ORIGINAL ARTICLE

Structural characterization of mutant α -galactosidases causing Fabry disease

Kanako Sugawara · Kazuki Ohno · Seiji Saito · Hitoshi Sakuraba

Received: 2 April 2008/Accepted: 6 June 2008/Published online: 17 July 2008 © The Japan Society of Human Genetics and Springer 2008

Abstract Fabry disease is an inborn error of glycolipid catabolism resulting from lesions in the gene encoding α galactosidase (GLA). To elucidate the basis of Fabry disease, we constructed structural models of mutant GLAs responsible for the disease and calculated indexes, i.e., the numbers of atoms affected in the main chain and side chain of each mutant GLA, the root-mean-square distance values, and the solvent-accessible surface-area values, based on 212 Fabry amino acid substitutions previously reported (196 classic and 16 variant). As two therapeutic options, enzyme replacement and enzyme enhancement, are now available for this disease, proper prediction of the natural outcome and therapeutic efficiency based on the molecular evidence for individual cases are critical for patients' quality of life. Our results revealed that structural changes in the classic Fabry group were generally large and tended to be in the core region of a protein or located in the functionally important region, including the active-site

Disclaimers: None.

Electronic supplementary material The online version of this article (doi:10.1007/s10038-008-0316-9) contains supplementary material, which is available to authorized users.

K. Sugawara · H. Sakuraba (⊠)
Department of Analytical Biochemistry,
Meiji Pharmaceutical University,
2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan e-mail: sakuraba@my-pharm.ac.jp

K. Ohno NPO for the Promotion of Research on Intellectual Property Tokyo, Tokyo, Japan

S. Saito

Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan pocket. On the other hand, structural changes in the variant Fabry group were small or localized on the surface of the molecule far away from the active site. We focused on structural changes due to amino acid substitutions for which substrate analogues are effective for improving the stability or transportation of mutant GLAs, and the results of the study revealed that they are small or localized on the molecular surface, regardless of the phenotype. Coloring of affected atoms based on distances between wild type and mutant ones clearly showed the characteristic structural changes in the GLA protein geographically and subquantitatively. Structural investigation is useful for elucidation of the basis of Fabry disease and predicting disease outcome.

Keywords Fabry disease $\cdot \alpha$ -Galactosidase \cdot Amino acid substitution \cdot Protein structure

Introduction

Lysosomal α -galactosidase (GLA, EC3.2.1.22) catalyzes hydrolysis of terminal α -D-galactosyl residues of glycoconjugates, predominantly globotriaosylceramide (GL-3), in lysosomes. The enzyme is encoded by the *GLA* gene on the long arm of the X-chromosome and is synthesized on endoplasmic reticulum (ER)-bound ribosomes as a precursor form, which consists of 429 amino acid residues. Then, the enzyme is translocated into the lumen of the ER, with subsequent cleavage of the signal peptide consisting of 31 residues. Then, the enzyme is modified in the ER by the addition of *N*-linked oligosaccharides. The oligosaccharides are then trimmed in the ER, and the enzyme is transferred to the Golgi apparatus, where further modification of sugar chains and the addition of mannose 6-phosphate residues occur. The enzyme, having mannose 6-phosphate residues at the nonreducing ends of sugar chains, is transported to endosomes via mannose 6-phosphate receptors. Subsequently, the enzyme is transported to lysosomes, where it exerts its function as a mature form consisting of 398 residues. The native GLA from humans is thought to have a homodimeric structure.

A genetic defect causes progressive accumulation of GL-3, which results in Fabry disease (MIM 301500) (Desnick et al. 2001). This disease exhibits a wide clinical spectrum. Patients with the classic form having no GLA activity develop systemic manifestations, including pain in peripheral extremities, hypohidrosis, angiokeratoma, corneal clouding, renal failure, and cardio- and cerebrovascular disorders. On the other hand, there are also variant Fabry-disease patients with residual GLA activity and milder clinical manifestations, sometimes limited to heart disorders. So far, more than 500 genetic mutations causing Fabry disease have been reported (Desnick et al. 2001). Among them, gross alterations of the GLA gene have been identified in patients with the classic form, but missense mutations comprising the majority of mutations have been found in both classic and variant forms.

Recombinant GLAs produced in Chinese hamster ovary cells and human fibroblasts have been developed and are clinically available for enzyme replacement therapy for Fabry disease (Eng et al. 2001a, b; Schiffmann et al. 2000). Recently, another potential approach for treating Fabry disease was developed, and a clinical trial has been performed. This enzyme enhancement therapy is based on the ability of substrate analogues including galactose and 1-deoxygalactonojirimycin to improve the stability or transportation of mutant GLAs in cells, but the therapy is only efficient in a limited group of patients having specific missense mutations (Frustaci et al. 2001; Yam et al. 2006; Fan and Ishii 2007). As a high incidence of variant Fabry disease has been revealed by newborn screening (Spada et al. 2006), prediction of the clinical outcome of the disease is becoming more and more important to determine a proper schedule for treating the disease.

Previously, we built structural models of mutant GLAs resulting from 161 missense mutations by means of homology modeling with SYBYL/BIOPOLYMER (TRIPOS, St Louis, MO, USA) and examined the correlation between structural changes in GLAs and clinical and biochemical phenotypes (Matsuzawa et al. 2005).

Recently, we developed a structural analysis system for mutant proteins involving molecular modeling software, TINKER, developed by Ponder et al. (Department of Biochemistry and Molecular Biophysics, Washington University) (Ren and Ponder 2003), which is available worldwide. We applied it to investigations on lysosomal diseases including mucopolysaccharidosis type 6 (Saito et al. 2008), mucopolysaccharidosis type 1 (Sugawara et al. 2008), and Tay-Sachs disease (Ohno et al. 2008). We believe that the standardization of a structural analysis method will enable us to compare the results for different genetic disorders, which will provide us with a deeper insight into the basis of genetic disorders. Furthermore, because TINKER is free software, other researchers can easily conduct follow-up studies.

In this study, we conducted further structural investigation of Fabry disease using the same structural analysis system. We increased the number of Fabry patients for the analysis and examined structural changes in GLAs due to 212 amino acid substitutions by determining the number of atoms affected, the root-mean-square distance (RMSD), and the solvent-accessible surface area (ASA). Then, we paid attention to mutant GLAs for which substrate analogues are effective for stabilization or transportation to lysosomes and characterized their structural changes by coloring the affected atoms.

Materials and methods

Amino acid substitutions causing classic and variant Fabry disease

In this study, we analyzed 212 missense mutations (196 classic and 16 variant) responsible for Fabry disease. Amino acid substitutions, phenotypes, and references are summarized in Table 1.

Development of a structural analysis system for mutant proteins

We developed a structural analysis system for mutant proteins to examine their structural changes responsible for genetic diseases from various viewpoints. This system comprises six stages: (1) modeling mutant proteins, (2) determining the number of atoms affected by amino acid substitutions, (3) determining the RMSD values of all atoms in the mutant proteins, (4) determining ASA values of amino acid residues in the mutant proteins, (5) statistical analysis, and (6) coloring the atoms affected in the mutant proteins based on the differences between wild-type and mutant ones. Then, we applied the system to elucidation of the basis of Fabry disease.

Structural modeling of mutant GLAs responsible for Fabry disease and determination of the number of atoms affected by amino acid substitutions

Structural modeling of mutant GLAs was performed using molecular modeling software TINKER (Kundrot et al. 1991; Dudek and Ponder 1995; Kong and Ponder 1997;

Table 1 Fabry mutations, structural changes in α -galactosidase, and phenotypes

Mutation	Number of aff	ected atoms	RMSD	ASA	Active-site	Phenotype	Reference
	Main chain	Side chain	(Å)	(\AA^2)	pocket*		
N34S	5	2	0.028	27.2		Classic	Eng et al. (1993)
N34 <mark>K</mark>	165	151	0.196	27.2		Classic	Shabbeer et al. (2006)
P40S	9	8	0.025	1.3		Classic	Koide et al. (1990)
P40L	78	75	0.108	1.3		Classic	Ashton-Prolla et al. (2000)
T41I	10	38	0.031	4		Classic	Shabbeer et al. (2006)
M42V	12	13	0.028	4.9		Classic	Davies et al. (1996)
M42T	9	9	0.023	4.9		Classic	Shabbeer et al. (2002)
G43V	182	231	0.123	0		Classic	Shabbeer et al. (2002)
G43D	136	160	0.115	0		Classic	Iga et al. (2001)
G43R	414	470	0.178	0		Classic	Germain et al. (2002)
H46Y	84	119	0.088	0		Classic	Blaydon et al. (2001)
H46R	24	23	0.041	0		Classic	Eng et al. (1997)
W47G	0	9	0.025	24.3	+	Classic	Blaydon et al. (2001)
E48 <mark>K</mark>	206	287	0.127	26.6	+	Classic	Rodríguez-Marí et al. (2003)
R49S	370	373	0.255	58.1		Classic	Davies et al. (1996)
R49P	227	272	0.164	58.1		Classic	Blaydon et al. (2001)
R49L	242	259	0.201	58.1		Classic	Davies et al. (1994)
R49G	179	196	0.164	58.1		Classic	Germain et al. (2002)
F50C	2	11	0.014	3.7		Classic	Shabbeer et al. (2002)
C52S	2	1	0.022	45.9	+	Classic	Eng et al. (1994)
C52R	209	272	0.14	45.9	+	Classic	Blanch et al. (1996)
C56Y	58	67	0.131	39.8		Classic	Davies et al. (1996)
C56F	67	76	0.127	39.8		Classic	Shabbeer et al. (2005)
C56G	52	61	0.134	39.8		Classic	Eng et al. (1993)
E59K	187	203	0.216	52.5		Classic	Eng et al. (1994)
L68F	39	70	0.053	0		Classic	Shabbeer et al. (2002)
M72I	34	43	0.052	0		Classic	Germain et al. (2002)
W81S	38	46	0.05	0.4		Classic	Rodríguez-Marí et al. (2003)
Y86C	9	13	0.032	0		Classic	Eng et al. (1997)
L89P	6	12	0.022	0		Classic	Eng et al. (1997)
L89R	287	337	0.164	0		Classic	Eng et al. (1994)
D92Y	401	572	0.181	0.2	+	Classic	Eng et al. (1997)
D92H	321	477	0.139	0.2	+	Classic	Davies et al. (1996)
D93G	239	287	0.146	0.3	+	Classic	Davies et al. (1996)
D93N	64	132	0.073	0.3	+	Classic	Dobrovolny et al. (2005)
D93V	206	289	0.131	0.3	+	Classic	Shabbeer et al. (2006)
C94Y	195	236	0.179	0.2	+	Classic	Eng et al. (1997)
C94S	31	40	0.044	0.2	+	Classic	Blaydon et al. (2001)
W95S	5	12	0.021	0		Classic	Ashton-Prolla et al. (2000)
A97P	33	30	0.054	11.6		Classic	Kimura et al. (2002)
A97V	10	12	0.023	11.6		Classic	Eng et al. (1997)
R100K	55	40	0.051	29		Classic	Eng et al. (1994)
R100T	194	218	0.131	29		Classic	Eng et al. (1997)

