Journal of Human Genetics (2010) 55, 175-178
© 2010 The Japan Society of Human Genetics Al rights reserved 1434-5161/10 $32.00

pg)

www.nature.com/jhg

ORIGINAL ARTICLE

Prediction of the clinical phenotype of Fabry disease
based on protein sequential and structural information

Seiji Saito™®, Kazuki Ohno®%’, Jun Sese, Kanako Sugawara4 and Hitoshi Sakuraba®’

Fabry disease is a genetic disorder caused by a deficiency of a-galactosidase, exhibiting a wide clinical spectrum, from the
early-onset severe ‘classic’ form to the late-onset mild ‘variant’ one. Recent screening of newborns revealed that the incidence of
Fabry disease is unexpectedly high, and that the genotypes of patients with this disease are quite heterogeneous and many novel
mutations have been identified in them. This suggests that a lot of Fabry patients will be found in an early clinical stage when
the prognosis is obscure and a proper therapeutic schedule for them cannot be determined. Thus, it is significant to predict the
clinical phenotype of this disease resulting from a novel mutation. Herein, we proposed a phenotype prediction model based on
sequential and structural information. As far as we know, this is the first report of phenotype prediction for Fabry disease. First,
we investigated the sequential and structural changes in the a-galactosidase molecule responsible for Fabry disease. The results

showed that there are quite large differences in several properties between the classic and variant groups. We then developed
a phenotype prediction model involving the decision tree technique. The accuracy of this prediction model is high (86%), and
Matthew’s correlation coefficient is also high (0.49). The phenotype predictor proposed in this paper may be useful for

determining a proper therapeutic schedule for this disease.
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INTRODUCTION

Fabry disease (MIM 301500) is a genetic disorder resulting from the
deficient activity of lysosomal hydrolase a-galactosidase (GLA; EC 3.
2.1.22).! The enzymatic defect causes the progressive accumulation of
globotriaosylceramide (GL-3) in lysosomes, leading to heterogeneous
phenotypes. In the classic form of Fabry disease, patients exhibit
systemic manifestations, with onset of pain in the peripheral extre-
mities, angiokeratoma, hypohidrosis and corneal opacity in child-
hood, followed by renal, cardiac and cerebrovascular involvement with
increasing age. On the other hand, patients with the variant form of
Fabry disease with late onset develop milder clinical manifestations,
the main disorder being sometimes limited to the heart. The result of
newborn screening revealed that the incidence of this disease is
unexpectedly high, 1 in 3000-4000 male newborns,”> and many
other research groups are developing means of newborn and high-
risk screening for the early diagnosis of Fabry disease.

With regard to therapy for Fabry disease, enzyme replacement
therapy with recombinant human GLAs produced in Chinese hamster
ovary cells and in human fibroblasts is available.> Furthermore,
enzyme enhancement therapy (EET) with substrate analogs acting as
pharmacological chaperones has also been developed,® and clinical

trials have been performed. Although the number of mutants for
which these chemicals are effective is limited, EET is beneficial for
treating some patients with Fabry disease.

Considering this situation, prediction of the clinical outcome of this
disease is becoming more and more important for determining a
proper schedule for treating it. Recently, we investigated the basis of
Fabry disease from the aspect of structural biology, and determined
differences in the structural changes of the GLA protein between
classic and variant forms.”

In this study, we further investigated the basis of Fabry disease by
means of an improved method involving the originally developed
sequential and structural analysis system, and proposed a new
prediction model for the clinical phenotype of the disease using
structural information.

MATERIALS AND METHODS

Data sets

So far, over 500 gene mutations have been reported in Fabry disease. In this
study, we selected 210 Fabry missense mutations the phenotypes of which have
been clearly described. The amino-acid substitutions, clinical phenotypes and
references are listed in Supplementary Table 1. With regard to Fabry disease,
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there are a few mutations that have been identified in both the classic and
variant cases, and those were excluded in this study. The substitutions analyzed
here can be divided into two groups: one comprising 196 substitutions, which
cause the classic phenotype, and the other comprising 14 substitutions, which
result in the variant one. Each substitution has nine selected features and the
details will be given in the next section.

