
ORIGINAL ARTICLE

Prediction of functional nonsynonymous single nucleotide
polymorphisms in human G-protein-coupled receptors

Dan Xue Æ Jingyuan Yin Æ
Mingfeng Tan Æ Junjie Yue Æ
Yuelan Wang Æ Long Liang

Received: 16 October 2007 / Accepted: 24 January 2008 / Published online: 26 February 2008

� The Japan Society of Human Genetics and Springer 2008

Abstract G-protein-coupled receptors (GPCRs) are

found in a wide range of organisms and are central to a

cellular signaling network that regulates many basic

physiological processes. GPCRs are the focus of a signif-

icant amount of current pharmaceutical research because

they play a key role in many diseases. In this paper, we

predict the functional nonsynonymous single nucleotide

polymorphisms (nsSNPs) in human GPCRs by defining

optimal attributes and using a decision tree method. The

predictive power of each attribute was evaluated. A subset

of sequences with optimal attributes was obtained using the

decision tree method combined with a genetic search

algorithm. The subset contains both sequence-based and

structure-based information, and the information for each

subset consists of a conservation score, the location of the

mutation, the BLOSUM62 substitution matrix score, as

well as the hydrophobicity change, the solvent accessibil-

ity, and the buried charge. Seven important rules were

derived from the decision tree. A total of 166 functional

nsSNPs in human GPCRs from the dbSNP have been

predicted using the optimal attributes subset.

Keywords GPCRs � Functional nsSNPs � Optimal

attributes � Decision tree � Bioinformatics

Introduction

G-protein-coupled receptors (GPCRs) are the largest protein

superfamily in most mammalian genomes. Despite their

great diversity in terms of sequence composition, all GPCRs

share a common protein structure. An N-terminal extracel-

lular domain of variable length is followed by seven

transmembrane (TM) helices, connected by three intracel-

lular loops (ICL) and three extracellular loops (ECL), one of

which terminates in a C-terminal intracellular domain

(Gether 2000). These receptors are plasma membrane-

bound and can respond to a large number of extracellular

signals from nucleotides, peptides, amines and hormones

(Sakmar 1998). Upon recognition of these ligands, GPCRs

act through G proteins in signaling pathways that influence

almost all physiological functions. As such, pharmacologic

agents that serve to antagonize GPCR-mediated signaling

are common. Actually, more than one-third of all known

small-molecule drugs are targeted at GPCRs (Marinissen

and Gutkind 2001; Howard et al. 2001). Thus, small geno-

mic-level differences in GPCRs may explain the different

drug-response behaviors of different individuals toward a

drug, and they can be used to tailor drugs based on an

individual’s genetic makeup (Drysdale et al. 2000; Phillips

et al. 2001; Roses 2004).

Single nucleotide polymorphisms (SNPs) are defined as

single base variations in sequence that occur at a frequency

of at least 1% and may directly explain the pathogenesis of

disease. SNPs in protein-coding exons are classified as

synonymous or nonsynonymous (nsSNPs) according to

whether or not they alter the protein sequence. Some
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nsSNPs can affect gene function through their effects on

the structure or function of the encoded protein. Recently,

several studies have tried to investigate how to determine

whether nsSNPs are either functional or neutral using

protein sequence and structural information. Empirical

rules identifying detrimental nsSNPs were derived based

on structural information (Wang and Moult 2001). An

algorithm named SIFT, which is based on the sequence

conservation and scores from position-specific scoring

matrices, was developed to rationalize amino acid changes

that were likely to affect the function of a protein (Ng and

Henikoff 2001). Structural and sequence information was

then combined and used to predict functional nsSNPs

(Chasman and Adams 2001; Sunyaev et al. 2001;

Ramensky et al. 2002; Saunders and Baker 2002; Krishnan

and Westhead 2003; Bao and Cui 2005); however, bovine

rhodopsin (BR) is the only three-dimensional structure of a

GPCR that has been resolved (Palczewski et al. 2000).

Balasubramanian et al. (2005) predicted disease-causing

nsSNPs in GPCRs based on sequence information using

logistic regression methods. However, some nsSNPs will

influence protein function but will not cause inherited

diseases. Here, we aimed to predict the functional nsSNPs

in human GPCRs from dbSNP based on the optimal

sequence and structural information using a decision tree

method.