Table	1	continued

Mutation	Number of aff	ected atoms	RMSD	ASA	Active-site	Phenotype	Reference
	Main chain	Side chain	(Å)	(Å ²)	pocket*		
R112C	84	86	0.075	25.7		Classic	Ashton-Prolla et al. (2000)
R112S	28	40	0.038	25.7		Classic	Shabbeer et al. (2005)
A121T	32	40	0.061	1		Classic	Matsuzawa et al. (2005)
A121P	88	86	0.119	1		Classic	Kotanko et al. (2004)
G128E	37	44	0.051	39.5		Classic	Blanch et al. (1996)
L131P	57	51	0.052	0.4		Classic	Eng et al. (1994)
G132R	449	543	0.188	0.2		Classic	Shabbeer et al. (2002)
Y134S	166	231	0.128	0	+	Classic	Eng et al. (1997)
A135V	7	16	0.028	0		Classic	Dobrovolny et al. (2005)
D136H	362	463	0.248	0	+	Classic	Ashley et al. (2001)
G138R	209	258	0.279	0		Classic	Eng et al. (1997)
G138E	168	207	0.122	0		Classic	Germain et al. (2002)
T141I	59	58	0.097	0	+	Classic	Shabbeer et al. (2002)
C142Y	7	20	0.037	39.9	+	Classic	Okumiya et al. (1995a)
C142R	50	90	0.065	39.9	+	Classic	Topaloglu et al. (1999)
C142W	0	10	0.01	39.9	+	Classic	Schäfer et al. (2005)
A143P	4	5	0.014	47.1	+	Classic	Eng et al. (1994)
G144V	1	0	0.005	31.8	+	Classic	Eng et al. (1994)
S148R	137	180	0.106	0		Classic	Eng et al. (1997)
S148N	21	26	0.04	0		Classic	Ashton-Prolla et al. (2000)
D155H	404	455	0.353	0		Classic	Dobrovolny et al. (2005)
A156V	70	74	0.069	0.5		Classic	Okumiya et al. $(1995a)$
A156T	14	13	0.031	0.5		Classic	Schäfer et al. (2005)
W162C	35	32	0.045	24.3		Classic	Germain et al. (1996)
W162R	31	51	0.046	24.3		Classic	Eng et al. (1993)
G163V	2	7	0.017	15.2		Classic	Englet al. (1997)
D165V	294	319	0.156	3.1		Classic	Davies et al. (1994)
L166V	14	14	0.031	0.3		Classic	Okumiya et al. $(1995a)$
L166G	72	85	0.072	0.3		Classic	Shabber et al. (2006)
L167P	110	120	0.094	0		Classic	Morrone et al. (2003)
L168R	0	22	0.014	2.5	+	Classic	Shabbeer et al. (2002)
D170V	89	134	0.072	0	+	Classic	Englet al. (1997)
D170H	224	286	0.117	0	+	Classic	Rodríguez-Marí et al. (2003)
G171D	81	94	0.091	33	+	Classic	Shabbeer et al. (2005)
C172Y	12	26	0.041	34	+	Classic	Englet al. (1994)
C172F	12	20 24	0.039	34	+	Classic	Schäfer et al. (2005)
C172R	18	41	0.048	34	+	Classic	Ashton-Prolla et al. (2000)
C172G	10	7	0.028	34	+	Classic	Yasuda et al. (2003)
G183D	262	297	0.205	3.8		Classic	Topaloglu et al. (1999)
G183S	64	108	0.09	3.8		Classic	Shabbeer et al. (2002)
M187V	7	13	0.029	0		Classic	Ashton-Prolla et al. (2002)
M187T	0	0	0.027	0		Classic	Shabber et al. (2006)
V199M	63	88	0.056	0		Classic	Shabbeer et al. (2002)
\$201F	0	2	0.007	8.2		Classic	Shabbeer et al. (2002)
S201Y	0	0	0.01	8.2		Classic	Shabber et al. (2006)
C202Y	333	387	0.195	0.4		Classic	Englet al. (1997)
C2021	275	312	0.174	0.4		Classic	Ploos van Amstel et al. (1994)
P205T	6	16	0.021	0		Classic	Davies et al. (1996)
. 2001	о С	10	.0021	<u> </u>			2 a. 105 et al. (1990)

Table 1 continued

Mutation	Number of aff	ected atoms	RMSD	ASA	Active-site	Phenotype	Reference
	Main chain	Side chain	(Å)	(\AA^2)	pocket*		
P205R	465	584	0.26	0		Classic	Shabbeer et al. (2002)
Y207S	3	4	0.018	47.5	+	Classic	Shabbeer et al. (2002)
Y216D	190	251	0.148	7.6		Classic	Eng et al. (1997)
I219N	2	9	0.014	0		Classic	Eng et al. (1994)
C223Y	455	548	0.221	0		Classic	Shabbeer et al. (2002)
C223R	516	589	0.256	0		Classic	Shabbeer et al. (2002)
N224S	40	42	0.052	0		Classic	Ashton-Prolla et al. (2000)
N224D	68	72	0.061	0		Classic	Guffon et al. (1998)
W226R	30	35	0.035	0.4		Classic	Ashton-Prolla et al. (2000)
R227Q	86	119	0.082	12.9	+	Classic	Enget et al. (1993)
A230T	0	0	0.003	57.7	+	Classic	Ashton-Prolla et al. (2000)
D234Y	362	472	0.274	36.6		Classic	Shabbeer et al. (2002)
D234E	20	25	0.043	36.6		Classic	Shabbeer et al. (2005)
S235C	0	0	0.004	51.5		Classic	Topaloglu et al. (1999)
W236L	0	3	0.006	40.8		Classic	Topaloglu et al. (1999)
W236C	2	7	0.012	40.8		Classic	Davies et al. (1996)
W236R	6	23	0.025	40.8		Classic	Shabber et al. (2006)
I239T	90	107	0.1	0.1		Classic	Kotanko et al. (2004)
I242N	13	14	0.032	0.6		Classic	Takata et al. (1997)
L243F	1	7	0.012	0.1		Classic	Germain et al. (2002)
D244N	16	44	0.037	68.8		Classic	Eng et al. (1994)
D244H	211	276	0.118	68.8		Classic	Topaloglu et al. (1999)
G260A	3	1	0.009	9.3		Classic	Okumiya et al. (1995b)
G261D	338	327	0.22	0		Classic	Takata et al. (1997)
N263S	20	36	0.04	3.4		Classic	Eng et al. (1997)
D264V	256	348	0.135	10.5		Classic	Eng et al. (1993)
D264Y	101	128	0.086	10.5		Classic	Shabbeer et al. (2005)
D266V	23	40	0.036	4.9	+	Classic	Eng et al. (1993)
D266H	435	585	0.196	4.9	+	Classic	Ashton-Prolla et al. (2000)
D266E	42	70	0.062	4.9	+	Classic	Germain et al. (2002)
D266N	44	68	0.056	4.9	+	Classic	Lee et al. (2000)
M267I	72	100	0.093	5.3	+	Classic	Topaloglu et al. (1999)
M267R	123	181	0.095	5.3	+	Classic	Shabber et al. (2006)
V269A	9	17	0.029	0		Classic	Davies et al. (1993)
V269M	118	132	0.107	0		Classic	Shabber et al. (2006)
G271C	51	54	0.063	0		Classic	Shabbeer et al. (2002)
G271S	59	57	0.068	0		Classic	Shabber et al. (2006)
G271V	197	239	0.149	0		Classic	Shabber et al. (2006)
N272 <mark>K</mark>	62	102	0.067	3.9		Classic	Eng et al. (1994)
N272S	2	3	0.013	3.9		Classic	Verovnik et al. (2004)
S276G	0	7	0.009	46.7		Classic	Shabbeer et al. (2005)
Q279H	103	123	0.094	17.4		Classic	Blaydon et al. (2001)
Q279R	51	54	0.057	17.4		Classic	Rodríguez-Marí et al. (2003)
Q280 <mark>K</mark>	29	41	0.041	0		Classic	Dobrovolny et al. (2005)
T282N	6	9	0.019	0.1		Classic	Ashley et al. (2001)
Q283P	302	320	0.165	0		Classic	Shabber et al. (2006)
M284T	0	3	0.011	0		Classic	Blanch et al. (1996)
A285D	30	29	0 041	0		Classic	Shabber et al. (2006)

