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Meta-analysis of genetic association studies:
methodologies, between-study heterogeneity
and winner’s curse

Hirofumi Nakaoka1,2 and Ituro Inoue1

Meta-analysis is a useful tool to increase the statistical power to detect gene–disease associations by combining results from

the original and subsequent replication studies. Recently, consortium-based meta-analyses of several genome-wide association

(GWA) data sets have discovered new susceptibility genes of common diseases. We reviewed the process and the methods

of meta-analysis of genetic association studies. To conduct and report a transparent meta-analysis, the search strategy, the

inclusion or exclusion criteria of studies and the statistical procedures should be fully described. Assessing consistency or

heterogeneity of the associations across studies is an important aim of meta-analysis. Random effects model (REM) meta-

analysis can incorporate between-study heterogeneity. We illustrated properties of test for and measures of between-study

heterogeneity and the effect of between-study heterogeneity on conclusions of meta-analyses through simulations. Our

simulation shows that the power of REM meta-analysis of GWA data sets (total case–control sample size: 5000–20 000) to

detect a small genetic effect (odds ratio (OR)¼1.4 under dominant model) decreases as between-study heterogeneity increases

and then the mean of OR of the simulated meta-analyses passing the genome-wide significance threshold would be upwardly

biased (winner’s curse phenomenon). Addressing observed between-study heterogeneity may be challenging but give a new

insight into the gene–disease association.
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INTRODUCTION

Population-based association studies provide a powerful approach
to the identification of susceptibility genes underlying common
diseases.1,2 A very large amount of information about genetic variants
in the human genome has been accumulated through the Interna-
tional Human Genome Sequencing Project and the International
HapMap Project.3–6 Combined with the establishment of high-
throughput single-nucleotide polymorphism (SNP) typing systems,
genome-wide association (GWA) studies have been widely applied.7

Accordingly, gene–disease associations have been reported.
Replication studies were extensively implemented to establish the

credibility of the initial positive findings. However, comprehensive
reviews of the published literatures in the era of the candidate gene
approach show that most of the initial positive associations were not
reproduced in the subsequent replication studies.8–13 These findings
suggest that a large number of original findings were false-positive
reports and another possibility is that most of the studies were
underpowered to detect small genetic effect.8,9 Furthermore,
inconsistency or between-study heterogeneity of results of genetic

associations can be observed regardless of whether the associations
are true or not,10,14 and it may be attributed to population stratifica-
tion, genotyping errors, differences in the pattern of linkage disequili-
brium (LD) structure and other factors.15,16 In the era of GWA
studies, this problem remains one of the most difficult issues of
genetic association studies.10,15,16 For example, the large-scale inter-
national study of Parkinson’s disease failed to replicate 13 SNPs
identified by the previous GWA study.17

In these circumstances, meta-analysis can be a useful tool to
combine both statistically significant and nonsignificant results from
individual studies on the same research question. In case–control
study, the odds ratios (ORs) for individual studies are combined to
calculate a summary OR. Meta-analysis improves the estimation of a
summary OR and 95% confidence interval (CI) and increases the
statistical power to detect gene–disease associations.18 Therefore,
conclusions from a meta-analysis are more robust than those from a
single small study. In addition, meta-analysis is useful to investigate
the consistency or heterogeneity of the associations across studies.
Testing for and quantifying between-study heterogeneity is an
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important aim of meta-analyses to determine whether there are
differences underlying the results of the study.19,20 Addressing the
observed between-study heterogeneity could generate a new insight
into the gene–disease association.20

In this review, we begin with describing the process of meta-analysis
of genetic association studies. The statistical backgrounds, methodo-
logical issues and sources of between-study heterogeneity of
meta-analysis of genetic association studies are briefly reviewed.
Finally, we present the results of our simulation study to illustrate
the effect of between-study heterogeneity on conclusions of meta-
analyses.

