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Analysis of complete mitochondrial genomes of
patients with schizophrenia and bipolar disorder
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The present study aims at investigating the association between common and rare variants of mitochondrial DNA (mtDNA), and
increased risk of schizophrenia (SZ) and bipolar disorder (BPD) in a cohort of patients originating from the same Italian
population. The distribution of the major European mtDNA haplogroups was determined in 89 patients and their frequencies
did not significantly differ from those observed in the Italian population. Moreover, 27 patients with high probability of having
inherited the disease from the maternal side were selected for whole mitochondrial genome sequencing to investigate the
possible presence of causative point mutations. Overall, 213 known variants and 2 novel changes were identified, but none

of them was predicted to have functional effects. Hence, none of the sequence changes we found in our sample could explain

the maternal component of SZ and BPD predisposition.

Journal of Human Genetics (2011) 56, 869-872; doi:10.1038/jhg.2011.111; published online 13 October 2011

Keywords: bipolar disorder; mtDNA variants; schizophrenia

INTRODUCTION

Schizophrenia (SZ) and bipolar disorder (BPD) are among the top ten
causes of disability worldwide.! Despite extensive genetic and phar-
macological studies, the etiology and pathophysiology of these mental
disorders are still unknown, and the nuclear susceptibility loci
identified so far can explain only a small fraction of the genetic
component of these diseases.”

The growing body of observations published in the last decade
points to the involvement of mitochondria in the pathophysiology of
psychiatric disorders, including SZ and BPD.? Several genetic studies
reported association between these diseases and common mitochon-
drial DNA (mtDNA) polymorphisms defining ethnic-specific mito-
chondrial haplogroups.> Other analyses found new rare variants
with a putative functional effect’ and a global excess of synonymous
substitutions in the dorsolateral prefrontal cortex of SZ patients.”
Despite the great interest of these findings, the role of mtDNA in
the pathogenesis of SZ/BDP remains unclear.

The present study aims at investigating the association between
common and rare variants of mtDNA and the increased risk of SZ/
BPD in a sample of patients originating from the same Italian population.

MATERIALS AND METHODS

Samples

All analyzed subjects originated from the population of Chioggia, a North-East
Italian town. All patients were diagnosed according to DSM-IV criteria as
described previously.? Most patients belong to complex pedigrees in which the

segregation of SZ or BPD, as well as the co-segregation of both phenotypes, have
been observed. This is in agreement with the hypothesis of a genetic overlap
between SZ and BPD; in this study, we hence considered both SZ and BPD cases.
Opverall, the sample included a total of 89 patients belonging to different maternal
lineages; among them, 35 were sporadic and the other 54 were extracted from 41
complex pedigrees (for further details see Supplementary Materials and Methods).

Mt-Haplogroup analysis and mtDNA genome resequencing

We investigated the distribution of mtDNA haplogroups (mt-hgs) in the 89 SZ
and BPD patients by combining restriction fragment length polymorphism
analysis, with sequencing of hypervariable sequence I (HVS-I) of the mito-
chondrial displacement-loop. The most common European mt-hgs were
classified using single-nucleotide polymorphisms previously reported.’
In addition, a 466-bp fragment encompassing the HVS-I was sequenced in
all samples. Sequence variants were determined between mtDNA nucleotides
16001 and 16400 by comparison with the revised Cambridge Reference
Sequence (rCRS; GenBank accession no. NC_012920.1).

The complete mt-genome was sequenced using the GeneChip Mitochon-
drial Resequencing Array 2.0 (MitoChip v.2.0, Affymetrix, Santa Clara, CA,
USA) following the manufacturer’s protocol. Sequencing process, data acquisi-
tion and statistical analyses were conducted as described in the Supplemen-
tary Materials and methods. The haplogroup classification was based on
the phylogeny proposed by van Oven and Kayser,!® and reported at http:/
www.phylotree.org/ (mtDNA tree Build 11).

RESULTS AND DISCUSSION

We used our data to reconstruct the phylogenetic relationships among
patients’ mtDNAs. The variations found in the HVS-1 region of the
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89 patients are reported in Supplementary Table 1. The most frequent
European haplogroups, that is, H, V, K, U, J, T, I, W and X, accounted
for 90% of the genetic variability observed in our sample (Table 1).
Haplogroup distribution analysis did not reveal a disease susceptibility
to mt-hgs; all major European mt-hgs were represented in the sample
and no significant differences in their overall distribution were
observed when compared with those reported for three Italian control
samples (Table 1).!'=13 The frequencies of each mt-hg in patients and
controls were then analyzed by applying the Bonferroni’s adjustment
for multiple comparisons and no statistically significant differences
were observed.

These findings confirmed a previous study that had failed to
identify SZ susceptibility mt-hgs on Italian patients.'! However,
these negative results could be due to the small size of our sample,
which would allow to detect only large changes in haplogroup
frequency distribution.

The lack of power for association with a mtDNA haplogroup,
however, is not necessarily incompatible with the identification of
mtDNA variations, as many mitochondrial diseases are due to
recurrent mutations.!* We therefore sequenced the complete
mtDNA of 27 patients, searching for susceptibility mtDNA mutations.
Among this group, 22 individuals were familiar cases belonging to
pedigrees with either mother-to-child transmission in more than one
generation or with all-affected siblings in the sibship (Supplementary
Figure 1). The remaining five were sporadic cases, who shared the
same mt-hg and HVS-1 sequence with one of the other selected cases
(for details see Supplementary Table 1).