Table	1	continued

Main chain Side chain (Å) (Å) pocket* A285P 23 30 0.044 0.2 Classic Shabbeer et al. (2005) W2870 6 12 0.02 0.2 Classic Eng et al. (1997) A288P 54 66 0.071 0 Classic Eng et al. (1997) A288P 11 10.05 0 Classic Eng et al. (1994) A288D 11 11 0.052 0 Classic Shabbeer et al. (2002) P2914 73 20 0.62 Classic Shabber et al. (2002) P2934 14 19 0.03 0 Classic Eng et al. (1993) S2977 0.08 12 0.01 Classic Blanch et al. (2001) N2988 18 19 0.03 0 Classic Blanch et al. (2001) N2984 166 1.58 4.18 Classic Blanch et al. (2001) N2084 164 0.151 4.18 Clas	Mutation	Number of aff	fected atoms	RMSD	ASA	Active-site	Phenotype	Reference
A28SP 23 30 0.044 0 Classic Shabbeer et al. (2005) W287C 6 12 0.022 0.2 Classic Eag et al. (1997) A288P 54 66 0.071 0 Classic Eng et al. (1997) A288P 51 11 0.045 0 Classic Topalogalle val. (1997) A288P 51 11 0.045 0 Classic Topalogalle val. (1997) A288P 51 0.023 Classic Topalogalle val. (1993) Classic Shabber et al. (2006) P2937 14 19 0.032 0 Classic Shabber et al. (2007) S297F 0.08 264 0.144 0 Classic Eng et al. (1993) S297C 0 1 0.012 0 Classic Blanch et al. (2001) S2978 18 18 0.81 0 Classic Altore et al. (2001) S3016 142 194 0.151 4.18 Classic		Main chain	Side chain	(Å)	(\AA^2)	pocket*		
W287C 6 12 0.022 0.2 Classic Davies et al. (1997) W287C 15 14 0.027 0.2 Classic Eng et al. (1997) A288P 21 11 0.045 0 Classic Eng et al. (1994) 1289F 319 347 0.182 0 Classic Shabbeer et al. (2002) 22937 14 19 0.032 0 Classic Shabbeer et al. (2002) 29377 14 19 0.032 0 Classic Shabbeer et al. (2002) 29378 14 19 0.031 0 Classic Eng et al. (1997) N2988 18 19 0.013 0 Classic Blanch et al. (2002) N2988 18 19 0.031 0 Classic Saline et al. (2002) N2988 166 182 0.091 0 Classic Saline et al. (2002) N3016 142 14 0.158 41.8 Classic Saline et al. (A285P	23	30	0.044	0		Classic	Shabbeer et al. (2005)
W287C IS I4 0.027 0.2 Classic Eng et al. (1997) A288P 54 66 0.071 0 Classic Eng et al. (1994) L289F 319 347 0.182 0 Classic Shabbeer et al. (2002) L289F 319 347 0.182 0 Classic Shabber et al. (2006) P293A 73 52 0.068 2.5 Classic Shabber et al. (2006) P293F 14 19 0.032 0 Classic Binen et al. (1997) S297C 0.0 1 0.012 0 Classic Binen et al. (1997) N298K 18 19 0.031 0 Classic Binen et al. (2001) N298K 104 184 0.85 0.11 Classic Binen et al. (1997) N298K 106 182 0.11 Classic Classic Shabber et al. (2001) 13010 142 194 0.151 41.8 Classic Shab	W287G	6	12	0.022	0.2		Classic	Davies et al. (1996)
A288P 54 66 0.071 0 Classic Shabbeer et al. (2002) A288D 21 11 0.045 0 Classic Topalogule et al. (1994) M2901 14 22 0.029 3.2 Classic Shabber et al. (2006) M2901 14 22 0.029 3.2 Classic Shabber et al. (2006) S2977 208 264 0.144 0 Classic Baget et al. (1993) S2977 0 1 0.012 0 Classic Eag et al. (1997) N2988 18 19 0.031 0 Classic Balanch et al. (2002) N2988 106 182 0.091 0 Classic Balanch et al. (2001) N3010 144 246 0.158 41.8 Classic Laber et al. (2001) 130303 3 3 0.016 25.9 Classic Shabber et al. (2001) 130303 3 3 0.016 25.9 Classic Shabber et al. (2004) 13141 16 0.096 38.3 Classic <td>W287C</td> <td>15</td> <td>14</td> <td>0.027</td> <td>0.2</td> <td></td> <td>Classic</td> <td>Eng et al. (1997)</td>	W287C	15	14	0.027	0.2		Classic	Eng et al. (1997)
A288D 21 11 0.045 0 Classic Eng et al. (1994) 1289F 319 347 0.182 0 Classic Topaloglue et al. (1999) 1289F 319 0.47 0.182 0 Classic Shabber et al. (2006) P293A 73 52 0.068 2.5 Classic Shabber et al. (2002) P293T 14 19 0.032 0 Classic Shabber et al. (2002) S297F 208 264 0.144 0 Classic Eng et al. (1997) S297C 0 1 0.012 0 Classic Eng et al. (1997) S297K 108 182 0.91 O Classic Eng et al. (2001) S101P 184 246 0.158 41.8 Classic Laice tal. (2001) S101P 184 246 0.151 41.8 Classic Laice tal. (2001) S101P 71 88 0.055 0.1 Classic Shabber et al.	A288P	54	66	0.071	0		Classic	Shabbeer et al. (2002)
1289F 319 347 0.182 0 Classic Topalogin et al. (1999) M2001 14 22 0.029 3.2 Classic Shabber et al. (2006) P293A 73 52 0.068 2.5 Classic Shabber et al. (2006) P293T 14 19 0.032 0 Classic Eng et al. (1993) S297F 0.0 1 0.012 0 Classic Eng et al. (1997) N298K 18 19 0.031 0 Classic Banch et al. (2001) N298K 106 182 0.091 0 Classic Shabber et al. (2004) 13007 71 88 0.069 2.5.5 Classic Classic Shabber et al. (2006) 2012H 61 0.096 3.5.3 Classic Shabber et al. (2006) 2021E	A288D	21	11	0.045	0		Classic	Eng et al. (1994)
M2901 14 22 0.029 3.2 Classic Shabber et al. (2006) P2937 14 19 0.032 0 Classic Shabber et al. (2002) S297F 208 264 0.144 0 Classic Eng et al. (1993) S297C 0 1 0.012 0 Classic Eng et al. (1997) N298K 106 182 0.091 0 Classic Eng et al. (1997) N298K 106 182 0.091 0 Classic Allend et al. (2001) R301P 184 246 0.158 41.8 Classic Laie et al. (2001) R301P 71 88 0.085 0.1 Classic Shabber et al. (2002) L310F 71 88 0.085 0.1 Classic Shabber et al. (2004) 313Y 80 116 0.09 23.5 Classic Shabber et al. (2006) 313Y 80 116 0.09 3.5 Classic Shabber et al. (2006) 320Y 237 277 0.182 0 Cla	I289F	319	347	0.182	0		Classic	Topaloglu et al. (1999)
P293A 73 52 0.068 2.5 Classic Shabber et al. (2002) P293T 14 19 0.032 0 Classic Shabber et al. (2006) S297F 208 264 0.14 0 Classic Germain et al. (2002) N298K 18 19 0.031 0 Classic Engert al. (1997) N298K 106 182 0.091 0 Classic Shabber et al. (2001) R301P 184 246 0.158 41.8 Classic Shabber et al. (2001) 1303N 3 3 0.016 25.9 Classic Shabber et al. (2004) 310F 71 88 0.085 0.1 Classic Shabber et al. (2006) 3137 80 116 0.99 0.83.3 Classic Shabber et al. (2006) 320Y 237 277 0.182 0 Classic Nation-Frolia et al. (2005) 321K 129 109 0.87 2.7 Classic	M290I	14	22	0.029	3.2		Classic	Shabber et al. (2006)
P293T 14 19 0.032 0 Classic Shabber et al. (2006) S297F 00 1 0.012 0 Classic Eng et al. (1993) S297K 0 1 0.012 0 Classic Eng et al. (1997) N298K 18 19 0.031 0 Classic Eng et al. (1997) N298K 106 182 0.091 0 Classic Ashtey et al. (2001) N208K 166 142 194 0.151 41.8 Classic Shabber et al. (2001) 1300N 3 3 0.016 25.9 Classic Shabber et al. (2006) 2312H 61 69 0.069 23.5 Classic Shabber et al. (2006) 0312H 61 0.090 0.7 Classic Shabber et al. (2006) 0320K 165 167 0.109 0 Classic Shabber et al. (2006) 0321H 32 22 24 0.035 7.5 Classic	P293A	73	52	0.068	2.5		Classic	Shabbeer et al. (2002)
S297F 208 264 0.144 0 Classic Eng et al. (1993) S297C 0 1 0.012 0 Classic Germain et al. (2002) N298S 18 19 0.031 0 Classic Blanch et al. (1997) N298K 106 182 0.091 0 Classic Blanch et al. (2001) R301P 184 246 0.158 41.8 Classic Sahey et al. (2001) 1301N 3 3 0.016 25.9 Classic Shabbeer et al. (2002) L310F 71 88 0.085 0.1 Classic Shabber et al. (2002) M31Y 80 116 0.096 38.3 Classic Shabber et al. (2003) M320Y 237 277 0.182 0 Classic Shabber et al. (1993) M320K 165 167 0.109 0 Classic Shabber et al. (1995) M321K 122 24 0.035 37.5 Classic <td< td=""><td>P293T</td><td>14</td><td>19</td><td>0.032</td><td>0</td><td></td><td>Classic</td><td>Shabber et al. (2006)</td></td<>	P293T	14	19	0.032	0		Classic	Shabber et al. (2006)
S297C 0 1 0.012 0 Classic Germain et al. (2002) N2988 186 19 0.031 0 Classic Eng et al. (1997) N2988 106 182 0.091 0 Classic Blanch et al. (1997) R301P 184 246 0.151 41.8 Classic Ashley et al. (2001) R301G 142 194 0.151 41.8 Classic Shabber et al. (2002) 1303N 3 0.069 25.9 Classic Shabber et al. (2004) Q312H 61 69 0.069 23.5 Classic Ashton-Prolla et al. (2006) N320Y 237 277 0.182 0 Classic Ashton-Prolla et al. (2006) N320K 165 167 0.109 0 Classic Shabber et al. (2006) Q321R 22 24 0.035 37.5 Classic Shabber et al. (2005) G328A 158 151 0.104 0 Classic Sh	S297F	208	264	0.144	0		Classic	Eng et al. (1993)
N298S 18 19 0.031 0 Classic Eng et al. (1997) N298K 106 182 0.091 0 Classic Blanch et al. (1996) R301P 184 246 0.158 41.8 Classic Ashley et al. (2001) 1303N 3 3 0.016 25.9 Classic Classic Classic Classic Classic Classic Classic Shabbeer et al. (2004) 0312H 61 69 0.069 23.5 Classic Shabber et al. (2006) 0313Y 80 116 0.096 38.3 Classic Shabber et al. (2006) 0321E 32 32 0.042 37.5 Classic Topaloglu et al. (1993) 0321E 22 24 0.035 37.5 Classic Shabber et al. (2006) 0327K 129 109 0.087 2.7 Classic Shabber et al. (2005) 6328R 559 582 0.282 0 Classic Ishii et al. (1993)	S297C	0	1	0.012	0		Classic	Germain et al. (2002)
N298K 106 182 0.091 0 Classic Blanch et al. (1996) R301P 184 246 0.158 41.8 Classic Ashey et al. (2001) R301G 142 194 0.151 41.8 Classic Shabbeer et al. (2002) L310F 71 88 0.065 0.1 Classic Shabber et al. (2004) Q312H 61 69 0.069 23.5 Classic Shabber et al. (2006) N320Y 237 777 0.182 0 Classic Ashton-Prolla et al. (2000) N320K 165 167 0.109 0 Classic Topaloglut et al. (1995) Q321K 22 24 0.035 37.5 Classic Dabbeer et al. (2006) Q321K 129 109 0.087 2.7 Classic Dabbeer et al. (2005) G328A 158 151 0.104 0 Classic Shabbeer et al. (2005) G328A 158 151 0.166 0.1	N298S	18	19	0.031	0		Classic	Eng et al. (1997)
R301P1842460.15841.8ClassicAshley et al. (2001)R301G1421940.15141.8ClassicLai et al. (2001)1303N330.01625.9ClassicShabbeer et al. (2004)(2)310F71880.0850.1ClassicCalasicEnget al. (2004)(2)312H61690.06923.5ClassicEnget al. (1993)(3)20Y2372770.1820ClassicEnget al. (1993)(3)20Y2372770.1820ClassicOkumiya et al. (1995)(3)21E32320.04237.5ClassicShabber et al. (2006)(3)21K122240.05537.5ClassicDavies et al. (1993)(3)22K1591510.1040ClassicDavies et al. (1993)(3)22K1581510.1640ClassicShabber et al. (2006)(3)28A1581510.1660.1ClassicShabber et al. (2005)(3)28K2672870.1680ClassicShabber et al. (2005)(3)342Q51310.0590ClassicShabber et al. (2005)(3)442Q51310.0590ClassicShabber et al. (2005)(3)44251310.0590ClassicShabber et al. (2005)(3)44251310.0590ClassicShabber et al. (2002)(3)44251 <t< td=""><td>N298<mark>K</mark></td><td>106</td><td>182</td><td>0.091</td><td>0</td><td></td><td>Classic</td><td>Blanch et al. (1996)</td></t<>	N298 <mark>K</mark>	106	182	0.091	0		Classic	Blanch et al. (1996)
R301G 142 194 0.151 41.8 Classic Lai et al. (2001) 1303N 3 3 0.016 25.9 Classic Shabbeer et al. (2002) 1310F 71 88 0.069 23.5 Classic Shabber et al. (2006) 0312H 61 69 0.069 23.5 Classic Shabber et al. (2006) 0313Y 80 116 0.096 38.3 Classic Shabber et al. (2006) 032W 237 277 0.182 0 Classic Topaloglu et al. (1993) 0321E 32 32 0.042 37.5 Classic Topaloglu et al. (1999) 0321R 22 24 0.055 37.5 Classic Shabber et al. (2006) 0328K 158 151 0.104 0 Classic Shabbeer et al. (2005) 6328K 218 239 0.188 0 Classic Shabbeer et al. (2005) 6328K 267 287 0.148 0 Classic Shabbeer et al. (2005) 6328K 267 287 0.148 <td>R301P</td> <td>184</td> <td>246</td> <td>0.158</td> <td>41.8</td> <td></td> <td>Classic</td> <td>Ashley et al. (2001)</td>	R301P	184	246	0.158	41.8		Classic	Ashley et al. (2001)
