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Abstract CHROMSCAN implements a composite likeli-

hood model for the analysis of association data. Disease-

gene localisation is on a linkage disequilibrium unit (LDU)

map, and locations and standard errors, for putatively

causal polymorphisms, are determined by the programme.

Distortions of the probability distribution created by auto-

correlation are avoided by implementation of a permutation

test. We evaluated the relative efficiency of the LDU map

by simulating pseudo-phenotypes in real genotype samples.

We observed that multi-locus mapping on an underlying

LDU map reduces location error by *46%. Furthermore,

there is a small, but significant, increase in power of *5%.

Effective meta-analysis across multiple samples, increas-

ingly important to combine evidence from genome-wide

and other association data, is achieved through the

weighted combination of location evidence provided by the

programme.

Keywords Association mapping �
Linkage disequilibrium map � Meta-analysis

Introduction

Many genome-wide association mapping studies, using

high-density panels of single nucleotide polymorphisms

(SNPs), are underway. Typically, these involve hundreds to

thousands of DNA samples of cases and controls and are

screened for several hundred thousand SNPs across the

genome. Efficient analysis and interpretation of these vast

data sets raises many difficulties. If significance is tested at

individual SNPs, huge numbers of false positive results are

generated, making interpretation difficult. Sub-optimal

statistical adjustments for the number of tests may under-

correct or lose power. However, models that utilise infor-

mation simultaneously from multiple SNPs offer

advantages by reducing the overall number of tests and

recovering additional information. Reliable computation of

significance levels remains an issue given the large num-

bers of non-independent SNPs and consequent auto-

correlation. Other concerns recognise the difficulty of

incorporating information on the underlying linkage dis-

equilibrium (LD) structure when testing association with

phenotype. This is important because using this informa-

tion has been shown to substantially increase power and

precision for mapping (Maniatis et al. 2004, 2005).

We describe and evaluate here the CHROMSCAN pro-

gramme, which models association with disease at multiple

SNPs in regions defined by non-overlapping sliding win-

dows. The programme rapidly identifies regions for follow-

up and determines reliable P values, maximum likelihood

locations and standard errors for putatively causal poly-

morphisms. CHROMSCAN employs a composite-

likelihood-based model, estimating a small number of

parameters in each region, thereby greatly reducing the

number of tests made (Collins and Morton 1998). A per-

mutation test ensures the P value distribution is not

distorted through the auto-correlation created by extensive

LD (Morton et al. 2007). Association with disease is

modelled on a map in LD units (LDUs) (Maniatis et al.

2002; Lau et al. 2007), which is an LD analogue of the
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genetic linkage map. We also developed and describe an

efficient parallel computing version that greatly accelerates

the analysis of high-density genome-scan data. This pro-

gramme, CHROMSCAN-cluster, runs on a Linux-based

computing cluster.

We examined the resolution of this approach for local-

ising pseudo-phenotypes simulated in a real SNP genotype

sample and analysed in regions of at least ten LD units.

Simulation in a real sample retains the LD structure, vari-

ations in marker density, marker informativeness and other

peculiarities encountered in real genotype samples. We

dichotomised randomly selected SNPs to produce a pseudo-

phenotype and predicted the location from analysis of the

remaining neighbouring SNPs to compare the resolution

and relative power of the LDU map to the corresponding

kilobase (kb) map. Distances between the known and pre-

dicted locations were evaluated in both LDUs and kb.

Methods

Core methodology

CHROMSCAN implements a modification of the Malecot

model, representing association, z, between SNPs and

disease on an underlying marker map: zi ¼ ð1�
LÞMe��jSi�Sj þ L; where Si is the location of the ith SNP in

LDU (alternatively kb) and the S parameter represents the

map location showing maximal association with disease

(Morton et al. 2007). The e parameter describes the decline

of association with map distance, M is the intercept and the

asymptote is estimated (L) or predicted (Lp). The predicted

asymptote is defined (Morton et al. 2001; Zhang et al.