LITERATURE-BASED META-ANALYSIS

In a basic meta-analysis, data are retrospectively collected from published
literatures to assess whether a gene–disease association of interest is true
or not.18 When planning a meta-analysis, it is important to define precise
search strategy beforehand.21 If relevant studies are excluded or inade-
quate studies are included, conclusions of the meta-analysis may be
biased.22 The literature search is conducted in databases such as PubMed
and EMBASE. The HuGe Published Literature database (http://
www.cdc.gov/genomics/hugenet/) is also useful, as it includes pub-
lished literatures on genetic associations and other human genome
epidemiology.23 It is important to collect the largest possible number of
studies; therefore, we should use appropriate key words. Once the
search has been completed, bibliographies of retrieved articles should
be examined for further relevant publications.
These processes make up the essential part of the methods section

of a meta-analysis, because literature-based meta-analysis is subjected
to bias caused by difficulty to identify and include all conducted and
relevant studies,13,24 and small difference in selected literatures may
alter conclusions of meta-analyses on the same genetic association.25

However, the essential features of the search strategy have not fully
reported in most meta-analyses of genetic association studies.26 In
order to avoid such biases, it may be recommended to have two or
more different researchers conducting the same search.21 When
conducting and reporting a literature-based meta-analysis, flowchart
detailing the exclusion and inclusion criteria and the number of
studies excluded and included at each step of the literature search is
useful (Figure 1).
Meta-analysis of genetic association studies may be subjected to

publication bias.18,26 Publication bias tends to occur when small studies
showing negative or nonsignificant results remain unpublished and may
result in the overestimation of the genetic effect. If the presence of
publication bias is suspected by statistical tests,27,28 conclusions from the
meta-analysis should be cautiously reported and the potential impact of
the publication bias should be mentioned.18

The results obtained from the meta-analysis would be assessed by the
following: (i) the size of the summary OR; (ii) the extent and possible
cause of between-study heterogeneity; and (iii) the sufficiency and
stability of the meta-analysis by using the cumulative and recursive
cumulative meta-analysis approaches.29–31 In the cumulative meta-
analysis, studies are sorted chronologically and a summary OR is
calculated when a new study is added.29 As a result, we can present
how the summary OR has shifted over time. The recursive cumulative
meta-analysis is an extension of the cumulative meta-analysis, where the
relative change in the summary OR by adding a new study is
evaluated.30,31

CONSORTIUM-BASED META-ANALYSIS

Consortium-based meta-analysis is the meta-analysis of individual
patient data through the collaboration of consortium of investigators.

Consortium-based meta-analysis attains increased attention,32–34

because integration of several GWA data sets has been designed and
new susceptibility genes have been discovered.35–39 Although meta-
analysis of GWA studies can be implemented using reported ORs and
95% CIs or P-values from different GWA studies, it is preferable to
reanalyze several GWA data sets with individual patient data.35 In the
latter case, one can use imputation techniques for missing data when
SNPs have been genotyped in some platforms but not in others.40

Barrett et al.39 conducted a meta-analysis of three GWA data sets for
Crohn’s disease that used different genotyping platforms using impu-
tation methods. The combined GWA data sets included 635 547 SNPs
in 3230 cases and 4829 controls. They used the GWA data sets at the
screening stage. The power of the meta-analysis was reported to be
0.74 to detect associations with per allele OR of 1.2 and with risk allele
frequency of 0.2 at the significance level of P¼1.0�10�5. The meta-
analysis of the GWA data sets and additional replication data sets
confirmed 11 previously reported loci and identified genome-wide
significant signals for novel 21 loci.

