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Common variants on 14q32 and 13q12 are associated
with DLBCL susceptibility

Vinod Kumar1,2, Keitaro Matsuo3, Atsushi Takahashi2, Naoya Hosono2, Tatsuhiko Tsunoda2,
Naoyuki Kamatani2, Sun-Young Kong4, Hidewaki Nakagawa2, Ri Cui1, Chizu Tanikawa1, Masao Seto5,
Yasuo Morishima6, Michiaki Kubo2, Yusuke Nakamura1,2 and Koichi Matsuda1

Diffuse large B-cell lymphoma (DLBCL) is one of the most aggressive cancers of B-lymphocytes. To investigate genetic

susceptibility factors for DLBCL, we performed single-nucleotide polymorphism based genome-wide association study (GWAS)

in a total of 399 DLBCL cases and 4243 controls of Japanese population. By following two-stage GWAS approach and an

independent replication study, we identified disease susceptibility locus within intron 3 of the CDC42BPB gene on 14q32

(rs751837; P¼3.30�10�7 and odds ratio (OR) of 3.5), a region of frequent chromosomal translocations in lymphoma, and

variant on 13q12 (rs7097; P¼6.57�10�6 and OR of 1.43) which harbors the notch signaling mediator, LNX2 gene. Our

findings would contribute to the understanding of DLBCL risk and also may lead to the elucidation of its molecular

pathogenesis.
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INTRODUCTION

Diffuse large B-cell lymphoma (DLBCL), the major subtype of non-
Hodgkin’s B-cell lymphoma, is accounting for 430% of all lymphoid
malignancies worldwide1 and 443% in Japan.2 Although the combi-
nation of cyclophosphamide, doxorubicin, vincristine, prednisone and
rituximab, has extended the overall survival among DLBCL patients,3

a substantial portion of patients still suffer from persistent or recurrent
diseases. To further improve the clinical outcome of DLBCL, elucida-
tion of its underlying pathogenesis is essential.

Along with the established environmental risk factors such as older
age, infectious diseases and congenital immunodeficiency, genetic
factors also have a major role.4–6 According to this notion, nearly 10-
fold relative risk for DLBCL was reported among first-degree relatives of
DLBCL patients.7 Thus, it is conceivable that the pathogenesis of this
aggressive disease is largely determined by complex interaction between
genetic and environmental factors. To clarify the genetic susceptibility
factors for DLBCL, we conducted single-nucleotide polymorphism
(SNP) based genome-wide association study (GWAS) among clinically
and histopathologicaly confirmed DLBCL patients.

MATERIALS AND METHODS

Study participants
In this study, we conducted two-stage GWAS and a subsequent replication

analysis using a total of 399 DLBCL cases and 4243 control subjects. The

demographic details of study participants are summarized in Supplementary

Table 1. In the first stage of GWAS, 934 Japanese control DNA samples were

obtained from Osaka-Midosuji Rotary Club, Osaka, Japan. DLBCL cases in the

first and the second stage and control subjects in the second stage were

obtained from BioBank Japan.8 Histopathologically confirmed 106 DLBCL

cases and age–gender-matched 400 healthy controls were selected from Aichi

Cancer Center, Japan for a replication study.9 All the participants provided

written informed consent. This research project was approved by the ethics

committees at each institute.

SNP genotyping
In all, 74 DLBCL cases and 934 healthy controls in the first stage and 2909

controls in the second stage were genotyped using Illumina HumanHap550v3

Genotyping BeadChip (Illumina, San Diego, CA, USA). Standard SNP quality

control filters (P-value of Hardy–Weinberg equilibrium test of 41.0�10�6 for

controls, minor allele frequency of 40.01, genotyping completeness of X99%)

were applied to finally obtain 444 361 SNPs for the association analysis. Case

samples in the second stage and case–control samples in the replication analysis

were genotyped by the multiplex PCR-based Invader assay (Third Wave

Technologies, Inc., Madison, WI, USA).10

Statistical analysis
The association was tested by logistic regression analysis after adjusting for age

and gender in the first stage of GWAS. At the second stage and the replication

analysis, statistical significance of the association with each SNP was assessed
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using 1 d.f. Cochrane–Armitage trend test. Odds ratios (OR) and confidence

intervals (CIs) were calculated using the major allele as a reference allele. The

meta-analysis was conducted using the Mantel–Haenszel method. Heteroge-

neity among studies was examined by the Breslow–Day test. Software and web

tools used in this study are summarized in Supplementary data.

Candidate gene analysis
We searched pubmed for association studies of lymphoma, and obtained the

list of 182 candidate genes those were previously analyzed by several researchers

among different population by candidate gene approach. We selected tag SNPs

located on these genes from Illumina 550k platform (Illumina; Supplementary

Table 3). The association between these tag SNPs and DLBCL was tested in the

first stage 74 DLBCL cases and 934 healthy controls by logistic regression

analysis on adjustment for age and gender.