Materials and methods

Datasets

The GPCRDB has an extensive collection of point

mutations that have been compiled from the literature

using the MuteXt automated extraction method (Horn

et al. 2003, 2004). We analyzed the functions of these

mutated residues and collected those mutations that

changed receptor function or structure in order to include

them in our training set.

To derive a dataset of neutral mutations, proteins which

have [90% sequence identity to the target GPCRs were

extracted from GPCRDB. For each target protein, only

one ortholog was chosen from each species based on the

best match to the target protein, and multiple sequence

alignments (MSA) were performed to the target protein

and its homologs. Amino acid variations at any position in

the MSA were considered to be neutral variations (Sun-

yaev et al. 2001; Balasubramanian et al. 2005). The logic

behind this assumption is that variations in highly

homologous sequences between species are generally

neutral and are highly unlikely to be deleterious, because

detrimental changes will be selectively removed during

the course of evolution. There may be examples, however,

where some are functional changes in one species but not

in the others. In total, the training dataset contained 750

functional mutations and 1,345 neutral changes in 72

receptors.

The nsSNPs in human GPCRs with known ligands were

extracted from dbSNP. First, the corresponding gene of

each human GPCR was found in Swiss-Prot, and then,

according to the name of each gene, nsSNPs were searched

for in dbSNP. The opsins, olfactory and taste receptors are

excluded since they are not drug targets. In all, 519 nsSNPs

were identified.

Attributes

The sequence-based and structure-based attributes of

amino acid polymorphisms that may serve as generalized

predictors of effects on function were chosen from the

literature. The sequence-based attributes that were used in

the prediction of functional nsSNPs were the sequence

conservation score at the mutated position, the physio-

chemical changes (mass, hydrophobicity, volume) between

the wild-type residues and mutated residues, and substitu-

tion matrix scores, such as BLOSUM62 and PAM120

matrices. Three structure-based attributes, including the

location of the mutation (whether or not it was in the TM

regions), the solvent accessibility, and the buried charge

were also considered.

The sequence conservation score was calculated in two

steps using the software program AL2CO (Pei and Grishin

2001). First, an independent count-based weighting

scheme was used to estimate the amino acid frequencies.

The conservation score was then calculated from these

frequencies based on an entropy-based method (Shannon

1948). The MSA files of the subtype families containing

the target proteins were extracted from the GPCRDB.

Each family has a different number of receptors, and as

the number of sequences in a family varies, the level of

conservation of each position changes, and thus the

average conservation score changes (Armon et al. 2001).

In order to diminish this effect, the conservation score

was normalized to its z-score function, which was cal-

culated by subtracting the mean conservation score from

the conservation score and dividing by the standard

deviation.

The hydrophobicity of the amino acids was evaluated

using the Kyte–Doolittle hydrophobicity scale (Kyte and

Doolittle 1982). Average residue volumes were taken from

Harpaz et al. (1994). The mass, hydrophobicity and volume

changes were the absolute value of the difference between

the wild-type residue and the mutated residue. The TM

regions of a protein were taken from the Swiss-Prot data-

base entry for each protein. If no information was
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available, the TMHMM program was used to predict the

TM regions of the receptors (Krogh et al. 2001). The

location of the wild-type residue in the TM regions was 1;

otherwise it was 0. The solvent accessibility was predicted

by PHD (Rost and Sander 1993, 1994). Relative accessi-

bility was grouped into three states: buried (\9%),

intermediate (9–36%) and exposed (C36%). The wild-type

residue was deemed to be a buried charge if it was K, R, D,

E or H and its solvent accessibility was in the buried state

(Krishnan and Westhead 2003).

Decision tree

Decision tree learning is a means of approximating dis-

crete-valued target functions in which the learned function

is represented by a decision tree. It has been shown to

perform well in homogeneous cross-validated training

datasets (Krishnan and Westhead 2003). Here we used the

C4.5 decision tree algorithm developed by Quinlan (1993).

It was performed as a J48 decision tree classifier using a

Weka machine learning workbench (Witten and Frank

2000; Frank et al. 2004). The default set of parameters and

tenfold cross-validation were used in the predictions. The

decision tree not only provides a prediction but also yields

an estimate of the probability that a prediction from the

rule is correct. Each rule was derived from the training

dataset, and the estimated accuracy was used to assign a

confidence level to the prediction. Rules with estimated

accuracies of x% were taken to have a confidence level of

x/100. Another measurement of a rule was ‘‘cover,’’ which

was the number of mutations conforming to the rule in the

training dataset. If the cover of a rule was too small, it

meant that only a few mutations in the training dataset met

this rule, and so the rule had no representative meaning. In

this paper, we used 30 as the cover threshold.