GENETIC ASSOCIATION STUDY-SPECIFIC METHODOLOGICAL

ISSUES

There are methodological issues relevant to meta-analysis of genetic
association studies: (i) assessment of Hardy–Weinberg equilibrium
(HWE) and (ii) definition of genetic models.
Deviation from HWE in control samples is the most commonly

used test for genotyping error.41 However, the test for HWE
has relatively low statistical power to detect genotyping error.42

Pre-definition 
• objectives
• search strategy
• inclusion or exclusion criteria

Literature identification in database
search (e.g. PubMed, EMBASE and
HuGe), n

Excluded, n

Abstracts retrieved for evaluation, n

Excluded,
Reason 1, n
Reason 2, n

Excluded, n
Reason 1, n
Reason 2, n

Full texts retrieved for evaluation, n

Excluded, n
Reason 1, n

Search in bibliographies, n

Reason 2, n

Studies meeting eligibility criteria, n

Figure 1 Flowchart detailing the exclusion and inclusion criteria and the

number of studies excluded and included at each step of the literature

search.
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Furthermore, SNPs that are not in HWE can be used for inference about
genetic model of disease susceptibility at the locus.43 Although there is
no consensus how meta-analyses should handle the studies that are not
in HWE, three strategies have been applied: including all studies
regardless of departure from HWE,44 performing sensitivity analyses
in order to evaluate whether the genetic effects are different between
subgroups of studies classified according to test for HWE26,45–47 and
excluding studies showing statistically significant departure from
HWE.18 Reporting the extent of departure from HWE measured by
such as a,48 the inbreeding coefficient,49 and the disequilibrium para-
meter50 is also useful.44

In a genetic association study, subjects are classified into three
exposure groups (AA, Aa and aa). Let A be the susceptibility allele,
there are several methods of dichotomizing these exposure groups for
conducting a meta-analysis:26 by comparing allele frequency, by assum-
ing a specific mode of inheritance (recessive, dominance, complete
overdominant or codominant) and by performing multiple pairwise
comparisons. All these methods, with exception of the method perform-
ing multiple pairwise comparisons, assume a particular genetic model.
When performing multiple pairwise comparisons or testing multiple
genetic models, results of all analyses undertaken should be reported. In
order to choose most likely genetic model describing the genetic
architecture underlying a disease of interest, Minelli et al.51 presented
a ‘genetic model free’ approach. Their procedure is based on the
estimation of the ratio (l) of the log OR of Aa versus aa compared
with the log OR of AA versus aa. l will be 0 under a recessive model, 0.5
under a codominant model and 1 under a dominant model.

ESTIMATION OF A SUMMARY OR AND TEST FOR AND

MEASURE OF BETWEEN-STUDY HETEROGENEITY

The statistical methods of combining the results of different
studies are described. We consider a meta-analysis of k separate
genetic association studies to estimate the genetic effect (y) for
dichotomous disease outcome quantified by log OR. Let yi and ŷi
be the true and observed log OR for ith case–control study, respec-
tively (i¼1,y ,k). Let vi denote the variance of ŷi , the weight for ith
study is given by wi¼1/vi (that is, the inverse of the variance). OR for
each study is given by ORi¼aidi/bici. ŷi ¼ ln ðORiÞ. vi is defined as
vi¼1/ai+1/bi+1/ci+1/di, where ai and bi correspond to numbers
of affected individuals with and without the susceptible geno-
type, respectively, and ci and di correspond to numbers of unaffec-
ted individuals with and without the susceptible genotype,
respectively.
There are two commonly used procedures for combining ŷis:

‘fixed effects model’ (FEM) and ‘random effects model’ (REM).
FEM assumes that yis are homogeneous across studies (that is,
y1¼y2¼y¼yk) and all differences are due to chance. Inverse-var-
iance, Mantel-Haenszel52 and Peto’s53 methods are commonly used
for FEM meta-analysis. Using the inverse-variance method for
combining the results across studies, a summary log OR under FEM
is calculated as a weighted average of the study estimates:

ŷFEM ¼ ð
Pk

i¼1 wiŷiÞ=ð
Pk

i¼1 wiÞ. The variance of ŷFEM is given by

nFEM ¼ 1=
Pk

i¼1 wi.