Software and web tools
For general statistical analyses, we used R statistical environment version 2.6.1

(cran.r-project.org) or plink-1.05 (pngu.mgh.harvard.edu/~purcell/plink/).11 The

Haploview software was used to draw linkage disequilibrium maps.12 Primer3-

web v0.3.0 (http://frodo.wi.mit.edu) web tool was used to design primers. The

r2 between SNPs were annotated using the WGAViewer software.13 In-silico

functional annotation of SNPs was performed using FastSNP web tool (http://

fastsnp.ibms.sinica.edu.tw/fastSNP2/pages/input_CandidateGeneSearch.jsp).14

RESULTS

First-stage GWAS
In the first stage, we genotyped 74 DLBCL cases and 934 healthy
control samples at 550 000 SNP loci. The association between each
SNP and DLBCL was assessed by logistic regression analysis after
adjusting for age and gender. We plotted observed logistic P-values
against expected logistic P-values by quantile–quantile plot and con-
firmed that there is no or least population stratification (l¼1.03,
Supplementary Figure 1). To identify disease susceptibility loci, we
further investigated top ranked 500 SNPs (Pp1�10�3, Supplemen-
tary Figure 2) in additional cases and controls.

Second-stage GWAS
The analysis of the second stage cohort which consisted of 219 DLBCL
cases and 2909 controls at 500 top SNPs revealed significant associa-
tion (Armitage Po0.05) at 15 SNPs (Supplementary Table 2). The
Mantel–Haenszel test was performed at these 15 SNPs to assess the
overall degree of association by combining first stage and second stage

datasets. Notably, SNP rs4551233 and SNP rs4443228 showed strong
association with DLBCL. Both SNPs achieved the Mantel–Haenszel
P of 7.06�10�7 and 7.23�10�7; OR of 1.57 (95% CI 1.32–1.88) and
2.43 (95% CI 1.7–3.45), respectively. We also observed improved
associations at SNPs rs11222532, rs17811655, rs1381795 and
rs751837. However, no SNPs exceeded a genome-wide significant
threshold (Po1.13�10�7, after Bonferroni correction).

Replication analysis using Aichi cancer center DLBCL cohort
In all, 15 candidate SNPs from our two-stage GWAS were subse-
quently genotyped in age and gender matched independent DLBCL
replication cohort, consisting of 106 cases and 400 controls from Aichi
Cancer Center. Genotyping of this cohort revealed significant associ-
ation (Table 1) at rs7097 (P¼4.89�10�2, OR of 1.37; 95% CI 1.01–
1.87) that is located on chromosome 13q12–q13 (Figure 1a). In addi-
tion, we observed nominal association at rs751837 (P¼6.19�10�2)
that is located within 120 kb linkage disequilibrium block on chromo-
some 14q32.32 (Figure 1b). The meta-analysis revealed consistent
association at rs7097 (P¼6.57�10�6 and OR of 1.43; 95% CI¼1.23–
1.67) and rs751837 (P¼3.3�10�7 and OR of 3.5; 95% CI¼2.12–5.88)
with the same direction of effect (Supplementary Figure 3).

DISCUSSION

Our study identified two genetic variants to be consistently associated
with increased risk of DLBCL susceptibility. SNP rs7097 is located at
the common region encompassing the 3-prime un-translated region
of POLR1D and the promoter region of LNX2 (ligand of numb
protein�2; Figure 1a). POLR1D encodes a 16 kDA RNA polymerase I
polypeptide D. By considering the role of POLR1D in transcription, it
is hard to explain the impact of its polymorphisms on DLBCL
pathogenesis. On the other hand, LNX2 encodes a PDZ domain
containing ring finger 1 protein which may function as an E3
ubiquitin ligase.15 Higher levels of LNX family member was shown
to cause ubiquitin–proteasomal degradation of Numb protein which
in turn enhance the notch signaling.15 As activated notch signaling is
implicated in hematological cancers16 such as B-cell lymphoma,17 SNP
rs7097 might have functional consequences for DLBCL. Although, on
the basis of in silico prediction, allele G at SNP rs7097 can create a
binding site for GATA-2 transcription factor (Supplementary Figure
4A), identifying a specific causative variant at this locus is necessary to
understand the impact of this locus for DLBCL.