Features

In the data set, many physical features of every substitution are enumerated,
and hence some of the features have the same structural or sequential meaning.
To avoid redundancy, we selected the following nine structurally and sequen-
tially independent features: (1) root mean squared deviation (RMSD), (2)
active site pocket feature (AP), (3) ligand-binding site feature (LB), (4) dimer
interface feature (DI), (5) difference in solvent-accessible surface area (ASA)
values of functionally important residues between the wild type and mutant
(DASA), (6) size of an amino acid in the mutant (MSIZE), (7) difference in size
between wild type and mutant (DSIZE), (8) hydropathy of an amino acid in a
mutant enzyme protein (MHYD) and (9) difference in hydropathy between
wild type and mutant (DHYD).

RMSD. A large conformational change is generally thought to induce a
significant decrease in the stability and/or catalytic activity of the enzyme,
and thus would result in the classical phenotype. To evaluate conformational
changes in the enzyme molecule caused by an amino-acid substitution, the
RMSD values of a-carbon atoms in mutant proteins were calculated. The
details of homology modeling and RMSD calculation were given in the
previous paper.’

Functionally important residues. Mutations located in functionally important
regions (the active site pocket, the ligand-binding site and the dimer surface)
are deduced to decrease the catalytic activity. Therefore, we examined whether
the location of a mutation is functionally important. If the mutation is located
in the active site pocket, the AP is set to 1. On the other hand, if the mutation is
located in a region other than the active site pocket, it is set to 0. The same
procedure is used for LB and DI. The residues involved in ligand binding are
defined as ones the ASA of which differs between the ligand-bound form and
the ligand-unbound one. The residues comprising the dimer interface are
defined as ones the ASA of which differs between the dimer form and the
monomer one.

Differences in ASA values of functionally important residues.  Structural changes
on the surface of a functionally important region are predicted to induce a
significant decrease in the catalytic activity of the enzyme, and thus would also
lead to the classical phenotype. To evaluate influences of an amino-acid
substitution on the surface of functionally important residues, DASA values
were calculated by subtracting the ASA of the mutant from that of the wild
type. The details of ASA calculations were given in the previous paper.”

Size of an amino-acid residue. In general, substitution of a large amino acid
for a small one causes a steric conflict, which may induce a structural defect
leading to a decrease in the stability of the protein molecule. On the other hand,
substitution of a small amino acid for a large one causes extra-space around the
mutation site, which may also induce a decrease in the stability of the mutant
protein. Therefore, we determined the MSIZE, and examined the DSIZE.
DSIZE was calculated by subtracting the size in the mutant from that in the
wild type.

In this study, the size of an amino acid is roughly defined as the number of
heavy atoms along the line from the a-carbon to B-carbon. In other words, the
size of the amino acid is defined as the distance from the o-carbon to the
furthest heavy atom along that line. The side chain atom of an amino acid is
denoted by a Greek suffix with the atom name; that is, C-a, C-f, O-y, O-9, and
so on. For example, the size of glycine, having no C-B, is 0. Alanine has a C-8
and its size is defined as 1. Serine has an O-y and its size is taken as 2. Leucine
has a C-8 and its size is defined as 3, and so on. The size of tryptophan having
a C-{ is defined as 6. Thus, in the case of substitution from alanine to
tryptophan, MSIZE and DSIZE are 6 and 5, respectively.
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Hydropathy of an amino acid in a mutant enzyme protein. Hydropathy is one
of the most common indices for characterizing an amino acid. In this study, it
was evaluated using the Kyte and Doolittle scale.® We determined the MHYD,
and the DHYD. DHYD was calculated by subtracting the hydropathy value of
the wild type from that of the mutant.

Statistical analyses
Statistical analyses to determine the differences in the average values of each
feature between the classic form and the variant one were performed by means
of the F-test, followed by #-test, it being taken that there was a significant
difference if P<0.05.

Construction of decision trees
Our data set consists of 196 classic cases and 14 variant ones. We call this ‘data
set 1> A decision tree constructed from such an imbalanced data set would
wrongly predict that all data indicate the classic form. To overcome the
problem, we constructed two other data sets. First, we selected 14 classic cases
as representative ones by means of clustering techniques according to their
features. We call this data set consisting of the representative classic cases and
the variant ones ‘data set 2’ Second, we removed the classic cases the features of
which were similar to those of variant cases and selected 14 new classic cases as
representative ones. The details of selection are as follows: At first, we defined
vector v for mutation i as follows: v(i)=(RMSD, DASA, MSIZE, DSIZE,
MHYD, DHYD, AP, DI and LB). We then defined the D value between two
mutations as follows: D(i,j)=|v(i)-v(j)|, after which we defined the S value as
follows: S(i)=min D(i,j).

