.69%) were found to overlap with the data from the Database of Genomic Variants. Although for the 170 loci, the overlap was 78.82% (Table 6). Additionally, we also found that 86.54% of the 1448 loci were biallelic; that is, these loci contained either deletions (48.76%) or duplications (37.78%). The remaining loci were found to have both deletions and duplications. The majority of these loci did not overlap with the UCSC genes (62.43%). Of the 170 loci, 37.06% contained both deletions and duplications and the majority of these loci also did not overlap with the UCSC genes (52.35%).

(b) 1 254150 72681572 7268026 Sig-Chimee, Sing-Malay, Sig-Indian, SKW, CHC, GH, LWK, MEX, MK, TSI Ref BM 87 1 25483730 r13301189 102033290 Sig-Chimee, Sing-Malay, Sig-Indian, SW, CHC, GH, LWK, MEX, MK, TSI Ref Com's dasses 87.4 5 10016879 r100113 15023050 Sig-Chimee, Sing-Malay, Sig-Indian, ASW, CHC, GH, LWK, MEX, MK, TSI Ref Com's disses 87.4 19016870 r117270 15023050 Sig-Chimee, Sing-Malay, Sig-Indian, ASW, CHC, GH, LWK, MEX, MK, TSI Ref Com's disses 87.4 19018870 r6171870 15023200 Sig-Chimee, Sing-Malay, Sing-Indian, ASW, CHC, GH, LWK, TSI Ref Com's disses 87.4 19018870 r671887 Sig-Chimee, Sing-Malay, Sing-Indian, ASW, CHC, GH, LWK, TSI Ref Com's disses 87.1 10018870 r671884 Sig-Chimee, Sing-Malay, Sing-Indian, ASW, CHC, GH, LWK, TSI Ref Com's disses 87.1 10018867 r671684 Ref Ref Ref Ref 87.1 10018867 r67164 Ref Ref <th>CNP C</th> <th>Chr.</th> <th>Start/end position</th> <th>GWAS–SNPs</th> <th>GWAS-SNPs position</th> <th>Population</th> <th>Gene</th> <th>Disease/trait</th>	CNP C	Chr.	Start/end position	GWAS–SNPs	GWAS-SNPs position	Population	Gene	Disease/trait
31 20000 000000000000000000000000000000000000	60	1	72 541 504	rs2815752	72585028	Sing-Chinese, Sing-Malay, Sing-Indian, ASW, CHD, GIH, LWK, MEX, MKK, TSI	NEGR1	BMI
0 1 1 1 0	ľ	L	72 583 736					
87 1 10001250 10020250 Sing-Chineae, Sing-Maday, Sing-Indian, ASW, CHD, OHI, MEX, MK, TSI <i>IGGM</i> Control diseae 87 5 100108700 1174720 150203700 150203700 56720 Control diseae 87 5 100108700 15147200 150203700 5672060 Sing-Chineae, Sing-Maday, Sing-Indian, ASW, CHD, OHI, MEX, MK, TSI <i>IGGM</i> Control diseae 87 105415300 15474300 1567-6HI, MEX, MKK, TSI <i>IGGM</i> Control diseae 87 105415300 1597-1031 3797-1031 5797-1031 <i>IGGM</i> Control diseae 87 105415300 567-15847 Sing-Indian, ASW, CHD, OHI, MEX, MKK, TSI <i>IGGM</i> Control diseae 87 10541520 579-5100 579-5100 Sing-Indian, ASW, CHD, OHI, MEX, MKK, TSI <i>Indian</i> 87 10541520 564-1301 Sing-Indian, ASW, CHD, OHI, MEX, MKK, TSI <i>Indian Indian</i> 87 10120120 5754120 579-1101 579-1101 <i>Indian</i> 11 129497668 101377660 199-1	8/4	۵	150 185 693 150 198 797	rs13361189	1 20 203 280	sing-Chinese, Sing-Malay, Sing-Indian, ASW, CHD, GIH, LWK, MEX, MKK, 1SI	IKGM	Crohn's disease