The assumption underlying FEM should be examined with
the test for heterogeneity, Cochran’s Q test.54 Test statistics of
Cochran’s Q test is

Q ¼
Xk

i¼1

wi ŷi � ŷFEM
� �2

Under the null hypothesis of homogeneity (that is, y1¼y2¼y¼yk),
this statistics approximately follows a w2 distribution with k�1 degrees
of freedom. Cochran’s Q test has relatively low statistical power to
detect between-study heterogeneity, especially when the number of
studies is small;55 therefore, the test is usually preformed at the
significance level of 0.1.56

REM assumes that the genetic effects may vary across studies
because of genuine difference and/or differential biases. The estimate
of the between-study variance (t2) is included into the weight as
w

0
i ¼ 1=ðw�1

i +t̂2Þ. A summary log OR under REM are estimated
as follows: ŷREM ¼ ð

Pk
i¼1 w

0

i ŷiÞ=ð
Pk

i¼1 w
0

iÞ. The variance of ŷREM is

approximated as vREM ¼ 1=
Pk

i¼1 w
0

i .

In DerSimonian and Laird57 REM meta-analysis, the t2 is estimated
as follows:

t̂2DL ¼
Q� ðk� 1Þ

Pk
i¼1 wi �

Pk
i¼1 w

2
i =
Pk

i¼1 wi

� �

When Qok� 1; t̂2DL takes negative value. In practice, max f0; t̂2DLg is
used. Therefore, the precision of a summary log OR with REM
(1/vREM) can never exceed that with FEM (1/vFEM).
The 95% CI for ŷ is given by ŷ� 1:96� ffiffiffi

v
p

. Test statistic of test for
the genetic effect is given by Z ¼ ŷ=

ffiffiffi
v

p
. Under the null hypothesis,

Z follows a standard normal distribution.
Higgins and Thompson58 proposed three criteria (H, R and I2)

for measure of heterogeneity, which have following desired character-
istics: (i) dependence on the extent of heterogeneity, (ii) scale
invariance (that is, comparison can be made across meta-analyses
with different scales and different outcomes) and (iii) size invari-
ance (that is, independence on the number of studies included).

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q=ðk� 1Þ

p
is the relative excess of Q to its degrees of freedom.

Mittlbock and Heinzl59 proposed H2
M ¼ Q�ðk�1Þ

k�1 as a modification of

H. H2
M is the proportion of between-study variance to within-study

variance. In practice, max f0; H2
Mg is used. H2

M values over 1.0

indicate considerable heterogeneity.59 R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vREM=vFEM

p
is the ratio

of the standard error of a summary effect with REM to the standard
error with FEM. R represents the inflation of the CI for REM
compared with FEM. H and R coincide when all studies have equal

weight.58 I2 ¼ 100� Q�ðk�1Þ
Q . I2 can take negative value, but

max f0; I2g is used in practice. I2 represents the proportion of
between-study variance to the total variation in study estimates and
ranges from 0 to 100%. I2 is most widely used for measure of
heterogeneity. I2 values over 50% indicate large heterogeneity.58,60

Potential drawback of I2 is that CIs are very large, especially when
the number of studies is small.61

If heterogeneity is present or suspected by the statistical test or
measures, there are several commonly used approaches: (i) performing
sensitivity analysis by excluding one or more studies showing outlier
effect size, (ii) stratifying the studies into homogeneous subgroups
such as racial groups and applying FEM for each subgroup and (iii)
implementing REM when observed heterogeneity could not be
addressed. Some researchers recommend that the use of REM is
preferable compared with FEM, because both models give similar
summary effects when there is no between-study heterogeneity, FEM
gives narrower CI for summary effect compared with REM when
between-study heterogeneity exists and a negative result of test for
heterogeneity does not always indicate homogeneity when the number
of studies is small.25
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SOURCE OF HETEROGENEITY

A number of reasons have been advanced for heterogeneity in the
genetic effects across the results of various studies.8,13,14,47 False-
positive results in the initial studies and false-negative results in
small replication studies are implicated as the most likely reasons
for non-replications.8–10,13,14 Inconsistency and between-study hetero-
geneity may be caused because of biases or genuine differences in the
genetic effects across populations. We review briefly in this article.