Table 1 Meta-analysis at two candidates by combining first stage, second stage and replication stage

Case Control

rs ID Gene Chromosome Stage GG AG AA MAF GG AG AA MAF Armitage P M–H P OR (95% CI) P_heteroa

rs7097 LNX2 13 First stage 7 32 35 0.311 189 486 259 0.463 2.73�10�4

Second stage 26 116 76 0.385 584 1453 838 0.456 3.88�10�3

Replication 21 44 40 0.410 97 196 107 0.488 4.89�10�2

Combined 54 192 151 0.378 870 2135 1204 0.460 6.57�10�6 3.09�10�6 1.437 (1.23–1.67) 0.73

CC CT TT MAF CC CT TT MAF

rs751837 CDC42BPB 14 First stage 0 7 67 0.047 0 14 920 0.007 3.93�10�6

Second stage 0 8 200 0.019 0 43 2813 0.008 1.09�10�2

Replication 1 3 101 0.024 0 6 393 0.008 6.19�10�2

Combined 1 18 368 0.026 0 63 4126 0.008 3.30�10�7 1.35�10�6 3.508 (2.127–5.88) 0.86

Abbreviations: CI, confidence interval; M–H, Mantel–Haenszel; OR, odds ratio.
aP determined by Breslow–Day test for heterogenity across three stages.
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The second candidate SNP rs751837 is located within the intron 3
of CDC42BPB (also known as MRCK b (myotonic dystrophy kinase-
related Cdc42-binding kinase b) Figure 1b). According to in silico

prediction, allele T at rs751837 shows preferential binding of the CdxA
transcription factor (Supplementary Figure 4b) implying possible role
of this variant on the transcriptional regulation of CDC42BPB.
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Figure 1 (a) Regional association plot on 13q12–13. The upper panel displays the distribution of �log10 P-values (Cochran–Armitage trend test) according to

their physical positions on 13q12–13. The dotted vertical line indicates the physical position of rs7097 SNP and its combined P-value. The second panel

shows the r2 values for proxies of rs7097, which are based on the HapMap JPT population. Annotated genes are shown at the top of linkage disequilibrium

block. (b) Regional association plot on 14q32. The upper panel displays the distribution of �log10P-values (Cochran–Armitage trend test) according

to their physical position on 14q32. The dotted vertical line indicates the physical position of rs751837 SNP and its combined P-value. The second panel

shows the r2 values for proxies of rs751837, which are based on the HapMap JPT population. Annotated genes are shown at the top of linkage disequilibrium

block. BBJ, biobank Japan; ACC, Aichi Cancer Center. A full color version of this figure is available at the Journal of Human Genetics journal online.
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However, further characterization of this region is required to deline-
ate the effect of other variants on this locus. CDC42BPB is a member
of the multidomained serine/threonine protein kinase family. MRCK
isoforms affects cellular structures through modulating Cdc42 actions
during cytoskeletal reorganization,18 and are shown to interact with
potent tumor-promoting agent phorbol ester and diacylglycerol,
albeit with weaker affinity.19 Thus, CDC42BPB might have a role in
carcinogenesis by transducing diacylglycerol signals similar to protein
kinase C or RasGRPs. In addition, CDC42BPB is located on chromo-
some 14q32 region, which is inherently susceptible to frequent
chromosomal translocations, especially in lymphoma. It is reported
that the presence of 14q32 translocation among DLBCL is associated
with higher frequencies of other chromosomal aberrations.20 Thus,
further analysis about correlation between rs751837 and 14q32 trans-
location might shed light on the molecular mechanism underlying
lymphoma specific chromosomal translocation.

The SNPs identified in this study, however failed to achieve
conservative Bonferroni threshold (Po5�10�8) for GWAS, which
could be because of the small sample size analyzed in this study and/or
the clinical heterogeneity of DLBCL. In this regard, it is noteworthy
that a recent GWAS among Caucasians identified 6p21.33 locus as a
susceptibility region to follicular lymphoma, however, the same study
failed to identify genetic susceptibility factors to DLBCL with a
relatively larger sample size (783 cases and 3377 controls).21 In
contrast, we found two DLBCL susceptibility loci those seem to be
functionally related to lymphoma pathogenesis. This is probably
because of the the genetic homogeneity among Japanese population
or the difference in the genetic background between Asian and
Caucasian.22

We also attempted to determine the association between DLBCL
and candidate genes analyzed by several researchers from different
population. The analysis revealed nominal association (Po0.05) at
SNPs located on 52 candidate genes (Supplementary Table 3), which
are mainly implicated in immune response, apoptosis and cytokine
signaling. These finding suggested that many genetic variations would
contribute to the pathogenesis of DLBCL.

As DLBCL exhibit clinical, histological, immunological and mole-
cular heterogeneity,23–25 more detailed DLBCL classification (for
example, germinal center DLBCL or non-germinal center DLBCL or
activated B-cell-like) may be necessary to identify subtype specific
genetic variants both from candidate gene analysis as well as from
GWAS. In this regard, a global collaborative effort might be required
to obtain sufficient samples to undertake a meta-analysis to identify
stronger genetic susceptibility factors for subtypes of DLBCL. Never-
theless, our findings support the role of genetic component in DLBCL
susceptibility and may contribute toward understanding of DLBCL
pathogenesis.
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