874 5 150.18693 16117.4770 150.239060 Sing-Johnson FGM Comb disease 877 5 156.493070 155.43370 Sing-Johnson Mutple scleresis 877 5 155.403070 155.43370 Sing-Johnson Mutple scleresis 873 15 155.403070 155.43370 Sing-Johnson Mutple scleresis 873 15 155.403070 155.43370 Sing-Johnson Mutple scleresis 873 15 155.403070 156.43370 Sing-Johnson Mutple scleresis 873 16 Sing-Johnson 100 Sing-Johnson Mutple scleresis 873 1 23564120 Sing-Johnson Sing-Johnson Mutple scleresis 874 11 23746771 Mutple scleresis Mutple scleresis Mutple scleresis 874 11 2456710 15311216 Sing-Indian, ASW, CHD, MK, TS1 Mutple scleresis 875 1 2546712 Sing-Indian, ASW, CHD, MK, TS1 Mutple scleresis 875 <td>874</td> <td>Ð</td> <td>150 185 693 150 198 797</td> <td>rs1000113</td> <td>150220269</td> <td>Sing-Chinese, Sing-Malay, Sing-Indian, CHD, MEX, MKK, TSI</td> <td>IRGM</td> <td>Crohn's disease</td>	874	Ð	150 185 693 150 198 797	rs1000113	150220269	Sing-Chinese, Sing-Malay, Sing-Indian, CHD, MEX, MKK, TSI	IRGM	Crohn's disease
871 5 155.40930 547.0470 153.433570 Sing-Indian, ASW, CHD, GHI, UWK, MEX, MKK, TSI SGC0 Multiple scleosis 1333 2 2036.68045 557.2887 203454130 Sing-Unimes, CHD, LWK, MEX, MKK, TSI More 333 1 3791.1481 Sing-Chinese, Sing-Malay, CHD, MEX, MEX, TSI More Multiple scleosis 339 1 3791.1481 Sing-Chinese, Sing-Malay, CHD, MEX, TSI More TABENSP Total concertion (nerty onset) 2 2036.1032 5431121 Sing-Unidan, GHI Sing-Unidan, GHI Total concertion (nerty onset) Total concertion (nerty onset) 147 1 19499768 541024 Sing-Indian, GHI Total concertion (nerty onset) 147 1 19499768 541024 Sing-Indian, ASW, CHN, MEX, TSI Total concertion (nerty onset) 147 1 19499768 Field macutal concertion (nerty onset) Total concertion (nerty onset) 149 1 19499768 Findian, GHI Sing-Indian, GHI Total concertion (nerty onset) 141 1 19499768 <td< td=""><td>874</td><td>Ð</td><td>150 185 693 150 198 797</td><td>rs11747270</td><td>150239060</td><td>Sing-Chinese, Sing-Malay, Sing-Indian, ASW, CHD, GIH, MEX, MKK, TSI</td><td>IRGM</td><td>Crohn's disease</td></td<>	874	Ð	150 185 693 150 198 797	rs11747270	150239060	Sing-Chinese, Sing-Malay, Sing-Indian, ASW, CHD, GIH, MEX, MKK, TSI	IRGM	Crohn's disease
333 2 20360045 6675887 20345130 Sing-Clinese, Clinese, Cl	877	Ð	155 409 350 155 415 307	rs4704970	155433570	Sing-Malay, Sing-Indian, ASW, CHD, GIH, LWK, MEX, MKK, TSI	SGCD	Multiple sclerosis
39 3 37957108 59311171 37971481 Sing-Univees, Sing-Malay, CHD, MEX, TSI 7050FL Prostate cancer 28 1 25534592 sc1003129 25641524 Sing-Indian, GHH 7067 Prostate cancer 1 1 19497668 red red Proprioblastic leukamia (childh 147 1 19497668 red 194946078 Girg-Indian, ASW, GH, MEX, TSI Propried Active hymphoblastic leukamia (childh 147 1 194997688 red 194946078 GH Active hymphoblastic leukamia (childh 147 1 194997688 rsd 194946078 GH Active hymphoblastic leukamia (childh 149 1 19506869 rsd 19494078 GH Active hymphoblastic leukamia (childh 149 9637230 rsd 194946078 GH Active hymphoblastic leukamia (childh 19506869 rsd 195088501 19494678 GH Active hymphoblastic leukamia (childh 1950867 1 196082330 rsd Active hymph	333	2	203 608 045 203 610 291	rs6725887	203454130	Sing-Chinese, CHD, LWK, MEX, MKK, TSI	WDR12	Myocardial infarction (early onset)