All the mtDNA variations detected in the 27 patients are shown in
the phylogenetic tree in Figure 1. The mtDNA sequencing of the
sporadic cases revealed that only the two X2b samples (39.1, 52.1)
share the same mtDNA sequence. As hg X2b is characterized by an
infrequent occurrence in the Italian population (2.9%),'> our data
suggest that the two subjects were related in the recent past, and a
deeper investigation is required to ascertain their possible cryptic
relatedness. In addition to the two X2b subjects, only three other
samples (21.2, 22.1 and 16.1), belonging to mt-hg H1b, shared exactly
the same mtDNA sequence. Interestingly, these samples also shared
variant m.8348A > G with another sample of our collection (4.5) and
with the Ttalian H1b sample reported by Achilli et al.!® This result
suggests that variant 8348 is diagnostic for a sub-clade of the H1lb
typical of the Italian population, as it had not been described until
now in other samples. Among our cohort, we sequenced two patients
(one familiar and one sporadic) belonging to mt-hg Nla. Even
though they differ from each other for two mutations in the coding
regions, they both possess the 16147G allele, which defines the
African/South Asian branch of the N1a haplogroup,'” and have lost
the canonical Nla polymorphism at position 16248. Such findings
make the sequences peculiar within the N1la lineage. Moreover, these
two samples shared the mutations at position 151 and 2758 with a
sample of African origins published by Gonder et al,'® thereby
suggesting that 151 and 2758 are good candidates to be markers of
a new sub-clade inside the Nla haplogroup.

Considering the 27 sequenced mt-genomes, a total of 215 substitu-
tion events, including 148 in the coding region (positions 577-16023),
were observed. Most of these variants have been already described in
the literature and only two of them (Table 2) are not reported in any
public database. These latter are two synonymous changes identified
at position 7666 and 8590 in the ATPase6 and COII genes, respectively.
The new mutations were observed in single patients: no recurrent
susceptibility mtDNA mutations occurring multiple times in different
mt-hgs and peculiar to our sample were identified. Altogether, these
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Table 1 mtDNA haplogroup distribution in SZ/BPD patients and in three independent samples of the Italian population
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: it consists of 190 subjects living in northern Italy.
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Figure 1 Phylogenetic tree of 38 complete mtDNA sequences. Eleven complete sequences were taken from the literature and we referred to these particular
samples as A,16:24 B 25 D 26 GA,27 G,18 H28 or PA,29 followed by ‘—’ and the original sample code (for further details see Supplementary Materials and
methods). Mutations are shown on the branches; they are transitions, unless the base change is explicitly indicated. ‘h’ following the nucleotide position
indicates heteroplasmy; ns denotes non-synonymous mutations; ~r and ~t indicate mutations in the rRNA and tRNA genes, respectively; recurrent
mutations are underlined; boldface mutations are those reported here for the first time; grey boxes contain patients identification number. Insertions and
deletions are not reported, as well as variants at position 16519, as it is a known mutation hotspot.

Table 2 New sequence variants? identified in the present study

Position Base change Locus Amino-acid change
7666 C>A coll Synonymous
8590 C>T ATPase6 Synonymous

Each mutation was identified in one patient.

2The novelty of each sequence variant was determined by using the on-line Mitomap database
(http://www.mitomap.org/MITOMAP), the mtDNA database (http://www.ianlogan.co.uk/
mtDNA.htm), the Human Mitochondrial Genome Database (http://www.mtdb.igp.uu.se/), the
database of 5140 human mitochondrial genomes reported in the work of Pereira et al.,3° and
by using the web-based search approach described by Bandelt et a/.3!

data suggest that our new mutations are unlikely to contribute to the
susceptibility to SZ in our sample, even though their functional effect
cannot be definitely ruled out.

Lastly, we hypothesized that mild deleterious mutations in mtDNA
could contribute to susceptibility to SZ and BPD, potentially uncou-
pling the OXPHOS activity. For this reason, we compared the ratio
of nonsynonymous/synonymous substitutions in the mt-genes calcu-
lated in our sample to that reported in the general population.'®
No statistically significant differences were observed, considering
either the entire coding region or each mt-gene separately (Supple-
mentary Table 2).

Most of the mitochondrial disease-related mutations have been
detected in the tRNA genes and they mainly affect the secondary
structure of the molecule.?? We have identified 10 variants in tRNA
genes (Supplementary Table 3), but none of them is likely pathogenic,
as they involve nucleotide positions that are <90% conserved in
mammalian species.”’! The only exception is the 12308 transition,
which falls in a tRNA-conserved region; however, it is not considered
pathogenic, as it is diagnostic of haplogroups U and K, and an
increased frequency among SZ patients of these two haplogroups
have never been reported.

In our cohort, only one variant, the synonymous transversion at
7666 in the COII gene, was identified in a heteroplasmic state.
However, only substantial heteroplasmy can be detected by the
MitoChip v.2.0, and therefore, we might have missed other hetero-
plasmic mutations.?? In this study, we did not attempt to address this
issue, as somatic mtDNA variants acquired in the tissue or organs
involved in the disease are usually not detected in the blood samples,
which typically exhibit much less heteroplasmy than non-dividing
tissues.??

In conclusion, our results indicate that the pattern of maternal
inheritance observed in some families of our sample cannot be
explained by point variations in the mtDNA sequence.
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