Biases
Differential biases due to population stratification, misclassification of
clinical outcome, genotyping error and overestimation of genetic
effect in the first study can be sources of between-study heterogeneity.
The presence of population stratification tends to spurious associa-

tions. It can be caused when there are undetected genetically different
subgroups within a study population and disease prevalence differs
among these subgroups.11,62 The effect of population stratification on
the results of genetic association studies is debatable.62–66 According to
systematic reviews of meta-analyses of genetic association studies, it is
not so much frequent that difference in racial or ethnic groups could
explain heterogeneity.9,67

Inadequate assignment of cases and controls may cause misclassi-
fication bias. Although there is a possibility that misclassification of
cases and controls would weaken the gene–disease association, the
results of misclassification bias may be modest unless the trait is
common.13,32

Ioannidis et al.10 conducted a systematic review of 36 meta-analyses
including a total of 370 genetic association studies. Statistically
significant between-study heterogeneity was observed in 14 meta-
analyses. Restricting to meta-analyses with at least 15 studies, 7 of 9
meta-analyses showed significant heterogeneity. In 25 or 26 meta-
analyses, the first study showed more predisposing or protective OR
than subsequent replication studies. Using cumulative meta-analysis
plots, the authors depicted the process that strong associations
claimed in the first study were regressed toward null associations, as
subsequent replication studies were accumulated over time. Similar
findings were reported in Lohmueller et al.9 Associations passing
predetermined thresholds of statistical significance tend to overesti-
mate the size of the genetic effect, especially when the sample size of
the study is small and the threshold is stringent in multiple testing
situations.68–74 Such an upward bias is called as winner’s curse
phenomenon.9,69

Genuine differences
Differences in the pattern of LD structure over chromosomal regions
of interest across populations are implicated as a cause of between-
study heterogeneity in the genetic effects. Zondervan and Cardon75

show that marker allelic OR can vary according to the extent of LD
between marker and true disease allele in terms of D¢ and according to
mismatch between disease allele frequency and marker allele fre-
quency. This issue may be especially pronounced in the GWA settings
because the SNPs that most efficiently surrogate the other SNPs in a
genomic region with high LD (that is, tag SNPs) rather than putative
functional SNPs have been used to increase genome coverage. When
the extent of LD between tag SNP and true disease allele varies across
studied populations, the observed ORs could vary across studies.
Many common diseases are implicated to have a complex etiology

involving multiple genetic and environmental factors including their
interactions. Gene–disease associations can be modified when the
gene–gene or gene–environment interaction exists. If these interac-
tions are not identified and controlled for, the gene–disease associa-

tions would be heterogeneous across populations according to
distribution of a genetic variant or prevalence of a particular environ-
mental exposure. It is needed to conduct a consortium-based
meta-analysis of individual patient data in large scale to account for
gene–gene or gene–environment interactions.47

SIMULATION STUDY

We conducted a simulation study to illustrate (i) the power of
Cochran’s Q test, (ii) the properties of measures of between-study
heterogeneity (I2 and H2

M) and (iii) the type I error rate and the power
of meta-analysis for detecting the gene–disease association in the
presence of between-study heterogeneity.
We consider meta-analysis of k case–control association studies

to estimate the overall genetic effect (y; log OR) of disease outcome.
The exposure status (AA, Aa and aa) of subjects included in each
case–control study are ascertained in the sampling manner outlined
below.70 The values yA{1, 0} are labels encoding case (1) or con-
trol (0). Let A denote the susceptibility allele, we assume the domi-
nant model and then the SNP genotype predictor value x was designed
as 1¼AA or Aa, 0¼aa. Under the assumption of HWE, the frequency
of x written as fx is calculated based on the disease allele frequency
fA: f1¼1�(1�fA)