28 1 2545715 s10003129 25641524 Sing-Indian, GH <i>IMEM57</i> Total cholesterol 1 25534582 s6428370 19511126 Sing-Indian, GH <i>Integenic</i> Cuel tymphoblastic lukeamia (childh 147 1 195068055 s10737680 19511126 Sing-Indian, ASW, GIH, MEX, TSI <i>Integenic</i> Acute tymphoblastic lukeamia (childh 147 1 195068055 s10737680 19446078 GH Acute tymphoblastic lukeamia (childh 1491 9 195068055 s10816533 98578959 GH Acute tymphoblastic lukeamia (childh 1491 9 98729161 19446678 GH Acute tymphoblastic lukeamia (childh 109 1 1950822330 s10816533 9857895 CHD Acute tymphoblastic lukeamia (childh 109 1 150882318 s1081653 98578129 CHD Separation 109 15083218 18187729 Istal Ratue CHC Separation 100 1 150882318 Istal Ratue Sing-Indian	399	с	37 957 108 37 961 932	rs9311171	37971481	Sing-Chinese, Sing-Malay, CHD, MEX, TSI	CTDSPL	Prostate cancer
147 1 14997658 56428370 195111216 Sing-Indian, ASW, GIH, MEX, TSI Integeric Acute lympholastic leukaemia (childhamia) 147 1 194997658 551 194946078 GIH Age-related macular degeneration 147 1 194997658 510737680 194946078 GIH Age-related macular degeneration 1491 9 9870200 rs10816533 98579950 CHD Age-related macular degeneration 1491 9 9870200 rs1088501 150804578 Sing-Malay Sing-Indian CHP Age-related macular degeneration 1401 1 15082338 96578959 CHD ZNP510 Height 12035 12 118473270 rs1088501 150804578 Sing-Malay Sing-Indian ZNP510 Height 12035 11 15082238 9679379 Sing-Malay Sing-Indian ZNP510 Height Resonse to antipsychotic treatment 12035 11 18473270 rs1088501 13030197 Sing-Malay Sing-Indian ZNP510 Height <td< td=""><td>28</td><td></td><td>25 465 715 25 534 592</td><td>rs10903129</td><td>25641524</td><td>Sing-Indian, GIH</td><td>TMEM57</td><td>Total cholesterol</td></td<>	28		25 465 715 25 534 592	rs10903129	25641524	Sing-Indian, GIH	TMEM57	Total cholesterol
147 1 19497668 rs10737680 194946078 GH Qerelated macular degeneration 195068695 195068695 s1037580 19508695 GH Qerelated macular degeneration 1941 9 98702010 s1081653 98578959 GH Qerelated macular degeneration 1941 9 8729161 150825330 9578959 GH Perilean 104 1 150822330 rs1088501 150804578 Sing-Malay, Sing-Indian Integenic Height 103 1 15082230 rs1088501 150804578 Sing-Malay, Sing-Indian Integenic Reponse to antipsychotic treatment 12035 1 18475144 rs1064768 118302892 Sing-Malay, Sing-Indian CCDC60 Schizophrenia 2103 18475144 rs1064768 118473270 Sing-Malay, Sing-Indian CCDC60 Schizophrenia 2103 18475144 rs1064768 118473270 Sing-Malay, Sing-Indian CCDC60 Schizophrenia 2103 1 2293530 rs313	147		194 997 658 195 068 695	rs6428370	195111216	Sing-Indian, ASW, GIH, MEX, TSI	Intergenic	Acute lymphoblastic leukaemia (childhood)
1491 9 8700200 rs10816533 9578959 CHD ZNP510 Height 109 1 150822330 rs10888501 150804578 Sing-Malay, Sing-Indian Integenic Response to antipsychotic treatment 103 12 15085218 rs11064768 118302892 Sing-Malay, Sing-Indian CCDC60 Schizophrenia 118475144 rs10871290 73030197 Sing-Indian CCDC60 Schizophrenia 2197 16 72953795 rs10871290 73030197 Sing-Indian CCDC60 Schizophrenia 2197 16 72953795 rs10871290 73030197 Sing-Indian CCDC60 Schizophrenia 2197 16 72953795 rs10871290 73030197 Sing-Indian CLDC60 Schizophrenia 2108 18475144 rs10871290 73030197 Sing-Indian CLDC60 Schizophrenia 2108 5 2230533 rs313538 32509195 Sing-Indian CLDC60 Schizophrenia 2108 22539530 </td <td>147</td> <td>Ч</td> <td>194 997 658 195 068 695</td> <td>rs10737680</td> <td>194946078</td> <td>GIH</td> <td>СFH</td> <td>Age-related macular degeneration</td>	147	Ч	194 997 658 195 068 695	rs10737680	194946078	GIH	СFH	Age-related macular degeneration