Optimize attributes set

The attributes mentioned above have been proven to be

related to functional mutations. Combining of all those

attributes may result in redundant descriptions of each

polymorphism and cause a reduction in prediction quality

(Dobson et al. 2006). Therefore, attributes selection was an

indispensable step before prediction. Here, optimization

means finding the best combination of attributes that

maximizes the prediction accuracy. The optimized attri-

butes subset was obtained using wrapper-based attribute

selection with J48 as the learning method combined with

the genetic search method with default option settings. The

genetic search algorithm was initialized with a population

size of 20 and then 50 generations were evaluated.

Evaluation of the prediction accuracy

The mutations are classified into ‘‘effect’’ or ‘‘no effect.’’

Mutations in the ‘‘effect’’ class will influence the structure

or function of the protein, which means that these are

functional mutations. Because the training dataset con-

tained more neutral mutations than functional mutations,

Matthew’s correlation coefficient (MCC) was used to

evaluate the performance (Matthews 1985):

MCC ¼ ðTP � TN� FP � FNÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTNþ FNÞðTNþ FPÞðTPþ FNÞðTPþ FPÞ
p

where TP is true positives, FN is false negatives, TN is true

negatives and FP is false positives. When there is an

obvious disparity in the number of positive samples and

negative samples, MCC is usually a better evaluation cri-

terion than the overall accuracy. MCC combines both

sensitivity and specificity into one measure and the values

lie in the range of -1 to 1. A value of 1 means complete

prediction accuracy, while a value of 0 means that every

prediction was randomly assigned.

Statistics

Statistical analysis of the distribution of each attribute for

functional mutations and neutral mutations was performed

using the chi-squared test.

Results

Predictive powers of individual attributes

The prediction performance of each attribute was assessed

using the decision tree method. Except for the solvent

accessibility, all other attributes played a role in predicting

whether an nsSNP has an effect on protein function or not.

When solvent accessibility was used as a single attribute in

the prediction, the MCC was 0. In contrast, the conserva-

tion score, whose MCC reached 0.68, was found to be the

best discriminator of functional versus neutral variations.

The MCCs of the location, mass change, and volume

change attributes were higher than 0.4, but these achieved

less prediction accuracy than the conservation score. Other

attributes, such as PAM120 and BLOSUM62 substitution

matrices, hydrophobicity change, and buried charge, had

poor predictive performance (Table 1).

Distribution of functional and neutral mutations

The distribution of attribute values for functional mutations

was significantly different from that of neutral mutations
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(Fig. 1). Approximately 62.67% of the functional muta-

tions had conservation scores of[0.5, whereas only 2.15%

of the neutral mutations had conservation scores of [0.5.

For those mutations with a conservation score\-0.5, only

17.6% were functional mutations, whereas 81.86% were

neutral. For those mutations with a conservation score of

between -0.5 and 0.5, functional mutations were only

3.74% more than neutral (Fig. 1a).

When the hydrophobicity value changes of wild-type

residues and mutated residues were [3, 50.27% of the

mutations were functional compared with 21.27% neutral

mutations. When the hydrophobicity value changes were

\3, there were more neutral mutations than functional

(Fig. 1b). The distributions of the mass and volume chan-

ges were similar to that of the hydrophobicity. When

volume changes were [60 or mass changes were [40,

there were more functional mutations than neutral muta-

tions (Fig. 1c,d). These data indicate that dramatic changes

in physiochemical properties tend to change the structure

or function of the protein, and thus the mutations would be

functional.

The nature of the amino acid changes was assessed

using BLOSUM62 and PAM120 substitution matrices,

since these two matrices are widely used and robust. A

total of 67.74% of the functional mutations have BLO-

SUM62 scores of \-1, and only 27.52% of the neutral

variations have BLOSUM62 scores of \-1 (Fig. 1e). The

distribution of the PAM120 substitution matrix score is

similar to that of the BLOSUM62 results (Fig. 1f). For

these methods, the smaller the score, the higher the prob-

ability that a mutation is functional. We found that 47.06%

of the functional mutations and 14.35% of the neutral

changes have a PAM120 score of \-2, while 25.46% of

the functional mutations and 57.84% of the neutral changes

have a PAM120 score of [0.