1303N330.01625.9ClassicShabbeer et al. (2002)L310F71880.0850.1ClassicCalado et al. (2004)Q312H61690.06923.5ClassicShabber et al. (2006)J313Y801160.09638.3ClassicEng et al. (1993)N320Y2372770.1820ClassicAshton-Profila et al. (2000)N320K1651670.1090ClassicOkumiya et al. (1995)Q321E32320.04237.5ClassicDavies et al. (1993)Q321K1291090.082.7ClassicDavies et al. (1993)G328A1581510.1040ClassicShabber et al. (2005)G328A1581510.1040ClassicShabbeer et al. (2005)G328A2182390.1580ClassicShabbeer et al. (2005)G328K2672870.1480ClassicShabbeer et al. (2005)G328K2672870.1480ClassicShabbeer et al. (2005)G328K51310.0590ClassicShabbeer et al. (2006)G328K11410.03511.2ClassicShabbeer et al. (2002)R342Q51310.0590ClassicMarome et al. (2003)R350K981140.07613.5ClassicMarome et al. (2003)R3550K163188 </td <td>R301G</td> <td>142</td> <td>194</td> <td>0.151</td> <td>41.8</td> <td></td> <td>Classic</td> <td>Lai et al. (2001)</td>	R301G	142	194	0.151	41.8		Classic	Lai et al. (2001)
L310F71880.0850.1ClassicCalado et al. (2004)Q312H61690.06923.5ClassicShabber et al. (2006)D313Y801160.09638.3ClassicAshton-Prolla et al. (1993)N320Y2372770.1820ClassicAshton-Prolla et al. (2000)N320K1651670.1090ClassicOkumiya et al. (1995b)Q321E32320.04237.5ClassicTopaloglu et al. (1993)Q321K1291090.0872.7ClassicDavies et al. (1993)G328A1581510.1040ClassicEng et al. (1993)G328K5595820.2820ClassicShabber et al. (2005)G328V2182390.1580ClassicShabbeer et al. (2002)G328V2182390.1580ClassicShabbeer et al. (2002)G328V2182390.1660.1ClassicShabbeer et al. (2002)G328V218310.0590ClassicShabbeer et al. (2002)G344D5110.03511.2ClassicShabbeer et al. (2003)G328V69670.0620ClassicMorrone et al. (2002)A350W981140.07613.5ClassicBernstein et al. (2002)R356W981140.07613.5ClassicMirayeaki et al. (1998)E358K <td< td=""><td>I303N</td><td>3</td><td>3</td><td>0.016</td><td>25.9</td><td></td><td>Classic</td><td>Shabbeer et al. (2002)</td></td<>	I303N	3	3	0.016	25.9		Classic	Shabbeer et al. (2002)
Q312H61690.06923.5ClassicShabber et al. (2006)D313Y801160.09638.3ClassicEng et al. (1993)N320V2372770.1820ClassicAshton-Prolla et al. (2000)N320K1651670.1090ClassicAshton-Prolla et al. (1993)Q321E32320.04237.5ClassicTopaloglu et al. (1999)Q321K22240.03537.5ClassicBabber et al. (2006)Q327K1291090.0872.7ClassicBabber et al. (1993)G328A1581510.1040ClassicEng et al. (1993)G328K5595820.2820ClassicShabber et al. (2005)G328V2182390.1580ClassicShabbeer et al. (2005)E341D2832850.1660.1ClassicShabbeer et al. (2002)R342Q51310.0590ClassicMorrone et al. (2003)A352D69670.0620ClassicMorrone et al. (2003)R355K1631880.1340ClassicGermain et al. (2002)R356W981140.07613.5ClassicGermain et al. (2002)R356K1791770.09384.8ClassicGhabbeer et al. (2005)G360S220.02654.2ClassicShabbeer et al. (2005)G361R3 <td< td=""><td>L310F</td><td>71</td><td>88</td><td>0.085</td><td>0.1</td><td></td><td>Classic</td><td>Calado et al. (2004)</td></td<>	L310F	71	88	0.085	0.1		Classic	Calado et al. (2004)
D313Y801160.09638.3ClassicEng et al. (1993)N320Y2372770.1820ClassicAshton-Prolla et al. (2000)N320K1651670.1090ClassicTopaloglu et al. (1995b)Q321E32320.04237.5ClassicTopaloglu et al. (1997)Q321R22240.03537.5ClassicShabber et al. (2006)Q327K1291090.0872.7ClassicEng et al. (1993)G328A1581510.1040ClassicEng et al. (1993)G328K5595820.2820ClassicShabber et al. (2005)G328V2182390.1580ClassicShabbeer et al. (2005)E338K2672870.1480ClassicShabbeer et al. (2002)R342Q51310.0590ClassicShabbeer et al. (2006)A352D69670.0620ClassicMarrone et al. (2003)R355K15311.2ClassicGermain et al. (2002)R356W981140.07613.5ClassicMarrone et al. (2002)R356K5756620.29484.8ClassicGermain et al. (2002)R356K1191760.10184.8ClassicShabbeer et al. (2005)G361K320.02654.2ClassicShabbeer et al. (2005)G361K320.02654	Q312H	61	69	0.069	23.5		Classic	Shabber et al. (2006)
N320Y237277 0.182 0ClassicAshton-Prolla et al. (2000)N320K165167 0.109 0ClassicOkumiya et al. (1995b)Q321E3232 0.042 37.5ClassicTopaloglu et al. (1999)Q321R2224 0.035 37.5ClassicDavies et al. (2006)Q327K129109 0.087 2.7ClassicDavies et al. (1993)G328A158151 0.104 0ClassicEng et al. (1993)G328K559582 0.282 0ClassicShabbeer et al. (2005)G328K218239 0.158 0ClassicShabbeer et al. (2005)E341D283285 0.166 0.1 ClassicShabbeer et al. (2002)R342Q5131 0.059 0ClassicShabbeer et al. (2002)A348P111 0.035 11.2ClassicShabber et al. (2006)A342D6967 0.062 0ClassicGermain et al. (2002)R356W98114 0.076 13.5ClassicGermain et al. (2002)R356K575662 0.294 84.8ClassicShabbeer et al. (2002)<	D313Y	80	116	0.096	38.3		Classic	Eng et al. (1993)
N320K1651670.1090ClassicOkumiya et al. (1995b)Q321E32320.04237.5ClassicTopaloglu et al. (1999)Q321R22240.03537.5ClassicDavies et al. (1993)Q327K1291090.0872.7ClassicDavies et al. (1993)G328A1581510.1040ClassicEng et al. (1993)G328K5595820.2820ClassicShabber et al. (2005)E338K2672870.1480ClassicShabber et al. (2005)E341D2832850.1660.1ClassicShabber et al. (2002)R342Q51310.0590ClassicPloos van Amstel et al. (1994)A348P1110.03511.2ClassicMorrone et al. (2002)R355K1631880.1340ClassicGermain et al. (2002)R356W981140.07613.5ClassicGermain et al. (1998)E358K5756620.29484.8ClassicGermain et al. (2002)E358K1071770.09384.8ClassicDobrovolny et al. (2005)G360S220.01925.9ClassicDobrovolny et al. (2005)G361R320.01925.9ClassicShabber et al. (2002)G363H63590.07933.7ClassicShabbeer et al. (2002)G361R3<	N320Y	237	277	0.182	0		Classic	Ashton-Prolla et al. (2000)
Q321E 32 32 0.042 37.5 Classic Topaloglu et al. (1999) Q321R 22 24 0.035 37.5 Classic Shabber et al. (2006) Q327K 129 109 0.087 2.7 Classic Davies et al. (1993) G328A 158 151 0.104 0 Classic Eng et al. (1993) G328R 559 582 0.282 0 Classic Shabber et al. (2005) G328V 218 239 0.158 0 Classic Shabber et al. (2005) E338K 267 287 0.148 0 Classic Shabber et al. (2002) R342Q 51 31 0.059 0 Classic Morron et al. (2002) R352D 69 67 0.062 0 Classic Germain et al. (2002) R356W 98 114 0.076 13.5 Classic Morron et al. (2002) R356W 98 114 0.076 13.5 Classic	N320 <mark>K</mark>	165	167	0.109	0		Classic	Okumiya et al. (1995b)
Q321R 22 24 0.035 37.5 Classic Shabber et al. (2006) Q327K 129 109 0.087 2.7 Classic Davies et al. (1993) G328A 158 151 0.104 0 Classic Eng et al. (1993) G328R 559 582 0.282 0 Classic Shabber et al. (2005) E338K 267 287 0.148 0 Classic Shabber et al. (2005) E341D 283 285 0.166 0.1 Classic Shabber et al. (2002) R342Q 51 31 0.059 0 Classic Shabber et al. (2006) A348P 11 1 0.055 11.2 Classic Shabber et al. (2003) A352D 69 67 0.062 0 Classic Germain et al. (2002) R356W 98 114 0.076 13.5 Classic Germain et al. (2002) E358K 575 662 0.294 84.8 Classic	Q321E	32	32	0.042	37.5		Classic	Topaloglu et al. (1999)
Q327K1291090.0872.7ClassicDavies et al. (1993)G328A1581510.1040ClassicEng et al. (1993)G328R5595820.2820ClassicIshii et al. (1992)G328V2182390.1580ClassicShabbeer et al. (2005)E338K2672870.1480ClassicShabbeer et al. (2005)E341D2832850.1660.1ClassicShabbeer et al. (2002)R342Q51310.0590ClassicShabbeer et al. (2006)A348P1110.03511.2ClassicShabbeer et al. (2006)A352D69670.0620ClassicMorrone et al. (2003)N355K1631880.1340ClassicGermain et al. (2002)R356W981140.07613.5ClassicBernstein et al. (1989)E358K5756620.29484.8ClassicMiyazaki et al. (1998)E358K1071770.09384.8ClassicShabbeer et al. (2005)G361R320.01925.9ClassicDobrovolny et al. (2005)G361R320.01933.7ClassicShabbeer et al. (2002)R363H63590.07933.7ClassicShabbeer et al. (2002)G373S100.0040.3ClassicGermain et al. (2001)G373B10511	Q321R	22	24	0.035	37.5		Classic	Shabber et al. (2006)
G328A1581510.1040ClassicEng et al. (1993)G328R5595820.2820ClassicIshii et al. (1992)G328V2182390.1580ClassicShabbeer et al. (2005)E338K2672870.1480ClassicShabbeer et al. (2002)B34LD2832850.1660.1ClassicShabbeer et al. (2002)R342Q51310.0590ClassicPloos van Amstel et al. (1994)A348P1110.03511.2ClassicShabber et al. (2006)A352D69670.0620ClassicMorrone et al. (2003)N355K1631880.1340ClassicGermain et al. (2002)R356W981140.07613.5ClassicBernstein et al. (1998)E358K5756620.29484.8ClassicMiyazaki et al. (1998)E358K1071770.09384.8ClassicShabbeer et al. (2005)G360S220.02654.2ClassicDorvolny et al. (2005)G361R320.01925.9ClassicShabbeer et al. (2002)R363H63590.07933.7ClassicShabbeer et al. (2002)G373D1051180.1180.3ClassicGermain et al. (2001)G373D1051180.1180.3ClassicGermain et al. (2001)G373P105 </td <td>Q327K</td> <td>129</td> <td>109</td> <td>0.087</td> <td>2.7</td> <td></td> <td>Classic</td> <td>Davies et al. (1993)</td>	Q327K	129	109	0.087	2.7		Classic	Davies et al. (1993)
G328R559582 0.282 0 ClassicIshi et al. (1992)G328V218239 0.158 0 ClassicShabbeer et al. (2005)E338K267287 0.148 0 ClassicShabbeer et al. (2002)E341D283285 0.166 0.1 ClassicShabbeer et al. (2002)R342Q5131 0.059 0 ClassicPloos van Amstel et al. (1994)A348P111 0.035 11.2 ClassicShabber et al. (2006)A352D6967 0.062 0 ClassicGermain et al. (2002)R356W98114 0.076 13.5ClassicGermain et al. (2002)R356W98114 0.076 13.5ClassicBernstein et al. (1989)E358K575662 0.294 84.8ClassicGermain et al. (2002)E358A107176 0.101 84.8ClassicGermain et al. (2005)G360S22 0.026 54.2ClassicDobrovolny et al. (2005)G361R32 0.019 25.9ClassicDobrovolny et al. (2002)R363H6359 0.079 33.7ClassicShabbeer et al. (2002)G373B10 0.004 0.3 ClassicGermain et al. (2001)G373D105118 0.118 0.3 ClassicGermain et al. (2001)G373P105118 0.116 ClassicBlaydon et a	G328A	158	151	0.104	0		Classic	Eng et al. (1993)
G328V 218 239 0.158 0 Classic Shabbeer et al. (2005) E338K 267 287 0.148 0 Classic Shabbeer et al. (2005) E341D 283 285 0.166 0.1 Classic Shabbeer et al. (2002) R342Q 51 31 0.059 0 Classic Ploos van Amstel et al. (1994) A348P 11 1 0.035 11.2 Classic Shabber et al. (2006) A352D 69 67 0.062 0 Classic Morrone et al. (2003) N355K 163 188 0.134 0 Classic Germain et al. (1994) R356W 98 114 0.076 13.5 Classic Bernstein et al. (1998) E358K 575 662 0.294 84.8 Classic Garmain et al. (2002) E358G 119 176 0.101 84.8 Classic Shabbeer et al. (2005) G3608 2 2 0.026 54.2 Classic Dobrovolny et al. (2005) G361R 3 2 0	G328R	559	582	0.282	0		Classic	Ishii et al. (1992)
E338K2672870.1480ClassicShabbeer et al. (2005)E341D2832850.1660.1ClassicShabbeer et al. (2002)R342Q51310.0590ClassicPloos van Amstel et al. (1994)A348P1110.03511.2ClassicShabber et al. (2006)A352D69670.0620ClassicGermain et al. (2002)R355K1631880.1340ClassicGermain et al. (2002)R356W981140.07613.5ClassicBernstein et al. (1998)E358K5756620.29484.8ClassicMiyazaki et al. (1998)E358A1071770.09384.8ClassicShabbeer et al. (2005)G360S220.02654.2ClassicDobrovolny et al. (2005)G361R320.01925.9ClassicDobrovolny et al. (2002)R363H63590.07933.7ClassicShabbeer et al. (2002)R363H63590.07933.7ClassicOkumiya et al. (1995)G373D1051180.1180.3ClassicGermain et al. (2001)C378Y1871930.2170ClassicBlaydon et al. (2001)C382Y2422450.2030ClassicRodriguez-Mari et al. (2003)C382Y2422450.2030ClassicRodriguez-Mari et al. (2003) <td>G328V</td> <td>218</td> <td>239</td> <td>0.158</td> <td>0</td> <td></td> <td>Classic</td> <td>Shabbeer et al. (2005)</td>	G328V	218	239	0.158	0		Classic	Shabbeer et al. (2005)