2. The logistic regression model for ith study
(i = 1, 2, . . . , k) is produced as follows:

log ðPrðY¼ 1jxÞ=ð1� PrðY ¼ 1jxÞÞÞ ¼ ai+yi x

where ai is the intercept and yi is the log OR for ith study. yi is
drawn from N (y, t2). t2 is the between-study variance. ai can be
calculated by using the equation for the prevalence of the disease

p ¼
P

x
expðai+yixÞ

1+ expðai+yixÞ�fx. The genotypes of case and control subjects are

generated based on the conditional probabilities of x given by y as
follows:

PrðX ¼ xjY ¼ 1Þ ¼ fx
p
� expðai+yixÞ
1+ expðai+yixÞ

;

PrðX ¼ xjY ¼ 0Þ ¼ fx
1� p

� 1

1+ expðai+yixÞ
For each study, the genotypes of case–control samples were generated
and then the OR and its variance were calculated. Then, the ORs for k
studies were combined by FEM and REM meta-analyses. Cochran’s

Q test was conducted and the I2 and H2
M were measured.

We considered simple five simulation scenarios of meta-analyses.
The description of simulation scenarios is shown in Table 1. The
scenarios I, II and III were designed to be same in sample size within
each study but different in the number of included studies. In
scenarios III, IV and V, numbers of studies were different but total
number of case–control samples included in meta-analysis was fixed at
20 000. The pairs of scenarios I and V or II and IV were designed to
have the same number of studies but differ in sample size within
each study.
We examined 126 parameter combinations for each scenario. The

between-study variance (t2) varied from 0.0 to 0.02 with increments
of 0.001. The true summary OR (exp(y)) was set to be 1.0, 1.4 or 2.0.
The disease allele frequency fA was assigned to be 0.1 or 0.3. The
disease prevalence p was fixed at 0.01. The values of t2 were based on
the literature values reported by Moonesinghe et al.76 for the con-
firmed 10 loci in a meta-analysis of three GWA studies of type 2
diabetes.77 Therefore, our simulation would reflect the possible range
of between-study variance. For each scenario and parameter combina-
tion, 100 000 simulations were carried out.
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The empirical power of Cochran’s Q test was evaluated by the
proportion of the simulation runs crossing the significance level of
0.1 when t240.0. The top row of Figure 2 shows the powers of
Cochran’s Q test obtained with five scenarios as the function of t2

when the overall OR¼1.0 and fA¼0.1 or 0.3. For each scenario, the
power increased as t2 increased. Comparing among scenarios I,
II and III, the power increased as the number of studies increased.
When total number of case–control samples was fixed (that is,
comparing among scenarios III, IV and V), the powers were similar
but scenarios with smaller number of studies showed higher power

Table 1 Description of five simulation scenarios of meta-analysis

Scenario k ncase/ncontrol

I 5 500/500

II 10 500/500

III 20 500/500

IV 10 1000/1000

V 5 2000/2000

k denotes the number of included studies and ncase and ncontrol are the number of cases and
controls within each study, respectively.

fA =0.1
fA =0.3
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Figure 2 Behaviors of test for and measures of between-study heterogeneity for five simulation scenarios as the function of t2, the disease allele frequency

fA¼0.1 or 0.3, and the overall odds ratio (OR)¼1.0. The top row shows the power of the Cochran’s Q test at the significance level of 0.1. The middle and

bottom rows show the means of I2 and H2
M, respectively. The lines of H2

M for scenarios I, II and III are overlapping. The description of each simulation

scenario is in Table 1.
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when t2 was small. When numbers of studies were identical (that is,
two pairwise comparisons of scenarios I versus V or II versus IV),
meta-analyses with larger sample size showed higher power for the
same t2. The powers obtained with fA¼0.3 were higher than those
with fA¼0.1. For most of our parameter settings, the powers of
Cochran’s Q test did not reach at 0.8, although the significance level
was set to be 0.10.
The means of 100 000 simulated values for the measures of

heterogeneity (I2 and H2
M) are shown as the function of t2 when

the overall OR¼1.0 and fA¼0.1 or 0.3 (the middle and bottom rows
of Figure 2). In practice, max{0, I2} and maxf0; H2