2002) as the mean absolute value of a standard normal

deviate, weighted by the information Kz = n(a + b)(b + d)/

(a + c)(cc + d), where a, b, , d are counts from the 2 9 2

table of alleles by affection status, totalling n haplotypes.

However, association with disease is typically evaluated

with SNP diplotype data, and therefore, the 3 9 2 table of

genotype counts by affection status is reduced to the cor-

responding 2 9 2 table, scoring n haplotypes from n/2

diplotypes (Maniatis 2007, Table 1). Counts a, b, c, d, are

assigned such that a and b represent SNP alleles coded ‘‘1’’

and ‘‘2’’, respectively, in the controls and c and d the

corresponding counts in cases, arranged so ad–bc C 0,

b B c. For association with disease at each marker: ẑ ¼
ðad � bcÞ=ðaþ bÞðbþ dÞ; and v2

1 ¼ ẑ2Kz; where

0 \ Kz ¼ v2
1=ẑ2� n: The composite likelihood is lk =

e-K/2, where K ¼
P

iKziðẑi � ziÞ2: Model fitting employs

the dfpmin function from Press et al. (1992), and conver-

gence to the global maximum is achieved by beginning

iteration from a large number of points in the parameter

space. Two models are contrasted in the programme: a

‘‘flat’’ model, which assumes no association with disease

(model ‘‘A’’) taking L = Lp and M = 0, and an association

model (‘‘D’’), which estimates M, S and L. For both

models, the values K are computed from the contrast with

the baseline model: L = M = 0. As the baseline and model

A do not test association with disease, there is no location

estimate, S. CHROMSCAN obtains the difference X =

KA - KD for the real data (H1) and a large number of

replicates (H0), as Xj for the jth replicate, for which the

phenotype is randomised (shuffled). Shuffling creates data

sets under the null that are consistent with, although not

equivalent to, model A. P values under H0, (Pj), are com-

puted from fractional ranks in the sample of replicates.

From Pj the corresponding v2
j3 is computed from the NAG

g01fcc function (http://www.nag.co.uk/) and hence the

variance Vj as: Xj/v
2
j3. Variances for the replicates, Vj, under

H0, are used to predict the variance V under H1. Compu-

tation of the corresponding variance for H1 requires a

sorted sub-set of replicates, centred as far as possible on X,

and the model: ln Vj = A + B ln Xj. Where feasible, X is

centred between the 20 closest replicates with Xj B X and

the corresponding 20 with Xj C X; if X is an outlier, the 20

closest values are taken. V under H1 is estimated as

exp(A + B ln X), giving v2
3 = X/V (Morton et al. 2007),

with corresponding probability from the g01ecc NAG sub-

routine. Estimation of V from replicates under H0 therefore

avoids distortion due to auto-correlation and enables

the computation of v2
3 (H1) and the standard error of

location S. Simultaneous estimates of M, S and L provide

Table 1 Summary statistics for simulated data

Map Scale Mean location

error | Sr–Sm|

Sample standard

deviation (location error)

Mean v2
3 Sample standard

deviation (v2
3)

LDU LDU 0.42 0.31 13.60a 3.09

LDU kb (by interpolation) 33.30b 31.6 As above As above

kb kb 48.80b 52.1 12.90a 2.68

Sr known location of pseudo-phenotype SNP, Sm location predicted from model
a v2

3: Linkage disequilibrium unit (LDU) map versus kilobase (kb) map, P = 0.0409 (Wilcoxon paired rank test)
b Location error: LDU map versus kb map, P = 0.03503 (Wilcoxon paired sample rank test)
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an information matrix that is inverted, and the nominal

variance KSS is obtained. Then the information K about S is

computed as: (1/KSS)/(V/3) with the standard error
ffiffiffiffiffiffiffiffiffi
1=K

p
:

Programme options

CHROMSCAN accepts genotype (=diplotype) or phase-

known haplotype data in fixed format files, with columns

representing SNPs and rows unrelated individuals. Label-

ling of SNP alleles is ‘‘1’’ or ‘‘2’’, with missing coded as dot

or blank, affected individuals coded ‘‘1’’ and controls ‘‘0’’.