E341D2832850.1660.1ClassicShabbeer et al. (2002)R342Q51310.0590ClassicPloos van Amstel et al. (1994)A348P1110.03511.2ClassicShabber et al. (2006)A352D69670.0620ClassicMorrone et al. (2003)N355K1631880.1340ClassicGermain et al. (2002)R366W981140.07613.5ClassicBernstein et al. (1989)E358K5756620.29484.8ClassicGermain et al. (2002)E358A1071760.10184.8ClassicGermain et al. (2002)G360S220.02654.2ClassicDobrovolny et al. (2005)G361R320.01925.9ClassicDavies et al. (1993)P362L480.02199.2ClassicShabbeer et al. (2000)R363H63590.07933.7ClassicCooper et al. (2000)G373S100.0040.3ClassicGermain et al. (2001)G373D1051180.1180.3ClassicGermain et al. (2001)C378Y1871930.2170ClassicBlaydon et al. (2001)C382Y2422450.2030ClassicRodríguez-Marí et al. (2003)138AN540.0160ClassicRodríguez-Marí et al. (2003)	E338 <mark>K</mark>	267	287	0.148	0		Classic	Shabbeer et al. (2005)
R342Q 51 31 0.059 0 Classic Ploos van Amstel et al. (1994) A348P 11 1 0.035 11.2 Classic Shabber et al. (2006) A352D 69 67 0.062 0 Classic Morrone et al. (2003) N355K 163 188 0.134 0 Classic Germain et al. (2002) R356W 98 114 0.076 13.5 Classic Bernstein et al. (1989) E358K 575 662 0.294 84.8 Classic Germain et al. (2002) E358G 119 176 0.101 84.8 Classic Germain et al. (2002) E358A 107 177 0.093 84.8 Classic Shabbeer et al. (2005) G360S 2 2 0.026 54.2 Classic Dobrovolny et al. (2005) G361R 3 2 0.019 25.9 Classic Shabbeer et al. (2002) R363H 63 59 0.079 33.7 Classic Shabbeer et al. (2000) R363T 1 0 0	E341D	283	285	0.166	0.1		Classic	Shabbeer et al. (2002)
A348P1110.03511.2ClassicShabber et al. (2006)A352D69670.0620ClassicMorrone et al. (2003)N355K1631880.1340ClassicGermain et al. (2002)R356W981140.07613.5ClassicBernstein et al. (1989)E358K5756620.29484.8ClassicMiyazaki et al. (1998)E358G1191760.10184.8ClassicGermain et al. (2002)E358A1071770.09384.8ClassicShabber et al. (2005)G360S220.02654.2ClassicDobrovolny et al. (2005)G361R320.01925.9ClassicDobrovolny et al. (2002)R363H63590.07933.7ClassicShabber et al. (2000)R363C1671960.25433.7ClassicShabber et al. (2002)G373S100.0040.3ClassicGermain et al. (2001)G373D1051180.1180.3ClassicGermain et al. (2001)G378Y1871930.2170ClassicTopaloglu et al. (1999)C382Y2422450.2030ClassicRodríguez-Marí et al. (2003)1384N540.0160ClassicShabbeer et al. (2003)	R342Q	51	31	0.059	0		Classic	Ploos van Amstel et al. (1994)
A352D69670.0620ClassicMorrone et al. (2003)N355K1631880.1340ClassicGermain et al. (2002)R356W981140.07613.5ClassicBernstein et al. (1989)E358K5756620.29484.8ClassicMiyazaki et al. (1998)E358G1191760.10184.8ClassicGermain et al. (2002)E358A1071770.09384.8ClassicShabbeer et al. (2005)G360S220.02654.2ClassicDobrovolny et al. (2005)G361R320.01925.9ClassicDavies et al. (1993)P362L480.02199.2ClassicShabbeer et al. (2002)R363H63590.07933.7ClassicCooper et al. (2000)R363C1671960.25433.7ClassicShabbeer et al. (2002)G373S100.0040.3ClassicGermain et al. (2001)G373D1051180.1180.3ClassicGermain et al. (2001)C378Y1871930.2170ClassicTopaloglu et al. (1999)C382Y2422450.2030ClassicRodríguez-Marí et al. (2003)1384N540.0160ClassicShabbeer et al. (2002)	A348P	11	1	0.035	11.2		Classic	Shabber et al. (2006)
N355K1631880.1340ClassicGermain et al. (2002)R356W981140.07613.5ClassicBernstein et al. (1989)E358K5756620.29484.8ClassicMiyazaki et al. (1998)E358G1191760.10184.8ClassicGermain et al. (2002)E358A1071770.09384.8ClassicShabbeer et al. (2005)G360S220.02654.2ClassicDobrovolny et al. (2005)G361R320.01925.9ClassicDavies et al. (1993)P362L480.02199.2ClassicShabbeer et al. (2002)R363H63590.07933.7ClassicCooper et al. (2000)R363C1671960.25433.7ClassicOkumiya et al. (1995b)G373B100.0040.3ClassicGermain et al. (2001)A377D79890.1010.6ClassicBlaydon et al. (2001)C382Y2422450.2030ClassicRodríguez-Marí et al. (2003)I384N540.0160ClassicShabbeer et al. (2002)	A352D	69	67	0.062	0		Classic	Morrone et al. (2003)
R356W981140.07613.5ClassicBernstein et al. (1989)E358K5756620.29484.8ClassicMiyazaki et al. (1998)E358G1191760.10184.8ClassicGermain et al. (2002)E358A1071770.09384.8ClassicShabbeer et al. (2005)G360S220.02654.2ClassicDobrovolny et al. (2005)G361R320.01925.9ClassicDavies et al. (1993)P362L480.02199.2ClassicShabbeer et al. (2002)R363H63590.07933.7ClassicCooper et al. (2000)R363C1671960.25433.7ClassicOkumiya et al. (1995b)G373B100.0040.3ClassicGermain et al. (2001)A377D79890.1010.6ClassicBlaydon et al. (2001)C382Y2422450.2030ClassicRodríguez-Marí et al. (2003)1384N540.0160ClassicShabbeer et al. (2002)	N355 <mark>K</mark>	163	188	0.134	0		Classic	Germain et al. (2002)
E358K5756620.29484.8ClassicMiyazaki et al. (1998)E358G1191760.10184.8ClassicGermain et al. (2002)E358A1071770.09384.8ClassicShabbeer et al. (2005)G360S220.02654.2ClassicDobrovolny et al. (2005)G361R320.01925.9ClassicDavies et al. (1993)P362L480.02199.2ClassicShabbeer et al. (2002)R363H63590.07933.7ClassicCooper et al. (2000)R363C1671960.25433.7ClassicShabbeer et al. (2002)G373S100.0040.3ClassicGermain et al. (2001)G373D1051180.1180.3ClassicGermain et al. (2001)C378Y1871930.2170ClassicTopaloglu et al. (1999)C382Y2422450.2030ClassicRodríguez-Marí et al. (2003)1384N540.0160ClassicShabbeer et al. (2002)	R356W	98	114	0.076	13.5		Classic	Bernstein et al. (1989)
E358G1191760.10184.8ClassicGermain et al. (2002)E358A1071770.09384.8ClassicShabbeer et al. (2005)G360S220.02654.2ClassicDobrovolny et al. (2005)G361R320.01925.9ClassicDavies et al. (1993)P362L480.02199.2ClassicShabbeer et al. (2002)R363H63590.07933.7ClassicCooper et al. (2000)R363C1671960.25433.7ClassicShabbeer et al. (2002)G373S100.0040.3ClassicOkumiya et al. (1995b)G373D1051180.1180.3ClassicGermain et al. (2001)A377D79890.1010.6ClassicTopaloglu et al. (1999)C382Y2422450.2030ClassicRodríguez-Marí et al. (2003)1384N540.0160ClassicShabbeer et al. (2002)	E358 <mark>K</mark>	575	662	0.294	84.8		Classic	Miyazaki et al. (1998)
E358A1071770.09384.8ClassicShabbeer et al. (2005)G360S220.02654.2ClassicDobrovolny et al. (2005)G361R320.01925.9ClassicDavies et al. (1993)P362L480.02199.2ClassicShabbeer et al. (2002)R363H63590.07933.7ClassicCooper et al. (2000)R363C1671960.25433.7ClassicShabbeer et al. (2002)G373S100.0040.3ClassicOkumiya et al. (1995b)G373D1051180.1180.3ClassicGermain et al. (2001)A377D79890.1010.6ClassicBlaydon et al. (2001)C382Y2422450.2030ClassicRodríguez-Marí et al. (2003)I384N540.0160ClassicShabbeer et al. (2002)	E358G	119	176	0.101	84.8		Classic	Germain et al. (2002)
G360S 2 2 0.026 54.2 Classic Dobrovolny et al. (2005) G361R 3 2 0.019 25.9 Classic Davies et al. (1993) P362L 4 8 0.021 99.2 Classic Shabbeer et al. (2002) R363H 63 59 0.079 33.7 Classic Cooper et al. (2000) R363C 167 196 0.254 33.7 Classic Shabbeer et al. (2002) G373S 1 0 0.004 0.3 Classic Okumiya et al. (1995b) G373D 105 118 0.118 0.3 Classic Germain et al. (2001) A377D 79 89 0.101 0.6 Classic Blaydon et al. (2001) C373Y 187 193 0.217 0 Classic Topaloglu et al. (1999) C382Y 242 245 0.203 0 Classic Rodríguez-Marí et al. (2003) I384N 5 4 0.016 0 Classic Shabbeer et al. (2002)	E358A	107	177	0.093	84.8		Classic	Shabbeer et al. (2005)
G361R320.01925.9ClassicDavies et al. (1993)P362L480.02199.2ClassicShabbeer et al. (2002)R363H63590.07933.7ClassicCooper et al. (2000)R363C1671960.25433.7ClassicShabbeer et al. (2002)G373S100.0040.3ClassicOkumiya et al. (1995b)G373D1051180.1180.3ClassicGermain et al. (2001)A377D79890.1010.6ClassicBlaydon et al. (2001)C382Y2422450.2030ClassicRodríguez-Marí et al. (2003)I384N540.0160ClassicShabbeer et al. (2002)	G360S	2	2	0.026	54.2		Classic	Dobrovolny et al. (2005)
P362L 4 8 0.021 99.2 Classic Shabbeer et al. (2002) R363H 63 59 0.079 33.7 Classic Cooper et al. (2000) R363C 167 196 0.254 33.7 Classic Shabbeer et al. (2002) G373S 1 0 0.004 0.3 Classic Okumiya et al. (1995b) G373D 105 118 0.118 0.3 Classic Germain et al. (2001) A377D 79 89 0.101 0.6 Classic Blaydon et al. (2001) C373Y 187 193 0.217 0 Classic Topaloglu et al. (1999) C382Y 242 245 0.203 0 Classic Rodríguez-Marí et al. (2003) 1384N 5 4 0.016 0 Classic Shabbeer et al. (2002)	G361R	3	2	0.019	25.9		Classic	Davies et al. (1993)
R363H 63 59 0.079 33.7 Classic Cooper et al. (2000) R363C 167 196 0.254 33.7 Classic Shabbeer et al. (2002) G373S 1 0 0.004 0.3 Classic Okumiya et al. (1995b) G373D 105 118 0.118 0.3 Classic Germain et al. (2001) A377D 79 89 0.101 0.6 Classic Blaydon et al. (2001) C373Y 187 193 0.217 0 Classic Topaloglu et al. (1999) C382Y 242 245 0.203 0 Classic Rodríguez-Marí et al. (2003) 1384N 5 4 0.016 0 Classic Shabbeer et al. (2002)	P362L	4	8	0.021	99.2		Classic	Shabbeer et al. (2002)
R363C 167 196 0.254 33.7 Classic Shabbeer et al. (2002) G373S 1 0 0.004 0.3 Classic Okumiya et al. (1995b) G373D 105 118 0.118 0.3 Classic Germain et al. (2001) A377D 79 89 0.101 0.6 Classic Blaydon et al. (2001) C373Y 187 193 0.217 0 Classic Topaloglu et al. (1999) C382Y 242 245 0.203 0 Classic Rodríguez-Marí et al. (2003) 1384N 5 4 0.016 0 Classic Shabbeer et al. (2002)	R363H	63	59	0.079	33.7		Classic	Cooper et al. (2000)
G373S 1 0 0.004 0.3 Classic Okumiya et al. (1995b) G373D 105 118 0.118 0.3 Classic Germain et al. (2001) A377D 79 89 0.101 0.6 Classic Blaydon et al. (2001) C378Y 187 193 0.217 0 Classic Topaloglu et al. (1999) C382Y 242 245 0.203 0 Classic Rodríguez-Marí et al. (2003) 1384N 5 4 0.016 0 Classic Shabbeer et al. (2002)	R363C	167	196	0.254	33.7		Classic	Shabbeer et al. (2002)
G373D 105 118 0.118 0.3 Classic Germain et al. (2001) A377D 79 89 0.101 0.6 Classic Blaydon et al. (2001) C378Y 187 193 0.217 0 Classic Topaloglu et al. (1999) C382Y 242 245 0.203 0 Classic Rodríguez-Marí et al. (2003) I384N 5 4 0.016 0 Classic Shabbeer et al. (2002)	G373S	1	0	0.004	0.3		Classic	Okumiya et al. (1995b)
A377D 79 89 0.101 0.6 Classic Blaydon et al. (2001) C378Y 187 193 0.217 0 Classic Topaloglu et al. (1999) C382Y 242 245 0.203 0 Classic Rodríguez-Marí et al. (2003) I384N 5 4 0.016 0 Classic Shabber et al. (2002)	G373D	105	118	0.118	0.3		Classic	Germain et al. (2001)
C378Y 187 193 0.217 0 Classic Topaloglu et al. (1999) C382Y 242 245 0.203 0 Classic Rodríguez-Marí et al. (2003) I384N 5 4 0.016 0 Classic Shabbeer et al. (2002)	A377D	79	89	0.101	0.6		Classic	Blaydon et al. (2001)
C382Y 242 245 0.203 0 Classic Rodríguez-Marí et al. (2003) 1384N 5 4 0.016 0 Classic Shabbeer et al. (2002)	C378Y	187	193	0.217	0		Classic	Topaloglu et al. (1999)
1384N 5 4 0.016 0 Classic Shabbeer et al (2002)	C382Y	242	245	0.203	0		Classic	Rodríguez-Marí et al. (2003)
	I384N	5	4	0.016	0		Classic	Shabbeer et al. (2002)

