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Abstract Single nucleotide polymorphism (SNP) inter-

action plays a critical role for complex diseases. The

primary limitation of logistic regressions (LR) in testing

SNP–SNP interactions is that coefficient estimates may not

be valid because of numerous terms in a model. Multi-

variate adaptive regression splines (MARS) have useful

features to effectively reduce the number of terms in a

model. To study how MARS can address these drawbacks

possibly better than LR, the power of MARS and LR with

SNPs using the reference-coding and additive-mode

scheme was compared using simulated data of ten SNPs for

400 subjects based on 1,000 replications for five interaction

models. In overall scenarios, MARS performed better than

LR. In the model with a dominant two-way interaction, the

power range was 76–96% for MARS and 1–8% for LR in

both coding schemes. In the dominant three-way interac-

tion model, the power was 57–85% for MARS and less

than 4% for LR. In the prostate cancer example, we eval-

uated the association between ten SNPs and prostate cancer

risk in 649 Caucasians. The best model with one two-way

and one three-way interaction was selected using MARS.

The findings supported that MARS may provide a useful

tool for exploring SNP–SNP interactions.
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Introduction

Identifying genetic factors for complex diseases, such as

hypertension, asthma, or cancer, is one of the primary goals

of human geneticists. Gene–gene and gene–environment

interaction associated with diseases has been discussed

recently. In this study, we used the term single nucleotide

polymorphism–single nucleotide polymorphism (SNP–

SNP) interaction instead of gene–gene interaction because

several SNPs with interactions may be in the same gene,

and we not only evaluate interactions between genes but

also within a gene. Although SNP–SNP interaction detec-

tion is conceptually expected to play an important role in

defining risk groups for complex diseases (Smith et al.

2002, 2003; Moore 2003; Lin et al. 2006; Hu et al. 2007),

the identification of SNP–SNP interaction has been limited,

with the majority of studies focusing on identifying the

additive effect of SNPs, especially for genome-wide stud-

ies with a large number of SNPs (Scuteri et al. 2007;

Tomlinson et al. 2007). Identification of such interactions

remains difficult because of weak or no marginal effects of
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some SNPs, a large number of SNPs to consider, or lack of

a priori information about which SNPs interact.

Commonly used case-control methods [i.e., logistic

regression (LR)] for gene identification may lack the

flexibility to overcome these difficulties. For instance,

unconditional LR is typically used to test the association

between potential SNPs and a binary outcome, such as

‘‘diseased or nondiseased.’’ As the number of SNPs

increases and interactions are taken in to consideration, the

number of terms needed in an LR model to statisti-

cally describe all possible k-way SNP–SNP interactions

of n biallelic loci increases dramatically in a form of

(n!/k!(n - k)!) 9 2k (Wade 2000). Thus, the LR approach

usually suffers the data configuration of quasi-complete

separation (Albert and Anderson 1984), where not all

response levels exist in each covariate combination. The

quasi-complete separation may cause invalid estimates of

coefficient and an unusually large standard error estimate

because the coefficient with quasi-complete separation is

theoretically infinite (Webb et al. 2004). In this study, we

simply called this effect ‘‘empty-cell effect.’’ When the

empty-cell effect exists, the true SNP association may be

distorted.

Several statistical methods have been proposed to deal

with SNP–SNP interactions, such as multivariate adaptive

regression splines (MARS) (Friedman 1991; Cook et al.

2004), multifactor dimensionality reduction (MDR)

(Ritchie et al. 2001), combinational partitioning method

(CPM) (Nelson et al. 2001), artificial neural networks

(ANN) (Veaux et al. 1993), classification and regression

trees (CART) (Breiman et al. 1984), and random forests

(Bureau et al. 2005). MARS is considered the most flexible

compared with CART and traditional LR (Cook et al.

2004), and it has performed better than ANN. In addition,

MARS is more powerful than least squares curve fitting

using polynomials in testing gene–environmental interac-

tions (York et al. 2006). Several studies have used MARS

for detecting SNP–SNP interactions in prostate cancer,

breast cancer, ischemic stroke, and hypertension (York and

Eaves 2001; Cook et al. 2004; Gu et al. 2006; Lin et al.

2006; Ge et al. 2007; Van Emburgh et al. 2008; Zabaleta

et al. 2008).

MARS (Friedman 1991) is an automated and flexible

data-mining tool that combines the advantages of recursive

partitioning (Morgan and Sonquist 1963; Breiman et al.