The data file specifies column locations for each SNP and

sequence locations in LDU and kb from the p-telomere or

arbitrary offset. CHROMSCAN accepts a candidate region,

delimited by two kb locations, or scans a chromosome in

non-overlapping regions. A minimum of 30 SNPs is

assigned to each region, and remaining SNPs at the end of

the map are assigned to the final region. The width in LDU of

regions has a default of at least 10 LDUs. The populations

represented in HapMap (http://www.hapmap.org) have

58–81,000 LDUs (Lau et al. 2007), so a high-density gen-

ome-wide scan yields *6–8,000 regions for analysis.

Optionally, CHROMSCAN determines locations on the

kb map, allowing comparisons of power and precision with

the LDU map. The e parameter, for which 1/e is the ‘‘swept

radius’’ (the average extent of LD that is useful for

mapping), is *1 for LDU maps and *0.02 for kb

maps (corresponding to *50 kb, Morton et al. 2007). These

estimates are obtained from the LDMAP programme: (http://

www.som.soton.ac.uk/research/geneticsdiv/epidemiology/

LDMAP/default.htm).

SNPs are screened in the control sample for deviations

from Hardy–Weinberg equilibrium and an optional v2

cutoff imposed. This enables identification and removal of

SNPs with distorted genotype distributions that may reflect

technical difficulties in genotyping, or other sources of

error, but does not guarantee that the remaining markers

are in Hardy–Weinberg equilibrium.

Finally, the number of replicates for each region in

which the phenotype is randomised is specified. A rela-

tively small number of replicates (for example, 1,000) for

the first pass through genome-wide data efficiently deter-

mines a sub-set of nominally significant regions for more

thorough analysis. For a sub-set of regions strongly asso-

ciated with the phenotype, [10,000 replicates may be

required to give precise P values.

CHROMSCAN-cluster parallel version

CHROMSCAN-cluster is a wrapper programme encapsu-

lating CHROMSCAN and is implemented on a Linux

Beowulf cluster. Batch queuing and job management is

administrated by Open-PBS (Portable Batch System),

http://www.openpbs.org/. The programme divides consec-

utive regions into batches and submits these in parallel.

The number of regions per batch is user definable for

adjusting the batch load according to SNP density. The

programme features synchronous processing supporting

multiple SNP data set submissions. To efficiently utilise

dual-processor machines in the cluster, batches are

assigned as two jobs per submission. In addition to job

monitoring commands (i.e. ‘‘showq’’ and ‘‘qstat’’), sup-

plied by Open-PBS, a custom-made programme

‘‘checkStatus’’ tracks the status of the submitted jobs

grouped by SNP data set. Modification of the software for

local systems should be straightforward, as the source is

written in standard C. A parallel version of CHROMSCAN

for a Linux cluster is available from: http://www.som.

soton.ac.uk/research/geneticsdiv/epidemiology/chromscan/

#sourceCode

Simulations comparing utility of LDU and kb maps

Maniatis et al. (2004) described simulations in which single

SNPs were selected from a sample of genotypes and the

allelic count (0, 1, or 2, for the three genotypes) was used

as a pseudo-phenotype, the location of which was predicted

from the other markers as a test of mapping resolution and

power. We adapted this approach for a case-control study

using genotypes described by Klein et al. (2005). The

authors undertook a genome-wide association study with

116,204 markers and 96 cases with age-related macular

degeneration and 50 controls. We discarded all of the

disease phenotypic data and used the genotypes obtained

for chromosome 4 to construct pseudo-phenotypes with

known location. The SNP genotypic data, with markers

approximately every 26 kb across the genome, are at the

lower end of current densities in ongoing genome-

wide studies (typically with at least 500,000 SNPs,

http://www.wtccc.org.uk/info/overview.shtml, Wellcome

Trust Case Control Consortium 2007). Low marker density

data presents a challenge for predicting the location of the

pseudo-phenotype from neighbouring markers and enables

a useful comparison of the utility of alternative underlying

maps. For constructing the pseudo-phenotype, we selected

SNPs spaced roughly evenly across the chromosome and

dichotomised the SNP genotype. We assigned individuals

with missing genotypes or any heterozygotes (1, 2 geno-

types) alternately as ‘‘case’’ or ‘‘control’’ to yield

approximately equal numbers of both. Individuals with the

homozygote genotypes 1, 1 or 2, 2 were coded as ‘‘case’’