Table 1 continued

Mutation	Number of affected atoms		RMSD	ASA	Active-site	Phenotype	Reference
	Main chain	Side chain	(Å)	(Å ²)	pocket*		
T385P	34	32	0.046	18.2		Classic	Shabbeer et al. (2002)
Q386P	208	236	0.149	7.9		Classic	Shabber et al. (2006)
E398 <mark>K</mark>	144	172	0.183	72.4		Classic	Shabbeer et al. (2002)
I407 <mark>K</mark>	169	195	0.173	4.8		Classic	Rodríguez-Marí et al. (2003)
P409S	7	4	0.021	42.1		Classic	Germain et al. (2002)
P409A	13	10	0.049	42.1		Classic	Blaydon et al. (2001)
G411D	274	294	0.2	0.7		Classic	Matsuzawa et al. (2005)
L414S	0	0	0.003	0		Classic	Rodríguez-Marí et al. (2003)
G35R	1	0	0.008	52.2		Variant	Davies et al. (1994)
E66Q	23	29	0.047	21.4		Variant	Ishii et al. (1992)
M72V	6	6	0.025	0		Variant	Okumiya et al. (1998)
I91T	0	3	0.011	0.1		Variant	Eng et al. (1997)
R112H	70	71	0.082	25.7		Variant	Eng et al. (1994)
F113L	4	2	0.017	3.6		Variant	Eng et al. (1997)
P146S	13	21	0.026	6.9		Variant	Ploos van Amstel et al. (1994)
N215S	0	0	0.004	77.2		Variant	Eng et al. (1993)
S247C	0	2	0.004	34.5		Variant	Germain et al. (2002)
P259L	10	8	0.03	56.8		Variant	Topaloglu et al. (1999)
Q279E	33	25	0.034	17.4		Variant	Ishii et al. (1992)
M296V	7	12	0.022	0		Variant	von Scheidt et al. (1991)
M296I	11	17	0.023	0		Variant	Nakao et al. (1995)
R301Q	100	146	0.119	41.8		Variant	Sakuraba et al. (1990)
I317T	2	0	0.01	16		Variant	Sachdev et al. (2002)
T410A	0	0	0 006	18 7		Variant	Yang et al. (2003)

Amino acid substitutions for which substrate analogues are effective are indicated in red

RMSD root-mean-square distance, ASA solvent-accessible surface area

Pappu et al. 1998; Ren and Ponder 2003). The crystal structure of human GLA (Garman and Garboczi 2004) (PDB: 1R46) was used as a template, and energy minimization was performed. The root-mean-square gradient value was set at 0.05 kcal/mol Å. Each mutant model was then superimposed on the wild-type GLA structure based on C α atoms by the least-square-mean fitting method (Kabsch 1976, 1978; Sakuraba et al. 2000, 2004). In this study, we defined that the structure was affected by an amino acid substitution when the position of an atom in a mutant differed from that in the wild type by more than the cutoff distance (0.15 Å) based on total RMSD, as described previously (Matsuzawa et al. 2005). Then, we determined the numbers of atoms affected in GLA main chain and side chain.

Determination of RMSD values of all atoms in mutant GLAs

RMSD values of all atoms in mutant GLAs were determined according to Weiner's method (Weiner et al. 1984) to predict the degrees of GLA structural changes, and the average RMSD values for the classic and variant Fabry groups were determined and compared with each other, as described previously (Sugawara et al. 2008).

Determination of ASA values of amino acid residues in mutant GLAs

To predict the position of a substituted amino acid residue in the GLA molecule, the ASA value of each residue in the wild-type GLA was calculated using ACCESS (McDonald and Thornton 1994). The average ASA values of the residues for which a substitution had been found in the classic and variant Fabry groups were determined and compared with each other, as described previously (Saito et al. 2008; Sugawara et al. 2008).

Statistical analysis

Statistical analysis to determine differences in the numbers of atoms affected, RMSD values, and ASA values between

classic and variant Fabry groups was performed using the *F* test and then Welch's *t* test, it being taken that there was a significant difference if P < 0.05.

Coloring the atoms affected in mutant GLAs for which substrate analogues are effective

To determine the influence of amino acid substitutions geographically and semiquantitatively, coloring the affected atoms in the three-dimensional structure of GLA based on the distances between the wild-type and mutant ones was performed, followed by determination of the numbers of affected atoms, RMSD values, and ASA values. We analyzed amino acid substitutions including E59K, E66Q, M72V, I91T, A97V, R112H, F113L, A156V, L166V, N215S, G260A, Q279E, M296I, M296V, R301Q, R356W, and G373S, for which substrate analogues are effective for stabilization or transportation of mutant enzymes to lysosomes (Okumiya et al. 1995b; Yam et al. 2006; Ishii et al. 2007).

Results

Localization of amino acid substitutions responsible for Fabry disease

According to the crystallographic structure of human GLA (Garman and Garboczi 2004), the enzyme unit comprises two domains: an N-terminal $(\beta/\alpha)_8$ -barrel domain and a C-terminal antiparallel β -sheet domain. The active-site pocket is localized in the C-terminal of the β -sheet of the N-terminal domain. We determined the locations of residues of which amino acid substitutions have been identified in Fabry disease patients in the homodimeric enzyme structure (Fig. 1a). Then, we localized the residues of which amino acid substitutions are responsible for classic (Fig. 1b, c) and variant (Fig. 1d, e) Fabry groups in the GLA subunit to compare them with each other. In the classic Fabry group, amino acid substitutions were distributed all over the enzyme protein molecule, including the active-site pocket. On the other hand, in the variant Fabry group, they were located far from the active-site pocket, and most of them were localized on the molecular surface of the protein.

Numbers of atoms affected by amino acid substitutions responsible for Fabry disease

We built structural models of the mutant GLAs and calculated the number of atoms affected by the amino acid substitution for each mutant model (Table 1), the results being summarized in Fig. 2. The classic Fabry group showed a wide distribution. Averages for the affected atoms in the main chain and side chain were 108 and 130, respectively. In particular, regarding the former, 108 of the 196 classic cases (56%) had 50 atoms or more affected. There were 36 amino acid substitutions located in the active-site pocket, all of which cause the classic Fabry phenotype. These cases are colored *red* for their differentiation from other cases, which are colored *black*.

In contrast, the number of affected atoms in the variant Fabry group was low, and the distribution was narrower. These cases are colored *black*. Averages of the affected atoms in the main chain and the side chain were 18 and 21, respectively. In particular, regarding the main-chain atoms, 14 of the 16 variant Fabry cases (88%) had 49 atoms or less affected.

The *F* test showed that the distribution exhibited unequal variance (P < 0.05) between the classic and variant Fabry groups, and thus, Welch's *t* test was performed. Results revealed that there were significant differences in the numbers of affected atoms in both the main chain and side chain between the two groups (P < 0.05).

RMSD values for amino acid substitutions responsible for Fabry disease

The RMSD values for the classic and variant Fabry groups were determined. Results are shown in Fig. 3. The average RMSD values in the classic and variant Fabry groups were 0.089 and 0.029 Å, respectively. In 115 of the 196 classic Fabry cases (59%), the RMSD value was ≥ 0.05 Å. On the other hand, it was <0.05 Å in 14 of the 16 variant Fabry cases (88%). Results of the *F* test followed by Welch's *t* test showed that there was a significant difference in the RMSD values between the two groups.

ASA values of amino acid substitutions responsible for Fabry disease

To determine and compare locations of amino acid residues in the GLA molecule associated with the classic (126 residues) and variant (15 residues) Fabry cases, the ASA values of the residues in the wild-type GLA structure were calculated, the results being shown in Fig. 4 (the result for each residue is presented in "Supplementary data No. 1"). In the classic Fabry group, the average ASA value for the 126 residues analyzed was 13.3 Å², 93 of them (74%) being <20 Å². In the variant Fabry group, the average ASA value for the 15 residues analyzed was 25.1 Å², eight of them being ≥ 20 Å² (53%).

The F test followed by Welch's t test revealed that P was 0.09. Results suggest that the residues associated with

Fig. 1 Localization of amino acid substitutions responsible for Fabry disease in the α -galactosidase (GLA) structure. Secondary structures in GLA are shown as a tube drawing. Locations of amino acid substitutions identified in the classic and variant Fabry groups are shown in *yellow* and *green*, respectively. *N* The *N*-terminal ($\beta/\alpha)_8$ -barrel domain. *C* The *C*-terminal antiparallel β -sheet domain. An *arrow* indicates the active-site pocket. **a** Homodimeric GLA structure, classic and variant Fabry groups. **b** Front view of the GLA subunit, classic Fabry group. **c** Side view of the GLA subunit, classic Fabry group. **e** Side view of the GLA subunit, variant Fabry group. **e** Side view of the GLA subunit, variant Fabry group.

classic Fabry mutations tend to be less solvent-accessible than those associated with variant ones, although this could not be confirmed statistically.