Mg are used to
restrict the ranges of these measures as positive. As the simulation
study of Mittlbock and Heinzl,59 unrestricted values of I2 andH2

M were
used to obtain unbiased distributions for these measures in this
study. These two measures presented monotonic increases as t2

increased. I2 and H2
M increased as the sample size per study increased

(scenarios I versus Vor II versus IV). The two measures obtained with
fA¼0.3 were higher than those with fA¼0.1. These results indicate that
I2 and H2

M increased as within-study variance, k=ð
Pk

i¼1 wiÞ, decreased.
Comparing scenarios I, II and III shows the important difference
between I2 and H2

M: whereas I2 increased as the number of studies
increased, H2

M did not change (the lines of H2
M for scenarios I, II

and III are overlapping in the bottom rows of Figure 2). This
suggests that H2

M may be a good indicator of comparing the
extent of between-study heterogeneity across meta-analyses. Similar
results and further discussion are provided by Mittlbock and
Heinzl.59 The 95% intervals of simulated I2 and H2

M were large,

especially when the number of studies is small (Supplementary
Figure S1).
The type I error rate in meta-analysis was assessed as the proportion

of the simulation runs showing significant summary OR at the
significance level of 0.05 when the null hypothesis was true
(that is, the true overall OR¼1.0). Figure 3 shows the type I error
rates of five scenarios when fA¼0.1 or 0.3. When there was no
between-study variance (t2¼0.0), the type I error rates under FEM
were well controlled at 0.05, but REM showed slightly conservative
results (the type I error rateE0.04). As t2 increased, the type I error
rates under FEM rapidly inflated, but those under REM slightly
increased. The type I error rates under both models for the same t2

increased when sample size per study was large or fA¼0.3. We should
note that the use of FEM could increase the type I error rate even to
the extent that the between-study heterogeneity could not be fully
identified by Cochran’s Q test and two measures I2 and H2

M. For
example, in case of t2¼0.005 and fA¼0.3, the type I error rate under
FEM for five scenarios were 8.5–19.2% (Figure 3). For the parameter
setting, the powers of Cochran’s Q-test were 20.6–48.3%, the means of
I2 were �51.9 to 20.8% and the means of H2

M were 0.31–1.25
(Figure 2).
The power of detecting a gene–disease association was evaluated as

the proportion of simulation runs reaching the significance level of
5.7�10�7, assuming the consortium-based meta-analysis of GWA data
sets. As shown in Figure 3, applying FEM meta-analysis to hetero-
geneous genetic associations could lead to false-positive findings;
therefore, we considered only REM when assessing the power of
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Figure 3 The type I error rate in fixed effects model (FEM) and random effects model (REM) meta-analyses at the significance level of 0.05 for five scenarios

as the function of t2 and the disease allele frequency fA¼0.1 or 0.3. The top and bottom rows show the type I error rates when applying FEM and REM,

respectively. The lines of the type I error rate under FEM for scenarios I, II and III are overlapping. The description of each simulation scenario is in Table 1.
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meta-analysis. The top row of Figure 4 shows the result, assuming the
dominant model and fA¼0.1 or 0.3. When the true overall OR¼1.4,
the power for each scenario gradually decreased as t2 increased.
Comparing scenarios III, IV and V, the decreases in the power for
the same t2 were larger in the scenarios with large sample size per
study. While the values of vFEM for scenarios III, IV and V were not
different, the values of vREM for scenarios III, IV and V varied when
between-study heterogeneity was present. For the same t2 (40), the
following inequality was true: vREM for scenario V4vREM for scenario
IV4vREM for scenario III. When ya0, the mean of the distribution of
the Z-test under REM is l ¼ y=