10 1 150 822 330 rs10888501 150 804578 Sing-Malay, Sing-Indian Integeric Response to antipsychotic treatment 150 853 218 150 853 218 rs11064768 118 302 892 Sing-Malay, Sing-Indian Response to antipsychotic treatment 12035 12 118 473 270 rs11064768 118 302 892 Sing-Chinese CCDC60 Schizophrenia 118 475 144 rs10871290 73 030 197 Sing-Indian CCDC60 Schizophrenia 2197 16 72 953 795 rs10871290 73 030 197 Sing-Indian CLDC60 Schizophrenia 2197 16 72 953 795 rs135338 32 509 195 Sing-Indian L/A Multiple sclerosis 933 6 32 553 530 rs61749 Sing-Malay, Sing-Indian L/A Multiple sclerosis 933 6 32 553 530 rs61749 Sing-Malay Sing-Malay Sing-Malay 93 6 32 553 530 rs61749 Sing-Malay Sing-Malay Sing-Malay 93 6 32 553 530 </td <td>1491</td> <td>6</td> <td>98 700 200 98 729 161</td> <td>rs10816533</td> <td>98578959</td> <td>CHD</td> <td>ZNP510</td> <td>Height</td>	1491	6	98 700 200 98 729 161	rs10816533	98578959	CHD	ZNP510	Height
12 118 473 270 rs11064768 118 302 892 Sing-Chinese CCDC60 Schizophrenia 2197 16 72 953 795 rs10871290 73 030 197 Sing-Indian GLG1 Breast cancer 2197 16 72 953 795 rs10871290 73 030 197 Sing-Indian GLG1 Breast cancer 2197 16 72 90537 rs10871290 73 030 197 Sing-Indian GLG1 Breast cancer 31 6 32 539 530 rs3135338 32 509 195 Sing-Malay, Sing-Indian HLA Multiple sclerosis 933 6 32 539 530 rs61 5672 32 682 149 Sing-Malay Sing-Indian 933 6 32 539 530 rs61 5672 32 682 149 Sing-Malay MHC Type 1 diabetes 93 6 32 539 530 rs92 72346 32 712 350 Sing-Malay MHC Type 1 diabetes 93 32 681 749 73 272346 32 712 350 Sing-Malay MHC Type 1 diabetes	109	1	150 822 330 150 853 218	rs10888501	150804578	Sing-Malay, Sing-Indian	Intergenic	Response to antipsychotic treatment
2197 16 72 953 795 rs10871290 73 030 197 Sing-Indian GLG1 Breast cancer 933 6 32 539 530 rs3135338 32 509 195 Sing-Malay, Sing-Indian HLA Multiple sclerosis 933 6 32 539 530 rs615672 32 682 149 Sing-Malay, Sing-Indian 933 6 32 539 530 rs615672 32 682 149 Sing-Malay 933 6 32 539 530 rs615672 32 682 149 Sing-Malay 933 6 32 539 530 rs615672 32 682 149 Sing-Malay 933 6 32 539 530 rs9272346 32 712 350 Sing-Malay 933 72 8581 749 73 712 350 Sing-Malay MHC Type 1 diabetes	12035	12	118 473 270 118 475 144	rs11064768	118302892	Sing-Chinese	CCDCEO	Schizophrenia
933 6 32 539 530 rs3135338 32 509 195 Sing-Malay, Sing-Indian HLA Multiple sclerosis 933 6 32 539 530 rs615672 32 682 149 Sing-Malay 933 6 32 539 530 rs615672 32 682 149 Sing-Malay 933 6 32 539 530 rs9272346 32 712 350 Sing-Malay 933 6 32 539 530 rs9272346 32 712 350 Sing-Malay 934 6 32 539 530 rs9272346 32 712 350 Sing-Malay 934 6 32 539 530 rs9272346 32 712 350 Sing-Malay	2197	16	72 953 795 73 009 537	rs10871290	73 030 197	Sing-Indian	1979	Breast cancer
933 6 32 539 530 rs615672 32 682 149 Sing-Malay 12 82 681 749 12 681 749 12 681 749 13 6 32 539 530 rs927 2346 32 712 350 13 6 32 539 530 rs927 2346 32 712 350 13 6 32 539 530 rs927 2346 32 712 350 13 6 32 538 530 rs927 2346 32 712 350	933	9	32 539 530 32 681 749	rs3135338	32 509 195	Sing-Malay, Sing-Indian	НГА	Multiple sclerosis
933 6 32 539 530 rs9272346 32 712 350 Sing-Malay 32 681 749 and a metes 32 681 749	933	9	32 539 530 32 681 749	rs615672	32682149	Sing-Malay	HLA-DRB1	Rheumatoid arthritis
	933	9	32 539 530 32 681 749	rs9272346	32712350	Sing-Malay	мнс	Type 1 diabetes