Fig. 2 Numbers of atoms in the **a** main chain and the **b** side chain of the α -galactosidase (GLA) protein affected by amino acid substitutions. *Classic* classic Fabry group. *Variant* variant Fabry group. Mutations located in the active-site pocket are colored *red*, others being colored *black*. *Boxes* indicate mean \pm standard errors of mean

Fig. 3 Root-mean-square distance (*RMSD*) values for classic and variant Fabry mutations (\mathring{A}). *Boxes* indicate mean \pm standard errors of mean

Coloring the affected atoms due to amino acid substitutions for which substrate analogues are effective

Regarding amino acid substitutions responsible for Fabry disease, we paid attention to 17 mutations for which substrate analogues improved the stability or transportation of mutant GLAs in cells, i.e., E59K (classic), E66Q (variant), M72V (variant), I91T (variant), A97V (classic), R112H (variant), F113L (variant), A156V (classic), L166V (classic), N215S (variant), G260A (classic), Q279E (variant), M296I (variant), M296V (variant), R301Q (variant), R356W (classic), and G373S (classic). Coloring the affected atoms in the three-dimensional GLA structure was performed for these mutations, the results being shown in Fig. 5.

Coloring the affected atoms clearly allowed visualization of structural changes. Determining the numbers of atoms affected and RMSD and ASA values confirmed the results. In most mutant GLAs, the predicted structural changes were small (numbers of affected atoms in both the main chain and side chain <50, and RMSD < 0.05: E66Q, M72V, I91T, A97V, F113L, L166V, L215S, G260A, Q279E, M296I, M296V, and G373S), or localized on the molecular surface, although the structural changes were not small (ASA \geq 20: E59K, R112H, and R301Q), regardless

Fig. 4 Solvent-accessible surface area (ASA) values of amino acid residues associated with classic and variant Fabry disease ($Å^2$). *Boxes* indicate mean \pm standard errors of mean

of phenotype. There were only two exceptions, A156V and R356W, and their clinical phenotype was classic. None of the amino acid substitutions for which substrate analogues are effective caused any structural changes in the active site.

Discussion

Considering the results of newborn screening, the incidence of Fabry disease is unexpectedly high (1 in 3,000– 4,000 male newborns), especially the variant form (Spada et al. 2006). It is very important to examine the structural changes in the enzyme protein responsible for the different phenotypes to elucidate the basis of Fabry disease and to predict disease outcome. Garman and Garboczi calculated the side-chain-accessible surface area and revealed that the residues involved in Fabry mutations tend to be less solvent-accessible than the typical residues and that most of them lead to disruption of the hydrophobic core of the protein (Garman and Garboczi 2004; Garman 2007). However, there is little structural information on defective GLA proteins, although a large number of gene mutations responsible for Fabry disease have been reported so far.

In this study, we constructed structural models of Fabry mutant GLAs and examined their structural changes from various aspects by determining the number of atoms affected, as well as RMSD and ASA values, using our structural analysis system. The results revealed that structural changes in the classic Fabry group are generally large

Fig. 5 Coloring the atoms in the three-dimensional structure affected by amino acid substitutions for which substrate analogues are effective. The degrees and distributions for E59K, E66Q, M72V, I91T, A97V, R112H, F113L, A156V, L166V, N215S, G260A, Q279E, M296I, M296V, R301Q, R356W, and G373S, for which substrate analogues are effective, are shown. Each atom is colored according to the distance

between the atom in the mutant and the corresponding atom in the wild-type structure. The colors of the atoms show the distances as follows: *blue* <0.15 Å, 0.15 Å \leq *cyan* < 0.30 Å, 0.30 Å \leq *green* < 0.45 Å, 0.45 Å \leq *yellow* < 0.60 Å, 0.60 Å \leq *orange* < 0.75 Å, and *red* \geq 0.75 Å. *Arrows* indicate the active-site pocket

and tend to be in the core region of the protein. About 85% (116/196) of the amino acid substitutions leading to classic Fabry disease satisfied one of the conditions given below; number of affected atoms in the main chain \geq 50, number in the side chain \geq 50, RMSD \geq 0.05 Å, or ASA < 20 Å². They seriously affected protein folding or intracellular transport, leading to a deficiency of enzyme activity. All amino acid substitutions causing structural changes of the active-site pocket resulted in the classic phenotype. In such cases, structural changes would seriously affect expression of GLA activity, even if the number of influenced atoms is relatively small.

On the other hand, the predicted structural changes in GLA are generally small or localized on the surface of the molecule far away from the active site in the variant Fabry group. In such cases, a small amount of enzyme having GLA activity would be protected from the ER's quality control system and transported to lysosomes, resulting in residual enzyme activity.

The number of affected atoms calculated using TINKER differs from that calculated using SYBYL/BIOPOLYMER. This is not surprising, because the minimized structure depends on the minimization algorithm, force field, and computational implementation. As shown in supplementary data No. 2 and No. 3, the number of affected atoms calculated using TINKER was generally larger than that using SYBYL/BIOPOLYMER. The mutant model obtained with TINKER was well optimized compared with that with SYBYL/BIOPOLYMER, which indicates that the mutant model constructed in this study is improved compared with the previous one (Matsuzawa et al. 2005). However, the supplementary data suggest that the number of affected atoms calculated using SYBYL/BIOPOLY-MER was correlated with that using TINKER. Therefore, the discussion in the previous study is thought to remain correct.

Furthermore, we focused on the structural changes due to amino acid substitutions for which substrate analogues are effective and examined them by determining the affected atoms, RMSD values, and ASA values, followed by coloring the affected atoms. Results revealed that they cause small structural changes in GLA or are localized on the molecular surface, except for a couple of exceptions. None of them affected the active site. These results suggest that binding of a substrate analogue to a mutant enzyme protein in which a small structural change has occurred on the surface of the molecule reduces its folding defect and increases its stability in cells. Previously, we expressed mutant GLAs including M72V, L156V, L166V, Q279E, and R301Q in COS-1 cells and Sf9 cells and examined their biochemical characteristics (Ishii et al. 1993; Okumiya et al. 1995a, 1998; Kase et al. 2000). The expressed products had GLA activity, but they were unstable and easily lost their activity in vitro, suggesting that their structural changes are located far from the active site and that the degree of the changes is not so large. The results are well correlated with those of the structural analysis performed this time.

In conclusion, we investigated the structural changes in GLA responsible for Fabry disease. Results showed a correlation between the three-dimensional structural changes and clinical phenotypes, and they also revealed the characteristics of the structural changes in mutant enzyme proteins for which substrate analogues are effective. Structural investigation is useful for elucidation of the basis of Fabry disease, and it will increase our ability to determine a proper therapeutic schedule for this disease.

Acknowledgments We thank Dr. J. Ponder (Department of Biochemistry and Molecular Biophysics, Washington University) for providing us with the TINKER software. We also thank I.K. McDonald, D. Naylor, D. Jones, J.M. Thornton, S. Hubbard, D.K. Smith, R. Laskowski, and G. Hutchinson for providing us with the HBPLUS. This work was partly supported by grants from the Japan Society for the Promotion of Science; the Ministry of Education, Science, Sports and Culture of Japan; the Ministry of Health and Welfare of Japan; the Japan Science and Technology Agency; and CREST.

References

- Ashley GA, Shabbeer J, Yasuda M, Eng CM, Desnick RJ (2001) Fabry disease: twenty novel alpha-galactosidase A mutations causing the classical phenotype. J Hum Genet 46:192–196
- Ashton-Prolla P, Tong B, Shabbeer J, Astrin KH, Eng CM, Desnick RJ (2000) Fabry disease: twenty-two novel mutations in the alpha-galactosidase A gene and genotype/phenotype correlations in severely and mildly affected hemizygotes and heterozygotes. J Investig Med 48:227–235
- Bernstein HS, Bishop DF, Astrin KH, Kornreich R, Eng CM, Sakuraba H, Desnick RJ (1989) Fabry disease: six gene rearrangements and an exonic point mutation in the alphagalactosidase gene. J Clin Invest 83:1390–1399
- Blanch LC, Meaney C, Morris CP (1996) A sensitive mutation screening strategy for Fabry disease: detection of nine mutations in the alpha-galactosidase A gene. Hum Mutat 8:38–43
- Blaydon D, Hill J, Winchester B (2001) Fabry disease: 20 novel GLA mutations in 35 families. Hum Mutat 18:459
- Calado J, Dickson J, Rueff J (2004) Human gene mutations. Hum Genet 115:347
- Cooper A, Cooper JA, Wraith JE (2000) Human gene mutations. Hum Genet 107:535–536
- Davies JP, Winchester BG, Malcolm S (1993) Mutation analysis in patients with the typical form of Anderson-Fabry disease. Hum Mol Genet 2:1051–1053
- Davies J, Christomanou H, Winchester B, Malcolm S (1994) Detection of 8 new mutations in the alpha-galactosidase A gene in Fabry disease. Hum Mol Genet 3:667–669
- Davies JP, Eng CM, Hill JA, Malcolm S, MacDermot K, Winchester B, Desnick RJ (1996) Fabry disease: fourteen alpha-galactosidase A mutations in unrelated families from the United Kingdom and other European countries. Eur J Hum Genet 4:219–224

- Desnick RJ, Ioannou YA, Eng CM (2001) Alpha-galactosidase A deficiency: Fabry disease. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 3733–3774
- Dobrovolny R, Dvorakova L, Ledvinova J, Magage S, Bultas J, Lubanda JC, Elleder M, Karetova D, Pavlikova M, Hrebicek M (2005) Relationship between X-inactivation and clinical involvement in Fabry heterozygotes. Eleven novel mutations in the alpha-galactosidase A gene in the Czech and Slovak population. J Mol Med 83:647–654
- Dudek MJ, Ponder JW (1995) Accurate modeling of the intramolecular electrostatic energy of proteins. J Comput Chem 16:791– 816
- Eng CM, Resnick-Silverman LA, Niehaus DJ, Astrin KH, Desnick RJ (1993) Nature and frequency of mutations in the alpha-galactosidase A gene that cause Fabry disease. Am J Hum Genet 53:1186–1197
- Eng CM, Niehaus DJ, Enriquez AL, Burgert TS, Ludman MD, Desnick RJ (1994) Fabry disease: twenty-three mutations including sense and antisense CpG alterations and identification of a deletional hot-spot in the alpha-galactosidase A gene. Hum Mol Genet 3:1795–1799
- Eng CM, Ashley GA, Burgert TS, Enriquez AL, D'Souza M, Desnick RJ (1997) Fabry disease: thirty-five mutations in the alphagalactosidase A gene in patients with classic and variant phenotypes. Mol Med 3:174–182
- Eng CM, Banikazemi M, Gordon RE, Goldman M, Phelps R, Kim L, Gass A, Winston J, Dikman S, Fallon JT, Grodie S, Stacy CB, Mehta D, Parsons R, Norton K, O'Callaghan M, Desnick RJ (2001a) A phase 1/2 clinical trial of enzyme replacement in Fabry disease: pharmacokinetic, substrate clearance, and safety studies. Am J Hum Genet 68:711–722
- Eng CM, Guffon N, Wilcox WR, Germain DP, Lee P, Waldek S, Caplan L, Linthorst GE, Desnick RJ (2001b) Safety and efficacy of recombinant human alpha-galactosidase A replacement therapy in Fabry's disease. N Engl J Med 345:9–16
- Fan J-Q, Ishii S (2007) Active-site specific chaperone for Fabry disease; Yin and Yang of enzyme inhibitors. FEBS J 274:4962– 4971
- Frustaci A, Chimenti C, Ricci R, Natale L, Russo MA, Pieroni M, Eng CM, Desnick RJ (2001) Improvement in cardiac function in the cardiac variant of Fabry's disease with galactose-infusion therapy. N Engl J Med 345:25–32
- Garman SC, Garboczi DN (2004) The molecular defect leading to Fabry disease: structure of human alpha-galactosidase. J Mol Biol 337:319–335
- Garman SC (2007) Structure-function relationships in alpha-galactosidase A. Acta Paediatr Suppl 96:6–16
- Germain D, Biasotto M, Tosi M, Meo T, Kahn A, Poenaru L (1996) Fluorescence-assisted mismatch analysis (FAMA) for exhaustive screening of the alpha-galactosidase A gene and detection of carriers in Fabry disease. Hum Genet 98:719–726
- Germain DP, Salard D, Fellmann F, Azibi K, Caillaud C, Bernard MC, Poenaru L (2001) Identification of a novel de novo mutation (G373D) in the alpha-galactosidase A gene (GLA) in a patient affected with Fabry disease. Hum Mutat 17:353
- Germain DP, Shabbeer J, Cotigny S, Desnick RJ (2002) Fabry disease: twenty novel alpha-galactosidase A mutations and genotype-phenotype correlations in classical and variant phenotypes. Mol Med 8:306–312
- Guffon N, Froissart R, Chevalier-Porst F, Maire I (1998) Mutation analysis in 11 French patients with Fabry disease. Hum Mutat Suppl 1:S288–S290
- Iga MI, Okayama A, Matsuyama M, Sasaki T, Murai K, Hashida S, Morishita K, Tsubouchi H (2001) Human gene mutations. Hum Genet 109:126