TM regions contained 77.87% of functional mutations

and 24.98% of neutral mutations, while extracellular and

intracellular domains contained 22.13% of functional and

75.02% of neutral mutations (Fig. 1g). The distributions of

buried charge and solvent accessibility for functional

variations and neutral mutations were significantly differ-

ent (v2 = 33.78, P \ 0.01 and v2 = 51.49, P \ 0.01,

respectively), although this difference was not as pro-

nounced for the other attributes (Fig. 1h,i).

Optimal attributes subset

During the attribute selection process, six attributes were

found to be the optimal attributes subset: the conservation

score, the BLOSUM62 substitution matrix score, the

location, the solvent accessibility, the buried charge, and

the hydrophobicity change. The prediction performance of

this optimal attributes subset was compared with four dif-

ferent attribute sets: all attributes, sequence-based

attributes, structure-based attributes, and conservation

score alone (Table 1). The MCC of the optimal attributes

set (0.81) was the highest among them. Sequence-based

attributes (even using just the conservation score) were

better than the structure-based ones. When all attributes

were combined, the prediction accuracy was improved

compared with those of sequence-based or structure-based

attributes alone.

Rules for predicting functional nsSNPs

The decision tree method can produce intelligible rules and

attach a confidence level to each rule. Seven important

rules with covers of [30 were obtained (Table 2). These

rules were used to predict functional mutations, and they

conveniently discriminate functional nsSNPs from neutral

mutations. For example, according to Rule 1, if the con-

servation score of an nsSNP was less than or equal to -

0.343, and it was located in the extracellular or intracellular

domains, then the probability that this nsSNP is neutral

would be 0.96.

Functional nsSNPs in human GPCRs

We collected 519 nsSNPs from dbSNP, and 166 of these

(32%) were predicted to be functional using the optimal

attributes set (Table 3). Analysis of these nsSNPs in

GPCRs will provide the basis for assessing susceptibility to

diseases and designing individualized therapy.

Table 1 Prediction performances of attributes and attribute sets

obtained using the decision tree method

Attribute or attribute set MCC

Conservation score 0.68

Location 0.51

Volume change 0.45

Mass change 0.41

PAM120 score 0.38

BLOSUM62 score 0.28

Hydrophobicity change 0.27

Buried charge 0.13

Solvent accessibility 0

Sequence-based attributes 0.73

Structure-based attributes 0.51

All nine attributes 0.78

Optimal attributes subset 0.81
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Fig. 1a–i The distribution of attributes for functional mutations and

neutral mutations. The shaded bars represent the functional mutations

and the white bars are neutral mutations. Attributes: a conservation

score (v2 = 1099.05, P \ 0.01, 7 df), b hydrophobicity change

(v2 = 208.37, P \ 0.01, 7 df), c volume change (v2 = 212.64,

P \ 0.01, 6 df), d mass change (v2 = 211.83, P \ 0.01, 5 df),
e BLOSUM62 score (v2 = 281.85, P \ 0.01, 7 df), f PAM120

(v2 = 314.47, P \ 0.01, 5 df), g location (v2 = 546.78, P \ 0.01,

1 df), h solvent accessibility (v2 = 51.49, P \ 0.01, 2 df), and

i buried charge (v2 = 33.78, P \ 0.01, 1 df )
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Discussion

In the present study, the prediction power of both

sequence-based and structure-based attributes was used to

predict functional nsSNPs in human GPCRs. Since only

one GPCR structure is known, we used predicted structure

information instead of the actual structure. A conservation

score that is based on evolutionary selection information

was found to be the best single predictor for discriminating

functional mutations from neutral variations. A high con-

servation score means that there is selective pressure to

maintain these residues during evolution, and therefore

these are likely to be important to the structure and func-

tion of the protein. The mutations that occur at these

conserved sites are often functional mutations. The change

in the physiochemical properties of residues would influ-

ence the structure or stability of the proteins and indirectly

change the function, and so these attributes only have

moderate prediction power. Substitution matrices, which

consider only the likelihood of the substitution in all pro-

teins at all positions, can also be useful, albeit with lower

prediction accuracy (Yue and Moult 2006). We found that

functional mutations are overrepresented in the TM regions

and are underrepresented in the extracellular and intracel-

lular domains. This implies that changes in TM regions

may directly affect either the structure or function of the

receptor. Mutations in TM regions could abrogate or

diminish the activity of the protein when a ligand-binding

site is affected. Alternatively, a mutation in a TM region

could compromise the protein’s structural integrity by

having an effect on helix–helix packing interactions. In

general, structure-based attributes had poorer predictive

powers than sequence-based attributes. The MCC of sol-

vent accessibility was zero, which means every prediction

was randomly assigned, and this was the worst predictor

among all the attributes when it was used alone.

