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Abstract Fabry disease is an inborn error of glycolipid

catabolism resulting from lesions in the gene encoding a-

galactosidase (GLA). To elucidate the basis of Fabry dis-

ease, we constructed structural models of mutant GLAs

responsible for the disease and calculated indexes, i.e., the

numbers of atoms affected in the main chain and side chain

of each mutant GLA, the root-mean-square distance values,

and the solvent-accessible surface-area values, based on

212 Fabry amino acid substitutions previously reported

(196 classic and 16 variant). As two therapeutic options,

enzyme replacement and enzyme enhancement, are now

available for this disease, proper prediction of the natural

outcome and therapeutic efficiency based on the molecular

evidence for individual cases are critical for patients’

quality of life. Our results revealed that structural changes

in the classic Fabry group were generally large and tended

to be in the core region of a protein or located in the

functionally important region, including the active-site

pocket. On the other hand, structural changes in the variant

Fabry group were small or localized on the surface of the

molecule far away from the active site. We focused on

structural changes due to amino acid substitutions for

which substrate analogues are effective for improving the

stability or transportation of mutant GLAs, and the results

of the study revealed that they are small or localized on the

molecular surface, regardless of the phenotype. Coloring of

affected atoms based on distances between wild type and

mutant ones clearly showed the characteristic structural

changes in the GLA protein geographically and subquan-

titatively. Structural investigation is useful for elucidation

of the basis of Fabry disease and predicting disease

outcome.
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Introduction

Lysosomal a-galactosidase (GLA, EC3.2.1.22) catalyzes

hydrolysis of terminal a-D-galactosyl residues of glyco-

conjugates, predominantly globotriaosylceramide (GL-3),

in lysosomes. The enzyme is encoded by the GLA gene on

the long arm of the X-chromosome and is synthesized on

endoplasmic reticulum (ER)-bound ribosomes as a pre-

cursor form, which consists of 429 amino acid residues.

Then, the enzyme is translocated into the lumen of the ER,

with subsequent cleavage of the signal peptide consisting

of 31 residues. Then, the enzyme is modified in the ER by

the addition of N-linked oligosaccharides. The oligosac-

charides are then trimmed in the ER, and the enzyme is

transferred to the Golgi apparatus, where further modifi-

cation of sugar chains and the addition of mannose
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6-phosphate residues occur. The enzyme, having mannose

6-phosphate residues at the nonreducing ends of sugar

chains, is transported to endosomes via mannose 6-phos-

phate receptors. Subsequently, the enzyme is transported to

lysosomes, where it exerts its function as a mature form

consisting of 398 residues. The native GLA from humans is

thought to have a homodimeric structure.

A genetic defect causes progressive accumulation of

GL-3, which results in Fabry disease (MIM 301500)

(Desnick et al. 2001). This disease exhibits a wide clinical

spectrum. Patients with the classic form having no GLA

activity develop systemic manifestations, including pain in

peripheral extremities, hypohidrosis, angiokeratoma,

corneal clouding, renal failure, and cardio- and cerebro-

vascular disorders. On the other hand, there are also variant

Fabry-disease patients with residual GLA activity and

milder clinical manifestations, sometimes limited to heart

disorders. So far, more than 500 genetic mutations causing

Fabry disease have been reported (Desnick et al. 2001).

Among them, gross alterations of the GLA gene have been

identified in patients with the classic form, but missense

mutations comprising the majority of mutations have been

found in both classic and variant forms.

Recombinant GLAs produced in Chinese hamster ovary

cells and human fibroblasts have been developed and are

clinically available for enzyme replacement therapy for

Fabry disease (Eng et al. 2001a, b; Schiffmann et al. 2000).

Recently, another potential approach for treating Fabry

disease was developed, and a clinical trial has been per-

formed. This enzyme enhancement therapy is based on the

ability of substrate analogues including galactose and

1-deoxygalactonojirimycin to improve the stability or

transportation of mutant GLAs in cells, but the therapy is

only efficient in a limited group of patients having specific

missense mutations (Frustaci et al. 2001; Yam et al. 2006;

Fan and Ishii 2007). As a high incidence of variant Fabry

disease has been revealed by newborn screening (Spada

et al. 2006), prediction of the clinical outcome of the dis-

ease is becoming more and more important to determine a

proper schedule for treating the disease.