- Ishii S, Sakuraba H, Suzuki Y (1992) Point mutations in the upstream region of the alpha-galactosidase A gene exon 6 in an atypical variant of Fabry disease. Hum Genet 89:29–32
- Ishii S, Kase R, Sakuraba H, Suzuki Y (1993) Characterization of mutant alpha-galactosidase gene product for the late-onset cardiac form of Fabry disease. Biochem Biophys Res Commun 197:1585–1589
- Ishii S, Chang HH, Kawasaki K, Yasuda K, Wu HL, Garman SC, Fan JQ (2007) Mutant alpha-galactosidase A enzymes identified in Fabry disease patients with residual enzyme activity: biochemical characterization and restoration of normal intracellular processing by 1-deoxygalactonojirimycin. Biochem J 406:285– 295
- Kabsch W (1976) A solution for the best rotation to relate two sets of vectors. Acta Crystallogr A 32:827
- Kabsch W (1978) A discussion of the solution for the best rotation to relate two sets of vectors. Acta Crystallogr A 34:922–923
- Kase R, Bierfreund U, Klein A, Kolter T, Utsumi K, Itoh K, Sandhoff K, Sakuraba H (2000) Characterization of two alphagalactosidase mutants (Q279E and R301Q) found in an atypical variant of Fabry disease. Biochem Biophys Res Commun 1501:227–235
- Kimura K, Sato-Matsumura KC, Nakamura H, Onodera Y, Morita K, Enami N, Shougase T, Ohsaki T, Kato M, Takahashi T, Yamaguchi Y, Shimizu H (2002) A novel A97P amino acid substitution in alpha-galactosidase A leads to a classical Fabry disease with cardiac manifestations. Br J Dermatol 147:545–548
- Koide T, Ishiura M, Iwai K, Inoue M, Kaneda Y, Okada Y, Uchida T (1990) A case of Fabry's disease in a patient with no alphagalactosidase A activity caused by a single amino acid substitution of Pro-40 by Ser. FEBS Lett 259:353–356
- Kong MJ, Ponder JW (1997) Reaction field methods for off-center multipoles. J Chem Phys 107:481–492
- Kotanko P, Kramar R, Devrnja D, Paschke E, Voigtländer T, Auinger M, Pagliardini S, Spada M, Demmelbauer K, Lorenz M, Hauser AC, Kofler HJ, Lhotta K, Neyer U, Pronai W, Wallner M, Wieser C, Wiesholzer M, Zodl H, Födinger M, Sunder-Plassmann G (2004) Results of a nationwide screening for Anderson-Fabry disease among dialysis patients. J Am Soc Nephrol 15:1323–1329
- Kundrot CE, Ponder JW, Richards FM (1991) Algorithms for calculating excluded volume and its derivative as a function of molecular conformation and their use in energy minimization. J Comput Chem 12:402–409
- Lai L, O'Meara M, Lien YH (2001) Human gene mutations. Hum Genet 109:469
- Lee JK, Kim GH, Kim JS, Kim KK, Lee MC, Yoo HW (2000) Identification of four novel mutations in five unrelated Korean families with Fabry disease. Clin Genet 58:228–233
- Matsuzawa F, Aikawa S, Doi H, Okumiya T, Sakuraba H (2005) Fabry disease: correlation between structural changes in alphagalactosidase, and clinical and biochemical phenotype. Hum Genet 117:317–328
- McDonald IK, Thornton JM (1994) Satisfying hydrogen bonding potential in proteins. J Mol Biol 238:777–793
- Miyazaki T, Kajita M, Ohmori S, Mizutani N, Niwa T, Murata Y, Seo H (1998) A novel mutation (E358K) in the alpha-galactosidase A gene detected in a Japanese family with Fabry disease. Hum Mutat Suppl 1:S139–S140
- Morrone A, Cavicchi C, Bardelli T, Antuzzi D, Parini R, Di Rocco M, Feriozzi S, Gabrielli O, Barone R, Pistone G, Spisni C, Ricci R, Zammarchi E (2003) Fabry disease: molecular studies in Italian patients and X inactivation analysis in manifesting carriers. J Med Genet 40:e103
- Nakao S, Takenaka T, Maeda M, Kodama C, Tanaka A, Tahara M, Yoshida A, Kuriyama M, Hayashibe H, Sakuraba H et al (1995)

An atypical variant of Fabry's disease in men with left ventricular hypertrophy. N Engl J Med 333:288–93

- Ohno K, Saito S, Sugawara K, Sakuraba H (2008) Structural consequences of amino acid substitutions causing Tay-Sachs disease. Mol Genet Metab (in press)
- Okumiya T, Ishii S, Kase R, Kamei S, Sakuraba H, Suzuki Y (1995a) Alpha-galactosidase gene mutations in Fabry disease: heterogeneous expressions of mutant enzyme protein. Hum Genet 95:557–561
- Okumiya T, Ishii S, Takenaka T, Kase R, Kamei S, Sakuraba H, Suzuki Y (1995b) Galactose stabilizes various missense mutants of alpha-galactosidase in Fabry disease. Biochem Biophys Res Commun 214:1219–1224
- Okumiya T, Kawamura O, Itoh K, Kase R, Ishii S, Kamei S, Sakuraba H (1998) Novel missense mutation (M72 V) of alpha-galactosidase gene and its expression product in an atypical Fabry hemizygote. Hum Mutat Suppl 1:S213–S216
- Pappu RV, Hart RW, Ponder JW (1998) Analysis and application of potential energy smoothing for global optimization. J Phy Chem B 102:9725–9742
- Ploos van Amstel JK, Jansen RP, de Jong JG, Hamel BC, Wevers RA (1994) Six novel mutations in the alpha-galactosidase A gene in families with Fabry disease. Hum Mol Genet 3:503–505
- Ren P, Ponder JW (2003) Polarizable atomic multipole water model for molecular mechanics simulation. J Phy Chem B 107:5933– 5947
- Rodríguez-Marí A, Coll MJ, Chabás A (2003) Molecular analysis in Fabry disease in Spain: fifteen novel GLA mutations and identification of a homozygous female. Hum Mutat 2:258
- Sachdev B, Takenaka T, Teraguchi H, Tei C, Lee P, McKenna WJ, Elliott PM (2002) Prevalence of Anderson- Fabry disease in male patients with late onset hypertrophic cardiomyopathy. Circulation 105:1407–1411
- Saito S, Ohno K, Sugawara K, Sakuraba H (2008) Structural and clinical implications of amino acid substitutions in N-acetylgalactosamine-4-sulfatase: Insight into mucopolysaccharidosis type VI. Mol Genet Metab 93:419–425
- Sakuraba H, Oshima A, Fukuhara Y, Shimmoto M, Nagao Y, Bishop DF, Desnick RJ, Suzuki Y (1990) Identification of point mutations in the alpha-galactosidase A gene in classical and atypical hemizygotes with Fabry disease. Am J Hum Genet 47:784–789
- Sakuraba H, Matsuzawa F, Aikawa S, Doi H, Kotani M, Lin H, Ohno K, Tanaka A, Yamada H, Uyama E (2000) Molecular and structural studies of the GM2 gangliosidosis O variant. J Hum Genet 47:176–183
- Sakuraba H, Matsuzawa F, Aikawa S, Doi H, Kotani M, Nakada H, Fukushige T, Kanzaki T (2004) Structural and immunocytochemical studies on alpha-*N*-acetylgalactosaminidase deficiency (Schindler/Kanzaki disease). J Hum Genet 49:1–8
- Schäfer E, Baron K, Widmer U, Deegan P, Neumann HP, Sunder-Plassmann G, Johansson JO, Whybra C, Ries M, Pastores GM, Mehta A, Beck M, Gal A (2005) Thirty-four novel mutations of the GLA gene in 121 patients with Fabry disease. Hum Mutat 25:412
- Schiffmann R, Murray GJ, Treco D, Daniel P, Sellos-Moura M, Myers M, Quirk JM, Zirzow GC, Borowski M, Loveday K,

Anderson T, Gillespie F, Oliver KL, Jeffries NO, Doo E, Liang TJ, Kreps C, Gunter K, Frei K, Crutchfield K, Selden RF, Brady RO (2000) Infusion of alpha-galactosidase A reduces tissue globotriaosylceramide storage in patients with Fabry disease. Proc Natl Acad Sci USA 97:365–370

- Shabbeer J, Yasuda M, Luca E, Desnick RJ (2002) Fabry disease: 45 novel mutations in the alpha-galactosidase A gene causing the classical phenotype. Mol Genet Metab 76:23–30
- Shabbeer J, Robinson M, Desnick RJ (2005) Detection of alphagalactosidase A mutations causing Fabry disease by denaturing high performance liquid chromatography. Hum Mutat 25:299– 305
- Shabbeer J, Yasuda M, Benson SD, Desnick RJ (2006) Fabry disease: identification of 50 novel alpha-galactosidase A mutations causing the classic phenotype and three-dimensional structural analysis of 29 missense mutations. Hum Genomics 2:297–309
- Spada M, Pagliardini S, Yasuda M, Tukel T, Thiagarajan G, Sakuraba H, Ponzon A, Desnick RJ (2006) High incidence of later-onset Fabry disease revealed by newborn screening. Am J Hum Genet 79:31–40
- Sugawara K, Saito S, Ohno K, Okuyama T, Sakuraba H (2008) Structural study on mutant alpha-L-iduronidases: insight into mucopolysaccharidosis type I. J Hum Genet 53:467–474
- Takata T, Okumiya T, Hayashibe H, Shimmoto M, Kase R, Itoh K, Utsumi K, Kamei S, Sakuraba H (1997) Screening and detection of gene mutations in Japanese patients with Fabry disease by non-radioactive single-stranded conformation polymorphism analysis. Brain Dev 19:111–116
- Topaloglu AK, Ashley GA, Tong B, Shabbeer J, Astrin KH, Eng CM, Desnick RJ (1999) Twenty novel mutations in the alphagalactosidase A gene causing Fabry disease. Mol Med 5:806– 811
- Verovnik F, Benko D, Vujkovac B, Linthorst GE (2004) Remarkable variability in renal disease in a large Slovenian family with Fabry disease. Eur J Hum Genet 12:678–681
- von Scheidt W, Eng CM, Fitzmaurice TF, Erdmann E, Hübner G, Olsen EG, Christomanou H, Kandolf R, Bishop DF, Desnick RJ (1991) An atypical variant of Fabry's disease with manifestations confined to the myocardium. N Engl J Med 324:395–399
- Weiner SJ, Kallman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S, Weiner P (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 106:765–784
- Yam GH-F, Bosshard N, Zuber C, Steinmann B, Roth J (2006) Pharmacological chaperone corrects lysosomal storage in Fabry disease caused by trafficking-incompetent variants. Am J Physiol Cell Physiol 290:C1076–C1082
- Yang CC, Lai LW, Whitehair O, Hwu WL, Chiang SC, Lien YH (2003) Two novel mutations in the alpha-galactosidase A gene in Chinese patients with Fabry disease. Clin Genet 63:205–209
- Yasuda M, Shabbeer J, Benson SD, Maire I, Burnett RM, Desnick RJ (2003) Fabry disease: characterization of alpha-galactosidase A double mutations and the D313Y plasma enzyme pseudodeficiency allele. Hum Mutat 22:486–492