Here, j denotes the variant mutation, and if each feature of classic mutation
i is identical to that of variant mutation j, S(i) is 0. To remove the classic cases
the features of which were similar to those of variant cases, the 14 classic
mutations with large S values were selected as representative ones. This data set
is called ‘data set 3’ We constructed decision trees for all three data sets using
the ‘mvpart’ package of R statistical environment. This package is based on the
Classification and Regression Trees algorithm.’

Cross-validation

We used the leave-one-out approach involving a single observation in the
original data set as the validation datum, and the remaining observations as the
training data. This procedure was repeated such that each observation in the
data set was used once as the validation datum.

Evaluation

The accuracy of the derived model was examined for sensitivity, specificity,
accuracy and for Matthew’s correlation coefficient (MCC).!? The calculation
was performed according to the following formulae:

Sensitivity = TP/(TP+FN)

Specificity = TN/(FP+TN)

Accuracy = (TP+TN)/(TP+FP+FN+TN)
(TP - TN — FP - FN)

MCC =
/(TN+FN) (TN+EP) (TP+FN) (TP+FP)

TP, TN, FP and FN denote true positive (the mutation is predicted to be a
classic phenotype one, and is actually a classic one), true negative (the mutation
is predicted to be a variant phenotype one, and is actually a variant one), false
positive (although the mutation is predicted to be a classic phenotype one, it is
a variant one) and false negative (although the mutation is predicted to be a
variant phenotype one, it is a classic one), respectively.

Sensitivity is the proportion of actual classic cases correctly identified as
such, and specificity is the proportion of variant cases correctly identified as
such. Accuracy is the proportion of correctly identified cases among all
predictions. MCC is known to be a better evaluation criterion than overall
accuracy. It takes into account true and false positives and negatives, and is
generally regarded as a balanced measure that can be used even if the classes are
of very different sizes. The values range from —1 to 1. A value of 1 means
‘complete prediction, whereas a value of 0 means that every prediction was
randomly assigned.



RESULTS

Differences in features between the classic and variant groups

To clarify the differences between classic and variant groups, we
calculated the average values and s.d. for each feature in both classic
and variant groups (Table 1 and Supplementary Figures la—i).
As shown in the previous study,” there is a large difference in the
RMSD value between the classic and variant groups, and the difference
is statistically important. In the case of DASA and AP, there are also
large differences between the classic and variant groups. These
differences are also statistically important. In the cases of MSIZE,
DSIZE, MHYD, DHYD and LB, although there are some differences
between the classic and variant groups, they are not statistically
important. In the case of DI, there is little difference between the
classic and variant groups.

Predictive power of the individual features

A decision tree was generated using each feature to discriminate
between the classic and variant groups, and the prediction perfor-
mance of each feature was assessed (Table 2). Except for DI and LB, all
other features had a role in the prediction of whether a mutation
causes the classic phenotype or the variant one. When DI and LB were

Table 1 Average values of the features in both the classic and variant
groups

Feature Classic Variant P-value
RMSD 0.0892 (0.0728) 0.0216 (0.0193) 8.17E-12
DASA —3.23 (15.1) 1.82 (6.14) 0.02
MSIZE 3.33(1.77) 2.71(1.22) 0.11
DSIZE 0.485 (2.56) —0.429 (1.99) 0.14
MHYD —0.871 (2.85) 0.757 (3.06) 0.08
DHYD —0.252 (3.61) 0.693 (3.14) 0.32
AP 0.179 (0.383) 0.00 (0.00) 6.12E-10
DI 0.148 (0.355) 0.143 (0.350) 0.96
LB 0.0969 (0.296) 0.214 (0.410) 0.33

Abbreviations: AP, active site pocket feature; DI, dimer interface feature; DASA, difference in
solvent-accessible surface area values of functionally important residues between the wild type
and mutant; DHYD, difference in hydropathy between wild type and mutant; DSIZE, difference
in size between wild type and mutant; LB, ligand-binding site feature; MHYD, hydropathy of an
amino acid in a mutant enzyme protein; MSIZE, size of an amino acid in the mutant; RMSD,
root mean squared deviation.