Combining the attributes can greatly improve the pre-

diction accuracy. Though conservation score was the most

powerful predictor, the MCC increased to 0.22 when it was

combined with other sequence-based attributes. When all

nine attributes were used in a prediction, the accuracy was

improved when compared with the sequence-based attri-

butes alone. We also found the proposed structural

information to be useful in prediction. It is likely that most

mutations that affect protein function actually affect it

indirectly through changes in structural stability. However,

simply taking all the attributes together did not achieve the

best performance. We found that the optimal attributes

subset only requires six attributes—the conservation score,

the BLOSUM62 substitution matrix score, the location, the

solvent accessibility, the buried charge, and the hydro-

phobicity change. The combination of these six attributes

had an MCC that was 0.03 higher than that of all nine

attributes. The optimal subset includes both sequence-

based and structure-based attributes. Moreover, it is inter-

esting to see that the optimal attributes subset did not

consist of the six best predictors when each was assessed

by itself. The predictabilities of some inferior attributes,

such as solvent accessibility and buried charge, were

increased when used in combination.

Seven important rules with cover [30 were derived

from the decision tree. Based on these rules, we could

intuitively distinguish functional nsSNPs from neutral

nsSNPs only if the attribute values of the nsSNPs are

available, and there is no need for any complex training or

testing processes.

In summary, combining sequence-based and structure-

based information will improve the prediction perfor-

mance, but the optimal attributes subset was not simply a

combination of the attributes. With the optimal attributes

subset, a total of 166 functional nsSNPs were predicted.

Given the important roles of GPCRs in many physiological

processes and their pharmaceutical relevance as drug tar-

gets, further investigation of these nsSNPs will be very

Table 2 Rules derived from the decision tree with the optimized

attribute set

Rule Cover Confidence

level

Rule 1: if conservation score B -0.434

and TM = 0, then class = no effect

949 0.96

Rule 2: if conservation score [ -0.434

and conservation score B 0.478 and

TM = 0 and BLOSUM62 score [ -1,

then class = no effect

72 0.92

Rule 3: if conservation score B 0.478 and

TM = 1 and BLOSUM62 score B -2

and solvent accessibility = buried and

hydrophobicity change [ 0.4, then

class = effect

87 0.82

Rule 4: if conservation score B 0.478 and

TM = 1 and BLOSUM62 score B -1

and solvent

accessibility = intermediate, then

class = effect

32 0.91

Rule 5: If conservation score B 0.285 and

TM = 1 and BLOSUM62 score [ -1

and solvent accessibility = buried and

hydrophobicity change B 2.5, then

class = no effect

183 0.97

Rule 6: If conservation score [ -0.285

and conservation score B 0.478 and

TM = 1 and BLOSUM62 score [ 0

and solvent accessibility = buried and

hydrophobicity change B 2.5, then

class = no effect

51 0.92

Rule 7: if conservation score [ 0.478 and

BLOSUM62 score B 1, class = effect

461 0.97
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Table 3 Predicted functional nsSNPs in human GPCRs, obtained with the optimized attribute set using the decision tree method

dbSNP rs no. Receptor Wild-type residue Mutated residue Position Confidence level