ffiffiffiffiffiffiffiffiffiffi
vREM

p
. The power of detecting gene-

disease association of effect size of y is78

Power ¼ 1� FðCa=2 � lÞ+Fð�Ca=2 � lÞ

where F is the cumulative distribution function of the standard
normal and Ca/2 is the upper a/2 percentage point of the standard
normal distribution. Along with the inequality described above, the
decrease in the power for the same t2 is larger in the scenarios with
large sample size per study when the total sample sizes are equal across
scenarios. When the overall OR was set to be 2.0, the powers did not
so much decrease in the simulated range of t2. Furthermore, we
calculated the mean OR of the simulations passing the genome-wide
significance threshold (P-valueo5.7�10�7). The estimates of mean
OR were upwardly biased, especially in scenarios whose powers of
detecting gene–disease associations were low (the bottom row of
Figure 4). On the other hand, if the meta-analyses were sufficiently
powered (for example, the true overall OR¼2.0), upward biases were
not so pronounced in the simulated range of t2.
Our simulation suggests that the power of meta-analysis of GWA

data sets to detect small genetic effect would decrease due to between-
study heterogeneity (t2B0.02). As a result, the discovered gene–
disease association could have inflated effect (winner’s curse phenom-
enon). Such a winner’s curse phenomenon can be seen even to the
extent that the between-study heterogeneity could not be fully
identified. Similar results were obtained when different genetic models

(that is, recessive and additive in log-odds scale models) were
examined (data not shown).

CONCLUSION

We reviewed the process and the methods of meta-analysis
of genetic association studies. To conduct and report a transparent
meta-analysis, the search strategy, the inclusion or exclusion criteria of
studies and the statistical procedures should be fully described.
Assessment of HWE and determination of genetic model are
methodological issues relevant to meta-analysis of genetic association
studies.
In genetic association studies of common disease, effect size of

consistently replicated gene–disease associations were found to be
small (OR¼1.2–1.5);15 therefore, meta-analysis of GWA data sets is
the most important approach to increase the power to detect such
gene–disease associations.35

Our simulation shows that the power of REM meta-analysis of
GWA data sets to detect a small genetic effect could decrease due to
between-study heterogeneity and then the mean OR of the simulated
meta-analyses that passing the genome-wide significance threshold
would be upwardly biased. Recently, Moonesinghe et al.76 show
that the required sample size in meta-analysis to detect an overall
association with adequate power at a significant level increases as
between-study heterogeneity increases and when the between-study
heterogeneity exceeds a threshold, meta-analysis cannot reach the
power regardless of how large included studies are. At the same
time, empirical evaluation of published meta-analyses61 and our
simulation study show the uncertainty of estimated between-study
heterogeneity is large unless many studies are combined.
These findings suggest that when a meta-analysis of GWA data sets

shows association signals reaching genome-wide significance with
small between-study heterogeneity, the result should be cautiously
reported and further replication studies by institutions other than
GWA teams are required.35 Moreover, when a large number of data
sets are available, challenges to explain and reduce the observed
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Figure 4 Simulations for the powers in random effects model (REM) meta-analyses of detecting a gene–disease association at the significance level of

5.7�10�7 (the top row) and the mean odds ratio (OR) of the simulations passing the threshold (the bottom row) as the function of t2, the disease allele

frequency fA¼0.1 or 0.3, and the overall OR¼1.4 or 2.0. When the overall OR¼2.0, the lines of the powers for scenarios II, III and IV are overlapping.

The description of each simulation scenario is in Table 1.
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between-study heterogeneity may become important.74,76 The knowl-
edge about the potential causes of between-study heterogeneity may
help. Such post-GWA research will enable us to map the causative
variant finely79 or to detect polymorphisms associated with clinically
important subtypes of diseases.80
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