Previously, we built structural models of mutant GLAs

resulting from 161 missense mutations by means of homol-

ogy modeling with SYBYL/BIOPOLYMER (TRIPOS, St

Louis, MO, USA) and examined the correlation between

structural changes in GLAs and clinical and biochemical

phenotypes (Matsuzawa et al. 2005).

Recently, we developed a structural analysis system for

mutant proteins involving molecular modeling software,

TINKER, developed by Ponder et al. (Department of

Biochemistry and Molecular Biophysics, Washington

University) (Ren and Ponder 2003), which is available

worldwide. We applied it to investigations on lysosomal

diseases including mucopolysaccharidosis type 6 (Saito

et al. 2008), mucopolysaccharidosis type 1 (Sugawara et al.

2008), and Tay-Sachs disease (Ohno et al. 2008). We

believe that the standardization of a structural analysis

method will enable us to compare the results for different

genetic disorders, which will provide us with a deeper

insight into the basis of genetic disorders. Furthermore,

because TINKER is free software, other researchers can

easily conduct follow-up studies.

In this study, we conducted further structural investiga-

tion of Fabry disease using the same structural analysis

system. We increased the number of Fabry patients for the

analysis and examined structural changes in GLAs due to

212 amino acid substitutions by determining the number of

atoms affected, the root-mean-square distance (RMSD), and

the solvent-accessible surface area (ASA). Then, we paid

attention to mutant GLAs for which substrate analogues are

effective for stabilization or transportation to lysosomes and

characterized their structural changes by coloring the

affected atoms.

Materials and methods

Amino acid substitutions causing classic

and variant Fabry disease

In this study, we analyzed 212 missense mutations (196

classic and 16 variant) responsible for Fabry disease.

Amino acid substitutions, phenotypes, and references are

summarized in Table 1.

Development of a structural analysis system

for mutant proteins

We developed a structural analysis system for mutant

proteins to examine their structural changes responsible for

genetic diseases from various viewpoints. This system

comprises six stages: (1) modeling mutant proteins, (2)

determining the number of atoms affected by amino acid

substitutions, (3) determining the RMSD values of all

atoms in the mutant proteins, (4) determining ASA values

of amino acid residues in the mutant proteins, (5) statistical

analysis, and (6) coloring the atoms affected in the mutant

proteins based on the differences between wild-type and

mutant ones. Then, we applied the system to elucidation of

the basis of Fabry disease.

Structural modeling of mutant GLAs responsible

for Fabry disease and determination of the number

of atoms affected by amino acid substitutions

Structural modeling of mutant GLAs was performed using

molecular modeling software TINKER (Kundrot et al.

1991; Dudek and Ponder 1995; Kong and Ponder 1997;
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Table 1 Fabry mutations, structural changes in a-galactosidase, and phenotypes
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Pappu et al. 1998; Ren and Ponder 2003). The crystal

structure of human GLA (Garman and Garboczi 2004)

(PDB: 1R46) was used as a template, and energy minimi-

zation was performed. The root-mean-square gradient

value was set at 0.05 kcal/mol Å. Each mutant model was

then superimposed on the wild-type GLA structure based

on Ca atoms by the least-square-mean fitting method

(Kabsch 1976, 1978; Sakuraba et al. 2000, 2004). In this

study, we defined that the structure was affected by an

amino acid substitution when the position of an atom in a

mutant differed from that in the wild type by more than the

cutoff distance (0.15 Å) based on total RMSD, as described

previously (Matsuzawa et al. 2005). Then, we determined

the numbers of atoms affected in GLA main chain and side

chain.

Determination of RMSD values of all atoms

in mutant GLAs

RMSD values of all atoms in mutant GLAs were deter-

mined according to Weiner’s method (Weiner et al. 1984)

to predict the degrees of GLA structural changes, and the

average RMSD values for the classic and variant Fabry

groups were determined and compared with each other, as

described previously (Sugawara et al. 2008).

Determination of ASA values of amino acid residues

in mutant GLAs

To predict the position of a substituted amino acid residue

in the GLA molecule, the ASA value of each residue in the

wild-type GLA was calculated using ACCESS (McDonald

and Thornton 1994). The average ASA values of the resi-

dues for which a substitution had been found in the classic

and variant Fabry groups were determined and compared

with each other, as described previously (Saito et al. 2008;

Sugawara et al. 2008).