Values are averages (s.d.).

Table 2 Prediction performance of the features obtained using the
decision tree method.

Feature TP TN FP FN  Sensitivity Specificity ~Accuracy ~ MCC
RMSD 148 12 2 48 0.76 0.86 0.76 0.34
DASA 126 11 3 70 0.64 0.79 0.65 0.22
MSIZE 61 13 1 135 0.31 0.93 0.35 0.13
DSIZE 135 12 2 61 0.69 0.86 0.70 0.29
MHYD 143 7 7 53 0.73 0.50 0.71 0.13
DHYD 128 12 2 68 0.65 0.86 0.67 0.26
AP 35 14 0 16l 0.18 1.00 0.23 0.12
DI 29 12 2 167 0.15 0.86 0.20 0.00
LB 19 11 3 177 0.10 0.79 0.14 -0.10

Abbreviations: AP, active site pocket feature; DI, dimer interface feature; DASA, difference in
solvent-accessible surface area values of functionally important residues between the wild type
and mutant; DHYD, difference in hydropathy between wild type and mutant; DSIZE, difference
in size between wild type and mutant; FLB, ligand-binding site feature; FN, true negative; FP,
false negative; MCC, Matthew’s correlation coefficient; MHYD, hydropathy of an amino acid in a
mutant enzyme protein; MSIZE, size of an amino acid in the mutant; RMSD, root mean squared
deviation; TN, true negative; TP, true positive.
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each used as a single feature for the prediction, MCC values were 0.00
and —0.10, respectively. In contrast, RMSD, the MCC of which
reached 0.34, was found to be the best discriminator of the classic
group compared with the variant one. Furthermore, accuracy, sensi-
tivity and specificity were high (0.76, 0.76 and 0.86, respectively). The
MCC values of DASA, DSIZE and DHYD were higher than 0.2, but
they gave less prediction accuracy than RMSD. Other features such as
MSIZE, MHYD and AP exhibited a poor predictive performance.

Decision tree model involving the optimal feature subsets

The prediction performance of the combined features using each data
set was assessed using the decision tree method. Table 3 summarizes
the accuracy of the prediction model. In the case of data set 1, the
accuracy of the model is high (0.88). However, specificity is 0, and
MCC is below 0. Although accuracy is high, the total prediction
performance is quite poor. In contrast, in the case of data set 2,
accuracy, specificity and sensitivity are 0.74, 0.93 and 0.72, respectively.
The MCC value is 0.35. This is larger than that determined using each
single feature. Furthermore, in the case of data set 3, sensitivity,
specificity and error rate of the prediction model are 0.85, 0.93 and
0.14, respectively. The MCC value is the largest (0.49) among all
prediction models.

Prediction model for Fabry disease
As shown in the previous section, the prediction model involving data
set 3 is the best prediction model. Figure 1 shows the decision tree

Table 3 Prediction performance of the feature sets obtained using
the decision tree method with different data sets

Dataset TP TN FP FN Sensitivity — Specificity ~Accuracy ~ MCC
1 185 0 14 11 0.94 0.00 0.88 -0.06
2 142 13 1 54 0.72 0.93 0.74 0.35
3 167 13 1 29 0.85 0.93 0.86 0.49

Abbreviations: FN, true negative; FP, false negative; MCC, Matthew’s correlation coefficient; TN,
true negative; TP, true positive.