Table 5 Correlation between CNPs and GWAS–SNPs at $P^2 > 0.5$ in 10 populations

Journal of Human Genetics

CNPs in HapMap III and Singapore populations C-S Ku $et \; al$

557

Figure 1 Total, two-copy and one-copy deletion frequencies of (a) CNP60, (b) CNP874 and (c) CNP877 in 10 populations.

DISCUSSION

The finding that approximately 50% of the CNPs identified by the McCarroll *et al.*⁴ study were not polymorphic in all of the three Singapore populations and the HapMap III populations (CHD, GIH, MEX and TSI) suggests that the CNPs found in the 'reference' HapMap II populations are not necessarily polymorphic or common in other populations. This finding, together with the identification of novel copy number loci other than those found using the HapMap II populations, highlights the importance of characterising CNPs in different populations.

In addition, we also found several hundred CNPs that showed significant differences in integer copy numbers among the 10 popula-

tions. More interestingly, many of these loci encompass genes of medical relevance. For example, we found a markedly lower deletion frequency at CNP2203 (which is associated with the WWOX gene) in Sing–Chinese and Sing–Malay compared with other populations. WWOX is a tumour suppressor gene affected in multiple cancers.¹⁵ On the other hand, deletion of the *UGT2B17* gene was also been found to be associated with an increased risk of prostate cancer.^{16,17} The functional role of the *UGT2B17* enzyme is clear in prostate cancer, as it is involved in steroid hormone (androgen) metabolism. The mismatch of *UGT2B17* copy numbers in donors and recipients of stem cell transplantation were also associated with an increased risk of graft-versus-host disease.¹⁸ This gene is contained within CNP603, which

558

Table 6 Characteristics of novel copy number loci identified in 10 populations using Birdseye

Detail	Numbe	er (%)
General characteristics		
Novel copy number loci constructed from Birdseye	503	14
Number of loci that detected in ≥two individuals	1448 (2	28.88)
Number of loci that detected in $\ge 1\%$ of the	170 (3	3.39)
studied sample size (859 samples); that is,		
detected in \geq eight individuals		
Number of loci \geq 5%; that is, detected in	42 (0	.84)
≽43 individuals		
Focus on the loci detected (A) in \geq two	(A)	(B)
individuals and (B) in $\ge 1\%$ of the	(n=1448 loci)	(n=170 loci)
studied sample size		
Sum of the total length (Mb)	232.78	65.98
Average length per locus (kb)	160.76	388.11
Average number of markers per locus	82	143
Size distribution of loci		
<1 kb	56 (3.87)	5 (2.94)
1-<10 kb	325 (22.44)	31 (18.24)
10-<50 kb	420 (29.01)	46 (27.06)
50-<100 kb	165 (11.40)	10 (5.88)
100-<500 kb	354 (24.45)	35 (20.59)
500 kb-<1 Mb	91 (6.28)	22 (12.94)
>1 Mb	37 (2.56)	21 (12.35)
Deletion or duplication status		
Loci with only deletion	706 (48.76)	78 (45.88)
Loci with only duplication	547 (37.78)	29 (17.06)
Loci with deletion and duplication	195 (13.47)	63 (37.06)
Overlapping with DGV		
Loci that overlap with \ge 50% with the DGV	763 (52.69)	134 (78.82)
Loci that did not overlap with DGV	685 (47.31)	36 (21.18)
Overlapping with UCSC genes		
Loci that overlap with UCSC genes	544 (37.57)	81 (47.65)
Loci that did not overlap with UCSC genes	904 (62.43)	89 (52.35)