rs11773032 ACM2_HUMAN G S 73 0.967

rs7107481 ACM4_HUMAN D G 112 0.967

rs16839102 ACM3_HUMAN L P 431 0.967

rs8192448 ADA1B_HUMAN V G 51 0.816

rs1800888 ADRB2_HUMAN T I 164 0.783

rs2229125 ADA1A_HUMAN I S 200 0.967

rs238741 ADRB1_HUMAN R S 318 1

rs1133450 ADA2C_HUMAN S I 401 0.967

rs1133452 ADA2C_HUMAN R P 446 0.967

rs1801253 ADRB1_HUMAN R G 389 1

rs5327 DRD1_HUMAN T P 37 0.967

rs5328 DRD1_HUMAN T R 37 0.967

rs2227840 DRD5_HUMAN C S 62 0.967

rs6282 DRD5_HUMAN L R 88 0.967

rs2227845 DRD5_HUMAN G E 110 0.727

rs1800443 DRD4_HUMAN V G 194 0.816

rs5331 DRD1_HUMAN S A 199 0.967

rs2227843 DRD5_HUMAN S N 233 0.967

rs2227851 DRD5_HUMAN T P 297 0.967

rs11665084 HRH4_HUMAN A V 138 0.609

rs12564512 5HT1D_HUMAN T A 62 0.967

rs130061 5HT1B_HUMAN F L 219 0.609

rs3828741 5HT1E_HUMAN A T 208 0.967

rs8192618 TAAR1_HUMAN R C 23 1

rs17061399 TAAR6_HUMAN I T 37 0.783

rs9493386 TAAR5_HUMAN V L 87 0.967

rs17061401 TAAR6_HUMAN G S 165 0.609

rs2962857 TAAR1_HUMAN T A 252 0.967

rs8192625 TAAR6_HUMAN C Y 291 0.816

rs13095608 AGTR1_HUMAN V G 41 0.816

rs1064533 AGTR1_HUMAN C W 289 0.967

rs1042860 AGTR2_HUMAN C W 268 0.816

rs3729979 AGTR2_HUMAN P L 271 0.816

rs5234 BRS3_HUMAN L Q 162 0.727

rs11880097 C5AR_HUMAN K N 279 0.967

rs1805038 CXCR1_HUMAN R C 71 0.967

rs6781048 CCR1_HUMAN Y D 10 0.967

rs4987052 CCR2_HUMAN L V 45 0.967

rs5742906 CCR3_HUMAN P L 39 0.905

rs1799863 CCR5_HUMAN L Q 55 0.967

rs1800452 CCR5_HUMAN R Q 223 0.967

rs1800943 CCR5_HUMAN G V 301 0.967

rs12721498 CCR9_HUMAN I V 80 0.75

rs3749271 CCRL1_HUMAN K N 143 0.967

rs2228467 CCBP2_HUMAN V A 41 0.967

rs3204849 O00421_HUMAN F Y 167 1

rs665648 CXCR5_HUMAN G S 344 0.967

rs2234357 CXCR6_HUMAN V A 239 0.967
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Table 3 continued

dbSNP rs no. Receptor Wild-type residue Mutated residue Position Confidence level