Statistical analysis

Statistical analysis to determine differences in the numbers

of atoms affected, RMSD values, and ASA values between

Table 1 continued

Amino acid substitutions for which substrate analogues are effective are indicated in red

RMSD root-mean-square distance, ASA solvent-accessible surface area
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classic and variant Fabry groups was performed using the F

test and then Welch’s t test, it being taken that there was a

significant difference if P \ 0.05.

Coloring the atoms affected in mutant GLAs

for which substrate analogues are effective

To determine the influence of amino acid substitutions

geographically and semiquantitatively, coloring the affec-

ted atoms in the three-dimensional structure of GLA based

on the distances between the wild-type and mutant ones

was performed, followed by determination of the numbers

of affected atoms, RMSD values, and ASA values. We

analyzed amino acid substitutions including E59K, E66Q,

M72V, I91T, A97V, R112H, F113L, A156V, L166V,

N215S, G260A, Q279E, M296I, M296V, R301Q, R356W,

and G373S, for which substrate analogues are effective for

stabilization or transportation of mutant enzymes to lyso-

somes (Okumiya et al. 1995b; Yam et al. 2006; Ishii et al.

2007).

Results

Localization of amino acid substitutions responsible

for Fabry disease

According to the crystallographic structure of human GLA

(Garman and Garboczi 2004), the enzyme unit comprises

two domains: an N-terminal (b/a)8-barrel domain and a

C-terminal antiparallel b-sheet domain. The active-site

pocket is localized in the C-terminal of the b-sheet of the

N-terminal domain. We determined the locations of resi-

dues of which amino acid substitutions have been identified

in Fabry disease patients in the homodimeric enzyme

structure (Fig. 1a). Then, we localized the residues of

which amino acid substitutions are responsible for classic

(Fig. 1b, c) and variant (Fig. 1d, e) Fabry groups in the

GLA subunit to compare them with each other. In the

classic Fabry group, amino acid substitutions were dis-

tributed all over the enzyme protein molecule, including

the active-site pocket. On the other hand, in the variant

Fabry group, they were located far from the active-site

pocket, and most of them were localized on the molecular

surface of the protein.

Numbers of atoms affected by amino acid

substitutions responsible for Fabry disease

We built structural models of the mutant GLAs and cal-

culated the number of atoms affected by the amino acid

substitution for each mutant model (Table 1), the results

being summarized in Fig. 2.

The classic Fabry group showed a wide distribution.

Averages for the affected atoms in the main chain and side

chain were 108 and 130, respectively. In particular,

regarding the former, 108 of the 196 classic cases (56%)

had 50 atoms or more affected. There were 36 amino acid

substitutions located in the active-site pocket, all of which

cause the classic Fabry phenotype. These cases are colored

red for their differentiation from other cases, which are

colored black.

In contrast, the number of affected atoms in the variant

Fabry group was low, and the distribution was narrower.

These cases are colored black. Averages of the affected

atoms in the main chain and the side chain were 18 and 21,

respectively. In particular, regarding the main-chain atoms,

14 of the 16 variant Fabry cases (88%) had 49 atoms or less

affected.

The F test showed that the distribution exhibited

unequal variance (P \ 0.05) between the classic and var-

iant Fabry groups, and thus, Welch’s t test was performed.

Results revealed that there were significant differences in

the numbers of affected atoms in both the main chain and

side chain between the two groups (P \ 0.05).

RMSD values for amino acid substitutions

responsible for Fabry disease

The RMSD values for the classic and variant Fabry groups

were determined. Results are shown in Fig. 3. The average

RMSD values in the classic and variant Fabry groups were

0.089 and 0.029 Å, respectively. In 115 of the 196 classic

Fabry cases (59%), the RMSD value was C0.05 Å. On the

other hand, it was \0.05 Å in 14 of the 16 variant Fabry

cases (88%). Results of the F test followed by Welch’s

t test showed that there was a significant difference in the

RMSD values between the two groups.