RMSD >= 0.0345 0.0125 > RMSD

classic variant
R b
DHYD>=-0.15 /g R
/
classic
c

RMSD >= 0.0265 0.0265 > RMSD

o v - variant
d
MSIZE > 2, MSIZE <= 2.5
variant classic
e f

Figure 1 A flowchart of the scheme for prediction of the phenotype from
sequential and structural information. This decision tree was built on the
basis of data set 3. The sensitivity, specificity, accuracy and MCC for 210
missense mutations are 0.85, 0.93, 0.86 and 0.49, respectively.
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involving data set 3. Four nodes were defined in this model on the
basis of the following criteria: (a) classic, if RMSD >0.0345, as large
conformational changes are predicted to occur; (b) variant, if RMSD
<0.0125, as conformational changes induced by amino-acid substitu-
tions are deduced to be small; (¢) classic, if DHYD <-0.15, as
hydrophobic residues are predicted to change to more hydrophilic
ones; (d) variant, if RMSD <0.0265, as conformational changes are
deduced to be relatively small; (e) classic, if MSIZE < 2.5, as an amino
acid of the mutant is small (glycine, alanine, valine, serine or cysteine);
(f) variant, if MSIZE >2.5, as an amino acid of the mutant is large.

DISCUSSION

The result of newborn screening among Italian people revealed that
the incidence of Fabry disease is very high, especially the variant
phenotype.? Furthermore, gene mutations causing Fabry disease are
known to be quite heterogeneous.! Considering these results, the
introduction of worldwide newborn screening will reveal a lot of Fabry
disease patients with novel mutations whose prognoses are unclear at
the time of diagnosis. The prediction of a clinical phenotype should
help clinicians to decide a suitable treatment or a proper treatment
schedule. However, we usually only know sequential information
about mutations responsible for Fabry disease. Although it is very
significant to predict the outcome of the disease on the basis of
sequential information, there have been few studies on the prediction
of phenotypes in Fabry disease.

The main purpose of this study is to establish a prediction
methodology for the Fabry disease phenotype involving sequential
and structural information. As far as we know, this is the first study on
phenotype prediction for Fabry disease. In this study, we performed
three analyses. (1) We investigated the differences in sequence and
structure between the classic and variant groups carefully. (2) We
examined the features that distinguish classic from variant pheno-
types. (3) We constructed a decision tree-based prediction model for
the phenotype groups from sequence and structure information.

In the first analysis, we examined the nine features of the sequential
and structural changes induced by amino-acid substitutions to clarify
the differences between classic and variant groups. With regard to
RMSD, DASA and AP, there are significant differences, and they are
statistically important. The results indicate that large conformational
changes in any region of the molecule; changes in the surface area of a
functionally important region and mutation at the active site cause a
loss of enzyme activity, leading to the classic phenotype.

In the second analysis, we examined the prediction power of a
single feature. RMSD is the best discriminator of the classic group
compared with the variant one. The MCC of RMSD is quite high
(0.34), which means that the prediction power using only RMSD
information is unexpectedly high. Furthermore, DASA, DSIZE and
DHYD are also good discriminators of the classic group compared
with the variant one. Although prediction abilities are lower than that
with RMSD, accuracy is distributed from 67 to 71%. This indicates
that differences in size, hydropathy and surface area of catalytic
residues between the wild type and mutant are also important factors
for distinguishing between classic and variant groups.

In the last analysis, we constructed three prediction models for the
phenotype of Fabry disease using three data sets. Although the
prediction power of the decision tree model involving data set 1 is

quite low, those of the decision tree models involving data sets 2 and 3
are high. This finding suggests that data set selection is important for
phenotype prediction for this disease. In the case of data set 3,
accuracy is also high (86%) and MCC is quite high (0.49), being
significantly greater than that of RMSD. This means that the predic-
tion method is significantly improved, taking not only RMSD but also
other features into consideration. It is noteworthy that although data
set 3 includes only 28 out of 210 mutations, 180 out of 210 mutations
(86%) can be accurately predicted by the decision tree based on
data set 3.

An overview of the best decision tree model is as follows: When a
conformational change is predicted to be large (RMSD >0.0345) or
small (RMSD <0.0125), the phenotype is predicted to be classic or
variant, respectively. On the other hand, when a conformational
change is predicted to be intermediate (0.0125<RMSD <0.0345),
we cannot judge whether the phenotype is the classic or variant one
without information on the size of the amino-acid residue substituted
and/or the difference in hydropathy between wild type and mutant.

In conclusion, we investigated the sequential and structural changes
in GLA responsible for Fabry disease. Results revealed that there are
quite large differences between classic and variant phenotypes. We also
constructed a phenotype prediction model involving sequential
and structural information. Phenotype predictors may be useful for
determining a proper therapeutic schedule for this disease.
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