and ‘‘control’’, respectively. Using this pseudo-phenotype,

the location of the selected SNP was then predicted using
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only association with the remaining SNPs in the region. We

rejected a proportion of the samples generated, analysing

only those yielding *7.8 B v2
3 B *21.1 (0.05 C P

C 0.0001), for the A–D model comparison, to approximate

the significance levels obtained in some candidate regions.

For marker locations, we used the HapMap Phase-II-

derived LDU map of chromosome 4 described by Lau et al.

(2007) for the CEPH (CEU) population and available

from: (http://www.som.soton.ac.uk/research/geneticsdiv/

epidemiology/LDMAP/map2.htm).

The LDU locations for any markers in the sample that

are not given in the map were obtained by interpolation

from their known kb locations and flanking markers with

both kb and LDU locations. At total of 6,547 SNPs span

190,733.41 kb or 3,518.29 LDUs, after removal of 1,937

SNPs with minor allele frequencies\0.05, which were not

included in any analyses. This gave an average of one SNP

every 29 kb for chromosome 4. A total of 10,000 replicates

were generated for each region sufficient to ensure that P

values were computed with high precision across all

samples.

We analysed regions across chromosome 4 that satisfied

the power criteria (supplementary Table 1), permitting

comparisons of the relative utility of LDU and kb maps and

yielding information about the limits of mapping resolution

in relatively low marker-density samples.

Results

A total of 26 data sets were simulated, each with a SNP

selected and dichotomised to represent a case-control

phenotype (pseudo-phenotype). The LDU map of the

region around one of the SNPs (rs2048070) is shown in

Fig. 1, (see also supplementary Table 1). This region

contains 29 SNPs (after removal of the SNP selected to

define the pseudo-phenotype) spanning 579.4 kb and 22.0

LDUs. The true location of the selected SNP (not used in

the model fitting) was 10,865.24 kb/373.22 LDU. The

estimated location was at 10,879.22 kb/373.60 LDU, a

distance of 13.98 kb/0.38 LDU from the known location.

The mean location error across the 26 data sets, for the

LDU map, is 0.42 LDUs, with a standard deviation (SD) of

0.31 (Table 1). The minimum error is 0.0 and the maxi-

mum is 0.96. All of the pseudo-phenotypes are therefore

mapped to well within one LDU of the correct location and

the majority to within *0.5 LDUs. LDU locations may be

converted by interpolation into approximate kb locations.

Interpolation uses the nearest SNPs in the map, which flank

the target LDU location, and their known kb and LDU

locations to estimate the kb location that corresponds to the

target LDU position. However, conversion is subject to

some error when the target location lies within a block over

which LDU = 0 and the kb location at the mid-point of the

block is taken. When the LDU locations are interpolated,

the mean error is 33.3 kb (SD 31.6), indicating very high

mapping resolution. Furthermore, in higher marker-density

genome scans, the resolution is likely to increase markedly.

Localisation on an underlying kb rather than an LDU map

is less efficient, and the mean location error increases by

*47% to 48.8 kb. The difference in location errors

between interpolated LDU and kb maps is significant at

P = 0.035.

The relative power, as measured by v2
3 for the A–D

comparison (see Methods), is higher for the LDU map

compared with the kb map (mean v2
3 13.6 vs. 12.9). The

difference is significant at P = 0.041 in the paired samples

test and corresponds to an average increase in v2
3 of 5%

when using the LDU map (Table 1). The results for both

mapping resolution and power are broadly consistent with

the simulation study described by Maniatis et al. (2004),

which included samples with much higher power, and the

single real-data example with very high power described

by Maniatis et al. (2005).