Abbreviations: DGV, Database of Genomic Variants; UCSC, University of California, Santa Cruz.

show substantial differences between the Singapore and HapMap III populations. Although a direct association between the CNPs and phenotypic differences is not established in our study, collectively our results suggest that CNPs distributions are substantially different between populations and thus, may account for phenotypic differences between them.

We found 12 CNPs that may have potential implications in various diseases and traits; however, only five of them have not been reported by Conrad *et al.*,⁵ who found evidence of correlations for 33 copy number loci with GWAS–SNPs at $r^2 > 0.5$. The difference in the number of loci found to be in correlation with GWAS–SNPs between our study and the Conrad *et al.*⁵ study is likely due to the limitation that we only focused on the 1291 CNPs, whereas Conrad *et al.*⁵ studied the whole genome. Furthermore, it could also be due to the difference in the marker density of the microarrays used in our study and the Conrad *et al.*⁵ study. We used the Affymetrix SNP Array 6.0, whereas they used a set of 20 oligonucleotide-CGH arrays, comprising

42 million probes. The differences in marker density will contribute to the differences in sensitivity of detection.⁵

Several previous studies have reported correlations between CNVs and GWAS–SNPs. For example, deletions near *IRGM* and *NEGR1* genes, which were in perfect linkage disequilibrium (LD) with the GWAS–SNPs, were identified for Crohn's disease and body mass index, respectively.^{19,20} Our study also showed strong correlations between CNPs and GWAS–SNPs near *IRGM* and *NEGR1* in all 10 populations, but the deletion frequencies varied substantially among the populations. GWAS–SNPs are potentially indirect markers of disease variants, which include CNPs. This may have important clinical implications if these deletions are true disease variants.

A recent paper published by the International HapMap Consortium also studied CNPs in the HapMap III populations.¹² However, they merged and analysed the probe-level intensity data from both the Affymetrix SNP Array 6.0 and the Illumina 1M Beadchip arrays. In contrast, we only analysed the Affymetrix SNP Array 6.0 data and focused primarily on the 1291 CNPs identified previously, as only the raw signal intensity files of this array were available from the HapMap website. A total of 1610 CNPs with an estimated frequency of at least 1% of the cohort were identified in the HapMap III populations by the International HapMap Consortium. They also found that most CNPs also occurred at a low frequency.¹² This was consistent with our study where among the polymorphic CNPs, the majority also occurred at a low frequency (<10%). Similarly, the finding that the frequency spectrum of common CNPs (>10%) was similar across populations by the International HapMap Consortium was in good agreement with our results (Table 1).

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

This study was supported by the Yong Loo Lin School of Medicine, the Life Science Institute and the Office of Deputy President (Research and Technology), National University of Singapore. We also acknowledge the technical and financial support of the Genome Institute of Singapore and Agency for Science, Technology and Research, Singapore.