ASA values of amino acid substitutions

responsible for Fabry disease

To determine and compare locations of amino acid residues

in the GLA molecule associated with the classic (126

residues) and variant (15 residues) Fabry cases, the ASA

values of the residues in the wild-type GLA structure were

calculated, the results being shown in Fig. 4 (the result for

each residue is presented in ‘‘Supplementary data No. l’’).

In the classic Fabry group, the average ASA value for the

126 residues analyzed was 13.3 Å2, 93 of them (74%) being

\20 Å2. In the variant Fabry group, the average ASA

value for the 15 residues analyzed was 25.1 Å2, eight of

them being C20 Å2 (53%).

The F test followed by Welch’s t test revealed that P

was 0.09. Results suggest that the residues associated with
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classic Fabry mutations tend to be less solvent-accessible

than those associated with variant ones, although this could

not be confirmed statistically.

Coloring the affected atoms due to amino acid

substitutions for which substrate analogues are effective

Regarding amino acid substitutions responsible for Fabry

disease, we paid attention to 17 mutations for which sub-

strate analogues improved the stability or transportation of

mutant GLAs in cells, i.e., E59K (classic), E66Q (variant),

M72V (variant), I91T (variant), A97V (classic), R112H

(variant), F113L (variant), A156V (classic), L166V (clas-

sic), N215S (variant), G260A (classic), Q279E (variant),

Fig. 1 Localization of amino acid substitutions responsible for Fabry

disease in the a-galactosidase (GLA) structure. Secondary structures

in GLA are shown as a tube drawing. Locations of amino acid

substitutions identified in the classic and variant Fabry groups are

shown in yellow and green, respectively. N The N-terminal (b/a)8-

barrel domain. C The C-terminal antiparallel b-sheet domain. An

arrow indicates the active-site pocket. a Homodimeric GLA structure,

classic and variant Fabry groups. b Front view of the GLA subunit,

classic Fabry group. c Side view of the GLA subunit, classic Fabry

group. d Front view of the GLA subunit, variant Fabry group. e Side

view of the GLA subunit, variant Fabry group

Fig. 2 Numbers of atoms in the a main chain and the b side chain of

the a-galactosidase (GLA) protein affected by amino acid substitu-

tions. Classic classic Fabry group. Variant variant Fabry group.

Mutations located in the active-site pocket are colored red, others

being colored black. Boxes indicate mean ± standard errors of mean

Fig. 3 Root-mean-square distance (RMSD) values for classic and

variant Fabry mutations (Å). Boxes indicate mean ± standard errors

of mean
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M296I (variant), M296V (variant), R301Q (variant),

R356W (classic), and G373S (classic). Coloring the

affected atoms in the three-dimensional GLA structure was

performed for these mutations, the results being shown in

Fig. 5.

Coloring the affected atoms clearly allowed visualiza-

tion of structural changes. Determining the numbers of

atoms affected and RMSD and ASA values confirmed the

results. In most mutant GLAs, the predicted structural

changes were small (numbers of affected atoms in both the

main chain and side chain\50, and RMSD \ 0.05: E66Q,

M72V, I91T, A97V, F113L, L166V, L215S, G260A,

Q279E, M296I, M296V, and G373S), or localized on the

molecular surface, although the structural changes were not

small (ASA C 20: E59K, R112H, and R301Q), regardless

of phenotype. There were only two exceptions, A156V and

R356W, and their clinical phenotype was classic. None of

the amino acid substitutions for which substrate analogues

are effective caused any structural changes in the active

site.

Discussion

Considering the results of newborn screening, the inci-

dence of Fabry disease is unexpectedly high (1 in 3,000–

4,000 male newborns), especially the variant form (Spada

et al. 2006). It is very important to examine the structural

changes in the enzyme protein responsible for the different

phenotypes to elucidate the basis of Fabry disease and to

predict disease outcome. Garman and Garboczi calculated

the side-chain-accessible surface area and revealed that the

residues involved in Fabry mutations tend to be less sol-

vent-accessible than the typical residues and that most of

them lead to disruption of the hydrophobic core of the

protein (Garman and Garboczi 2004; Garman 2007).

However, there is little structural information on defective

GLA proteins, although a large number of gene mutations

responsible for Fabry disease have been reported so far.