Discussion

The CHROMSCAN programme analyses genome-wide and

candidate-region association data to determine reliable

significance levels and efficiently reduces the impact of

multiple testing through model fitting. The latter has the

additional advantage of increasing power and exploiting

information on the underlying LD structure in the form of

an LDU map. The underlying LDU map reduces location

error for mapping by almost 50% and provides significantly

increased power. Implementation for parallel processing on

Fig. 1 Linkage disequilibrium unit (LDU) map of the rs2048070

region. The LDU map indicates a recombination intense region

around 10,700 kb and the relatively high LD region within which the

rs2048070 SNP (selected to form a pseudo-phenotype) is located

(shown by the triangle). The predicted location from the fitted model

is shown by the circle a few kilobases from the known location
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a cluster enables rapid computation of stable P values from

large numbers of replicates.

Recent genome-wide association studies have employed

multi-stage designs where, following an initial genome-

wide scan, increasingly large samples are tested to confirm

significance. This provides a relatively economical and

practical strategy and undoubtedly yields a proportion of

the causal variants. However, the relatively small samples

used in the initial genome-wide scan, incomplete coverage

of the genome in the scan, acceptance in the first stage of

relatively modest significance levels and a small number of

regions for follow-up contributes to the strong possibility

that important variants are overlooked. Therefore, the

combination of evidence from genome scans through meta-

analysis may provide additional regions worthy of further

study while adding value to studies already undertaken.

Amongst possible approaches to meta-analysis is the

Genome Search Meta-analysis (GSMA) method (Wise

et al. 1999), which has been developed for genome-wide

linkage studies. For linkage, the authors advocate the use of

30-cM bins within which the evidence for linkage is

assessed and bins are ranked according to the strength of

evidence. The statistic testing for linkage is formed from

the sum of ranks, and significance can be evaluated from a

distribution or by simulation (Levinson et al. 2003). This

useful strategy could be adapted to examine genome-wide

association data, perhaps in bins of 10 LDUs as we used in

this study. Each bin would span approximately 500 kb/

0.5 cM and would therefore provide much finer resolution

than the 30-cM linkage screen. However, ranking of bins

formed in this way neglects the within-bin location infor-

mation and information weights produced by

CHROMSCAN. An alternative simple approach to meta-

analysis, which avoids bins (Morton et al. 2007), assumes s

independent samples, of which the ith contributes a prob-

ability Pi that is uniformly distributed on the null

hypothesis. Then -2 ln Pi is distributed as v2
2; with v2

2s ¼
�2
P

ln Pi: Both this and GSMA approaches are applica-

ble to data lacking a location estimate Si and information Ki

but have the disadvantages of assuming equal weights for

samples with different information and not providing a

point estimate, which would be expected to become more

accurate as sample sizes increase. An alternative meta-

analysis approach (Morton et al. 2007) computes a

weighted location from s independent samples, assuming

the same LDU map is used for all samples, as: �S ¼Ps
i¼1 SiKi=

P
Ki: Weighting locations by information

computed in CHROMSCAN provides an appropriate v2 test

and test of heterogeneity in the meta-analysis. This method

has the advantage that accessions of data, in the form of

additional genome scans, would be expected to reduce

further target regions of interest whilst increasing signifi-

cance for any putatively causal variants. However, the

impact of variation between samples, including differences

in allele frequencies and ascertainment, and other sources

of heterogeneity must be considered in the determination of

the operating characteristics of this and other approaches to

meta-analysis. It seems likely that there will be increasing

opportunities to apply meta-analysis with the release of

genome-wide data sets on application by researchers.

These include data from the Wellcome Trust Case Control

Consortium (WTCCC, http://www.wtccc.org.uk/, Well-

come Trust Case Control Consortium 2007) and cancer

samples from the Cancer Genetic Markers of Susceptibility

study (http://cgems.cancer.gov/).

We have developed an approach, implemented in the

programme CHROMSCAN for genome-wide association

data analysis, which provides robustly determined P values

and high power and mapping precision through the use of

an underlying LDU map. Analysis within regions defined

on that map suggests a framework for future meta-analyses

using a GSMA-type approach, although a potentially more

informative method would combine across studies the

location and information evidence produced by the

programme.
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