- Freeman, J. L., Perry, G. H., Feuk, L., Redon, R., McCarroll, S. A., Altshuler, D. M. *et al.* Copy number variation: new insights in genome diversity. *Genome Res.* 16, 949–961 (2006).
- 2 Iafrate, A. J., Feuk, L., Rivera, M. N., Listewnik, M. L., Donahoe, P. K., Qi, Y. et al. Detection of large-scale variation in the human genome. *Nat. Genet.* 36, 949–951 (2004).
- 3 Sebat, J., Lakshmi, B., Troge, J., Alexander, J., Young, J., Lundin, P. *et al.* Large-scale copy number polymorphism in the human genome. *Science* **305**, 525–528 (2004).
- 4 McCarroll, S. A., Kuruvilla, F. G., Korn, J. M., Cawley, S., Nemesh, J., Wysoker, A. et al. Integrated detection and population-genetic analysis of SNPs and copy number variation. *Nat. Genet.* 40, 1166–1174 (2008).
- 5 Conrad, D. F., Pinto, D., Redon, R., Feuk, L., Gokcumen, O., Zhang, Y. *et al.* Origins and functional impact of copy number variation in the human genome. *Nature* 464, 704–712 (2010).
- 6 Yim, S. H., Kim, T. M., Hu, H. J., Kim, J. H., Kim, B. J., Lee, J. Y. *et al.* Copy number variations in East-Asian population and their evolutionary and functional implications. *Hum. Mol. Genet.* **19**, 1001–1008 (2010).
- 7 Park, H., Kim, J. I., Ju, Y. S., Gokcumen, O., Mills, R. E., Kim, S. et al. Discovery of common Asian copy number variants using integrated high-resolution array CGH and massively parallel DNA sequencing. *Nat. Genet.* **42**, 400–405 (2010).
- 8 Ku, C. S., Pawitan, Y., Sim, X., Ong, R. T., Seielstad, M., Lee, E. J. *et al.* Genomic copy number variations in three Southeast Asian populations. *Hum. Mutat.* **31**, 851–857 (2010).
- 9 Kidd, J. M., Cooper, G. M., Donahue, W. F., Hayden, H. S., Sampas, N., Graves, T. *et al.* Mapping and sequencing of structural variation from eight human genomes. *Nature* 453, 56–64 (2008).

- 10 Korbel, J. O., Urban, A. E., Affourtit, J. P., Godwin, B., Grubert, F., Simons, J. F. et al. Paired-end mapping reveals extensive structural variation in the human genome. *Science* **318**, 420–426 (2007).
- 11 Korn, J. M., Kuruvilla, F. G., McCarroll, S. A., Wysoker, A., Nemesh, J., Cawley, S. et al. Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs. Nat. Genet. 40, 1253–1260 (2008).
- 12 International HapMap 3 Consortium. Integrating common and rare genetic variation in diverse human populations. *Nature* 467, 52–58 (2010).
- 13 Teo, Y. Y., Sim, X., Ong, R. T., Tan, A. K., Chen, J., Tantoso, E. *et al.* Singapore Genome Variation Project: a haplotype map of three Southeast Asian populations. *Genome Res.* **19**, 2154–2162 (2009).
- 14 Mei, T. S., Salim, A., Calza, S., Seng, K. C., Seng, C. K. & Pawitan, Y. Identification of recurrent regions of Copy-Number Variants across multiple individuals. *BMC Bioinformatics* **11**, 147 (2010).
- Lewandowska, U., Zelazowski, M., Seta, K., Byczewska, M., Pluciennik, E. & Bednarek, A. K. WWOX, the tumour suppressor gene affected in multiple cancers. *J. Physiol. Pharmacol.* **60**, 47–56 (2009).

- 16 Park, J., Chen, L., Ratnashinge, L., Sellers, T. A., Tanner, J. P., Lee, J. H. et al. Deletion polymorphism of UDP-glucuronosyltransferase 2B17 and risk of prostate cancer in African American and Caucasian men. *Cancer Epidemiol. Biomarkers Prev.* 15, 1473–1478 (2006).
- 17 Karypidis, A. H., Olsson, M., Andersson, S. O., Rane, A. & Ekström, L. Deletion polymorphism of the UGT2B17 gene is associated with increased risk for prostate cancer and correlated to gene expression in the prostate. *Pharmacogenomics J.* 8, 147–151 (2008).
- 18 McCarroll, S. A., Bradner, J. E., Turpeinen, H., Volin, L., Martin, P. J., Chilewski, S. D. et al. Donor-recipient mismatch for common gene deletion polymorphisms in graft-versus-host disease. *Nat. Genet.* **41**, 1341–1344 (2009).
- 19 McCarroll, S. A., Huett, A., Kuballa, P., Chilewski, S. D., Landry, A., Goyette, P. *et al.* Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn's disease. *Nat. Genet.* **40**, 1107–1112 (2008).
- 20 Willer, C. J., Speliotes, E. K., Loos, R. J., Li, S., Lindgren, C. M., Heid, I. M. et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. *Nat. Genet.* **41**, 25–34 (2009).

Supplementary Information accompanies the paper on Journal of Human Genetics website (http://www.nature.com/jhg)

560