1984) and spline fitting (De Boor 1978). MARS provides

useful features to overcome the limitations of LR in

exploring SNP–SNP interactions. MARS can automatically

select and transform variables and can identify potential

interactions (2001). These features are useful for SNP data

analysis. The mode of inheritance (dominant, recessive,

and additive) for SNPs and their interactions also can be

determined automatically, so the number of parameters in

modeling can be dramatically reduced. In addition to

detecting which SNP is involved in an interaction, MARS

can also detect interaction combinations (or patterns) that

can be used to define risk groups. For example, eight

parameters are required to present a three-way interaction

using LR, but MARS may only need one parameter of

high- vs. low-risk subgroup. The outcome variable for

MARS can be binary or continuous, and the covariates can

be categorical and continuous. Thus, it can be applied for

various types of studies, such as gene expression and gene–

environment interaction.

Even though several studies have been conducted to

compare MARS and other methods using real data sets

(Cook et al. 2004; Gu et al. 2006), the power of MARS in

assessing SNP–SNP interactions is unknown. Empirical

evidence of LR power is also limited despite the well-

known disadvantages of LR in detecting SNP–SNP inter-

actions. The objectives of this study were: (1) to compare

the power of MARS and LR to detect SNP–SNP interac-

tions for binary outcomes for multiple scenarios; (2) to

apply MARS and LR to a real data example of prostate

cancer.

Materials and methods

Simulations

To compare the power of MARS and LR, we generated

case-control data sets with 400 subjects (200 cases/200

controls) with nonmissing genotypes for ten SNPs. We

assume no linkage disequilibrium for the ten SNPs. These

SNPs were generated independently based on the Hardy–

Weinberg equilibrium with major allele proportions 0.5,

0.75, or 0.9. In the two-way interaction models (Models 1–

4), two SNPs (SNPA and SNPB) contributed to disease risk.

The major allele proportions of SNPA and SNPB are

P(A) = 0.5 and P(B) = 0.75. The disease outcomes were

generated based on penetrance for the two functional SNPs,

which is the conditional probability of disease given the

genotype, shown in Table 1. The penetrance in the risk cell

(PENr) was set to be 0.15, 0.3, or 0.5, and the penetrance in

the low-effect cell was equal to 0.01. As shown in Table 1,

four different types of two-way interactions for the two

functional SNPs associated with the disease outcome were

evaluated. Model 1 and Model 2 both had a dominant–

dominant interaction but with different disease alleles. The

disease alleles in Model 1 were major alleles (A and B) and

in Model 2 were minor alleles (a and b). The high-risk

genotype combinations in Model 3 were those containing

at least one of the aa and bb genotypes. Model 4 was

simulated for a dominant–recessive interaction. In Model 1,

P(D|AABB) = P(D|AaBB) = P(D|AABb) = P(D|AaBb) =
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PENr and P(D| other low-effect cells) = 0.01, where D

represents the subject is affected; A and B denote major

alleles; and a and b denote minor alleles. Let ‘‘low-effect

cells’’ represent the genotype combinations with pene-

trances of 0.01.

The power of Model 5, with a three-way dominant

interaction, was also evaluated. In this three-way model,

the major allele proportions of SNPA, SNPB, and SNPc are

P(A) = 0.5, P(B) = 0.75 and P(C) = 0.5. P(D|AABBCC) =

P(D|AABBCc) = P(D|AABbCC) = P(D|AABbCc) =

P(D|AaBBCC) = P(D|AaBBCc) = P(D|AaBbCC) =

P(D|AaBbCc) = PENr and P(D| other low-effect cells) =

0.01. PENr was 0.15, 0.3 or 0.5. Data simulation and analyses

were performed using SAS 9.1 (simulation and LR) and

MARS 2.0. Power was calculated based on 1,000 replica-

tions for each condition.

Logistic regression variable selection

Two methods were used to parameterize SNP in LR in this

study. First, SNP was treated as an additive mode, which is

a continuous variable. For example, 0, 1, and 2 were

applied to the AA, Aa, and aa genotypes, respectively.

Second, each SNP was treated as a categorical variable

using the reference-coding scheme with the major homo-

zygous genotype as the reference group. In the reference-

coding scheme, two degrees of freedom (DF) are required

for each SNP. The advantage of treating an SNP with an

additive mode is reducing the number of parameters

required for modeling. However, the additive mode

assumption may not be applicable to some situations. The

stepwise selection of LR with entry and removal criteria at

p value 0.05 was used.