In this study, we constructed structural models of Fabry

mutant GLAs and examined their structural changes from

various aspects by determining the number of atoms

affected, as well as RMSD and ASA values, using our

structural analysis system. The results revealed that struc-

tural changes in the classic Fabry group are generally large

Fig. 5 Coloring the atoms in the three-dimensional structure affected

by amino acid substitutions for which substrate analogues are effective.

The degrees and distributions for E59K, E66Q, M72V, I91T, A97V,

R112H, F113L, A156V, L166V, N215S, G260A, Q279E, M296I,

M296V, R301Q, R356W, and G373S, for which substrate analogues are

effective, are shown. Each atom is colored according to the distance

between the atom in the mutant and the corresponding atom in the wild-

type structure. The colors of the atoms show the distances as follows:

blue \0.15 Å, 0.15 Å B cyan \ 0.30 Å, 0.30 Å B green \ 0.45 Å,

0.45 Å B yellow \ 0.60 Å, 0.60 Å B orange \ 0.75 Å, and red C

0.75 Å. Arrows indicate the active-site pocket

Fig. 4 Solvent-accessible surface area (ASA) values of amino acid

residues associated with classic and variant Fabry disease (Å2). Boxes
indicate mean ± standard errors of mean
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and tend to be in the core region of the protein. About 85%

(116/196) of the amino acid substitutions leading to classic

Fabry disease satisfied one of the conditions given below;

number of affected atoms in the main chain C50, number

in the side chain C50, RMSD C 0.05 Å, or ASA \ 20 Å2.

They seriously affected protein folding or intracellular

transport, leading to a deficiency of enzyme activity. All

amino acid substitutions causing structural changes of the

active-site pocket resulted in the classic phenotype. In such

cases, structural changes would seriously affect expression

of GLA activity, even if the number of influenced atoms is

relatively small.

On the other hand, the predicted structural changes in

GLA are generally small or localized on the surface of the

molecule far away from the active site in the variant Fabry

group. In such cases, a small amount of enzyme having

GLA activity would be protected from the ER’s quality

control system and transported to lysosomes, resulting in

residual enzyme activity.

The number of affected atoms calculated using TINKER

differs from that calculated using SYBYL/BIOPOLYMER.

This is not surprising, because the minimized structure

depends on the minimization algorithm, force field, and

computational implementation. As shown in supplemen-

tary data No. 2 and No. 3, the number of affected atoms

calculated using TINKER was generally larger than that

using SYBYL/BIOPOLYMER. The mutant model

obtained with TINKER was well optimized compared with

that with SYBYL/BIOPOLYMER, which indicates that the

mutant model constructed in this study is improved com-

pared with the previous one (Matsuzawa et al. 2005).

However, the supplementary data suggest that the number

of affected atoms calculated using SYBYL/BIOPOLY-

MER was correlated with that using TINKER. Therefore,

the discussion in the previous study is thought to remain

correct.

Furthermore, we focused on the structural changes due

to amino acid substitutions for which substrate analogues

are effective and examined them by determining the

affected atoms, RMSD values, and ASA values, followed

by coloring the affected atoms. Results revealed that they

cause small structural changes in GLA or are localized on

the molecular surface, except for a couple of exceptions.

None of them affected the active site. These results suggest

that binding of a substrate analogue to a mutant enzyme

protein in which a small structural change has occurred on

the surface of the molecule reduces its folding defect and

increases its stability in cells. Previously, we expressed

mutant GLAs including M72V, L156V, L166V, Q279E,

and R301Q in COS-1 cells and Sf9 cells and examined

their biochemical characteristics (Ishii et al. 1993; Ok-

umiya et al. 1995a, 1998; Kase et al. 2000). The expressed

products had GLA activity, but they were unstable and

easily lost their activity in vitro, suggesting that their

structural changes are located far from the active site and

that the degree of the changes is not so large. The results

are well correlated with those of the structural analysis

performed this time.

In conclusion, we investigated the structural changes in

GLA responsible for Fabry disease. Results showed a

correlation between the three-dimensional structural

changes and clinical phenotypes, and they also revealed

the characteristics of the structural changes in mutant

enzyme proteins for which substrate analogues are

effective. Structural investigation is useful for elucidation

of the basis of Fabry disease, and it will increase our

ability to determine a proper therapeutic schedule for this

disease.
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