rs3732378 CX3C1_HUMAN T M 280 0.967

rs1805000 GASR_HUMAN L F 37 0.967

rs17852056 EDNRA_HUMAN P H 115 0.967

rs5347 EDNRB_HUMAN F V 112 0.967

rs5350 EDNRB_HUMAN T M 244 0.727

rs1805005 MSHR_HUMAN V L 60 0.967

rs1805006 MSHR_HUMAN D E 84 0.909

rs2228479 MSHR_HUMAN V M 92 0.967

rs11547464 MSHR_HUMAN R H 142 0.967

rs1805007 MSHR_HUMAN R C 151 0.967

rs1110400 MSHR_HUMAN I T 155 0.967

rs3212365 MSHR_HUMAN V L 156 0.967

rs1805009 MSHR_HUMAN D H 294 0.967

rs28926178 ACTHR_HUMAN P R 27 0.967

rs28926179 ACTHR_HUMAN G A 90 0.967

rs28940892 ACTHR_HUMAN Y C 254 0.967

rs28926182 ACTHR_HUMAN F C 278 0.967

rs17847261 MC3R_HUMAN C S 311 0.967

rs13447326 MC4R_HUMAN P L 78 0.967

rs13447327 MC4R_HUMAN S R 94 0.967

rs2282556 MC4R_HUMAN G R 98 0.905

rs13447330 MC4R_HUMAN I T 121 0.727

rs13447331 MC4R_HUMAN S L 127 0.816

rs13447332 MC4R_HUMAN R W 165 0.967

rs1016862 MC4R_HUMAN I S 169 0.816

rs13447333 MC4R_HUMAN G D 181 0.967

rs13447335 MC4R_HUMAN A E 244 0.727

rs12075 DUFFY_HUMAN G D 42 0.727

rs3027017 DUFFY_HUMAN D V 59 0.967

rs13962 DUFFY_HUMAN A T 100 0.967

rs3027020 DUFFY_HUMAN L Q 203 0.727

rs1801397 DUFFY_HUMAN T K 275 0.727

rs28642215 NPY4R_HUMAN P T 96 0.967

rs3740868 GPR83_HUMAN P Q 374 0.905

rs6432225 NTR2_HUMAN A V 54 0.609

rs17853770 NTR2_HUMAN R C 142 0.967

rs13057124 SSR3_HUMAN F L 215 0.967

rs1065191 SSR4_HUMAN N T 83 0.967

rs4988474 SSR4_HUMAN R C 244 0.967

rs2567608 SSR4_HUMAN F S 321 0.967

rs4988477 SSR4_HUMAN V A 325 0.967

rs4988489 SSR5_HUMAN R C 248 0.906

rs5198 V2R_HUMAN A V 42 0.967

rs28935496 V2R_HUMAN R W 113 0.967

rs5200 V2R_HUMAN A V 147 0.967

rs171114 OXYR_HUMAN A G 63 0.967

rs8192513 GALR2_HUMAN G R 204 0.816

rs8192514 GALR2_HUMAN S R 346 0.727
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Table 3 continued

dbSNP rs no. Receptor Wild-type residue Mutated residue Position Confidence level

rs28939719 KISSR_HUMAN L S 148 0.967

rs350132 KISSR_HUMAN L H 364 0.727

rs2230849 PAR1_HUMAN Y N 187 0.967

rs2227799 PAR1_HUMAN S Y 412 0.727

rs2069700 PAR3_HUMAN M V 177 0.967

rs2227346 PAR4_HUMAN F V 296 0.967

rs17438900 QRFPR_HUMAN F V 61 0.783

rs13305975 UR2R_HUMAN R H 148 0.967

rs17851452 NMUR2_HUMAN C G 204 0.967

rs28928870 FSHR_HUMAN T I 449 0.967

rs6167 FSHR_HUMAN S R 524 0.727

rs28928871 FSHR_HUMAN D N 567 0.967

rs12480652 LSHR_HUMAN N S 291 0.967

rs28937584 TSHR_HUMAN D H 633 0.783

rs1057362 PE2R1_HUMAN A T 71 0.967

rs41312444 PD2R_HUMAN G E 198 0.816

rs41516947 PD2R_HUMAN R Q 231 0.967

rs41312506 PD2R_HUMAN R Q 332 0.967

rs12656588 PE2R4_HUMAN A G 183 0.967

rs35425451 PF2R_HUMAN V G 344 0.967

rs2229127 PI2R_HUMAN V M 25 0.967

rs35431373 PI2R_HUMAN A T 128 0.967

rs34377097 TA2R_HUMAN R L 60 0.967

rs5743 TA2R_HUMAN C S 68 0.967

rs5744 TA2R_HUMAN V E 80 0.967

rs5749 TA2R_HUMAN A T 160 0.967

rs11547176 AA1R_HUMAN R H 105 0.967

rs2511241 P2RY2_HUMAN P L 46 0.816

rs35146537 GPR35_HUMAN A T 25 0.609

rs3749171 GPR35_HUMAN T M 108 0.967

rs4151553 P2RY5_HUMAN C W 137 0.967

rs1466684 P2Y13_HUMAN T M 158 0.783

rs28933074 GNRHR_HUMAN Y C 284 0.967

rs4988511 GHSR_HUMAN I T 134 0.967

rs28383653 MTR1A_HUMAN G E 166 0.967

rs11542862 EDG2_HUMAN N S 77 0.967

rs1049843 EDG2_HUMAN G S 340 0.967

rs34075341 EDG2_HUMAN R Q 243 0.967

rs3745268 EDG5_HUMAN R Q 60 0.967

rs3746072 EDG5_HUMAN R L 365 0.727

rs35483143 EDG8_HUMAN L Q 318 0.727

rs34010553 CALRL_HUMAN R I 274 0.967

rs13306399 GIPR_HUMAN C S 46 0.967

rs13306402 GIPR_HUMAN R W 136 0.967

rs13306398 GIPR_HUMAN G C 198 0.967

rs5392 GIPR_HUMAN L V 262 0.967

rs13306403 GIPR_HUMAN R L 316 0.967

rs1800437 GIPR_HUMAN E Q 354 0.909
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useful for elucidating disease pathogenesis mechanisms

and drug efficacy issues.
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