In the LR modeling, we did not apply the hierarchical

restriction, which requires including all lower order terms

of the highest order interaction term in the model,

regardless of their statistical significance. A growing

number of studies showed that some SNP–SNP interactions

exist without marginal effects (Culverhouse et al. 2002;

Moore and Williams 2002; Musani et al. 2007). In addition,

the stepwise selection without hierarchical restriction in LR

has been shown to have higher true positive and lower false

positive findings compared with other commonly used

variable selection procedures in LR to detect SNP–SNP

interactions (Lin et al. 2008). The two-way interaction

models without main effects using SNPs as categorical

variables are as follows, and the reference group for the

interactions is the combination of AABB, AABb, AAbb,

AaBB, and aaBB (Table 1).

log
pi

1� pi

� �
¼ b0 þ b1IiðSNPA ¼ AaÞ � IiðSNPB ¼ BbÞ

þ b2IiðSNPA ¼ aaÞ � IiðSNPB ¼ BbÞ
þ b3IiðSNPA ¼ AaÞ � IiðSNPB ¼ bbÞ
þ b4IiðSNPA ¼ aaÞ � IiðSNPB ¼ bbÞ

where i = 1, 2,…, n (=400). Let pi denote the proportion of

disease (event) and

IiðSNPm ¼ WÞ ¼ 1 if SNPm ¼ W
0 if SNPm ¼ other genotype(s)

�

for subject i.

MARS variable selection

The primary unit of the MARS modeling method is the

basis function (BF). Unlike conventional modeling, MARS

does not select a reference group for each potential pre-

dictor in advance. BFs represent the information of one or

more variables. The example of the MARS result for

Model 1 is as follows.

BF2 ¼ ðSNPA ¼ AA or SNPA ¼ AaÞ
BF25 ¼ ðSNPB ¼ BBÞ � BF2

BF27 ¼ ðSNPB ¼ BbÞ � BF2

Y ¼ 0:158236E - 06þ 0:607� BF25þ 0:614� BF27:

Y represents the binary phenotype. BF2 represents the

dummy variable of SNPA with AA/Aa = 1 and aa = 0

(dominant), and BF25 represents the dummy variable of the

SNPA and SNPB combination with ‘‘AA/Aa and BB’’ = 1

and ‘‘other combinations with these two SNPs’’ = 0. BF27

represents the dummy variable with ‘‘AA/Aa and Bb’’ = 1

Table 1 Penetrances in the two-way interaction models

BB Bb bb

Model 1

AA PENr PENr 0.01

Aa PENr PENr 0.01

aa 0.01 0.01 0.01

Model 2

AA 0.01 0.01 0.01

Aa 0.01 PENr PENr

aa 0.01 PENr PENr

Model 3

AA 0.01 0.01 PENr

Aa 0.01 0.01 PENr

aa PENr PENr PENr

Model 4

AA PENr 0.01 0.01

Aa PENr 0.01 0.01

aa 0.01 0.01 0.01

P(A) = 0.5, P(B) = 0.75. PENr (penetrance in the risk cell) = 0.15,

0.3 or 0.5
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and ‘‘others’’ = 0. Thus, this model successfully selected

the designated dominant–dominant interaction.

The strategy of variable selection in MARS is first to

overfit a model by performing a forward-stepping search

and then to prune it by dropping BFs that contribute the

least through a backward deletion process. Each backward

step is examined by generalized cross validation (GCV), a

criterion for measuring generalized mean square errors.

The best MARS model contains the lowest GCV.

Researchers can determine the order of interactions for

testing, and several parameters can be used to control the

selection process. The maximum number of BFs, a control

parameter in MARS, is used to control the size of the

overfitted model. The guideline for the maximum number

of BFs is at least two to four times the size of the ‘‘truth,’’

in accordance with the MARS user’s guide (2001). We

allowed for a maximum of 70 BFs, which was large enough

for our simulated models.

The final MARS model is determined by the DF

penalty applied to BFs. Using a higher DF penalty, a

smaller final model is selected. The DF penalty can be

manually designated by users or can be automatically

estimated by a cross-validation procedure. In this study, a

tenfold cross-validation procedure was applied. A model

was built using nine tenths of the data (training set), and

the remaining one tenth (test set) was used to test this

model. This process was repeated ten times to allow each

one tenth as the test set and decide the best DF penalty.

The set of dummy variables, which represents the com-

bination of levels of the predictors, displayed in the form

of BFs in MARS, may not be mutually exclusive. MARS

automatically selects them based upon model improve-

ment (2001).

Model evaluation and power calculation

The input data contained a binary outcome and ten SNPs.

These SNPs were treated as categorical variables in

MARS. In LR, the reference-coding and additive-mode

scheme were used. The same coding scheme was applied

for all SNPs in the same LR model. All main effects and

interactions up to the designated way of interaction were

considered, and the final model was selected using the

above variable selection procedures of LR and MARS. The

power was calculated as the proportion of detecting the

designated interaction among 1,000 replicates. In LR, we

consider the true interaction was detected if the p value of

the Wald test for the designated interaction was less than

0.05. For consistency, any type of the designated interac-

tions selected by MARS was counted, although MARS can

detect specific interaction patterns. To evaluate the effects

of empty cells on LR with the reference-coding scheme,

power was also calculated, stratified by the empty-cell

status of the designated interaction.

Real data example: prostate cancer risk

Prostate cancer is the most common cancer in American

men. We applied MARS and LR to the data set from a

study of prostate cancer risk among a Caucasian popu-

lation. The details of the study population and the

eligibility criteria were described previously (Hu et al.

2004; Hu 2006). We tested ten nonsynonymous SNPs

(nsSNPs) in nine deoxyribonucleic acid (DNA)-repair

genes of four repair pathways, including: (1) base exci-

sion repair (BER): ADPRT V762A and XRCC1 R399Q;

(2) nucleotide excision repair (NER): ERCC2 D312N/

K751Q, ERCC5 D1103H, and XPC A499V; (3) mismatch

repair (MMR): MLH1 I219V and MSH3 R940Q; and (4)

double-strand-break repair (DSBR): NBS Q185E and

XRCC3 T241M.

The same parameterization described in the previous

section was applied. For the stepwise selection in LR,

liberal entry and removal criteria p = 0.1 were applied.

To thoroughly search for interactions, several MARS

model parameters were applied. The maximum BFs of 70

or 100 were used to control the size of the overfitted

model. Then, tenfold cross validation or three DF per BF

were applied to select the final MARS model. In the

control group, the Hardy–Weinberg equilibrium was

evaluated for all SNPs using both chi-square and exact

tests. Linkage disequilibrium (LD) among the ten SNPs

was evaluated using Lewontin’s D0. We tested for up to

three-way SNP–SNP interactions for prostate cancer risk

(positive vs. negative) among Caucasian participants. The

controlling factors included age, family history (yes/no),

smoking history (ever smoked at least 100 cigarettes in

lifetime), and history of benign prostatic hyperplasia (yes/

no). A total of 649 Caucasians with 360 cases and 289

controls had the complete data for the ten SNPs and four

controlling factors.

The objective of using this example was to evaluate the

associations between SNPs and prostate cancer risk after

adjusting for covariates. We used the stepwise LR with

forcing the above four covariates to be in the model.

MARS does not have a function to force specific covariates

in the model. To adjust for the four covariates described

above in MARS, an LR with these covariates was con-

ducted and the residuals of this LR were used as an

outcome variable in MARS. We applied LR using the

terms selected from the final MARS model to calculate

odds ratio (OR). To validate variable significance, a boot-

strap method with 1,000 runs was applied to LR and

MARS for testing up to three-way interactions.
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Results

Simulation results

The power of MARS and LR in detecting one two-way or

three-way SNP–SNP interaction among ten candidate

SNPs is presented in Table 2. For MARS, the power range

for Model 1 containing a dominant–dominant interaction

with major alleles (A and B) as disease alleles was 74–

97%, and the power for Models 2–4 was close to 100%.

Using the reference-coding scheme, the power of LR was

quite low, especially for Model 1 (\2%). The power of LR

for Model 2, which contained a dominant–dominant

interaction with minor alleles (a and b) as disease alleles,

was 50–78%. The power of LR for Model 3, which con-

tained a two-way interaction with at least one of the aa and

bb genotypes, was 61–73%. The power of LR for Model 4,

with a dominant–recessive interaction, was 23–44%. The

power of LR with the additive-mode scheme was generally

higher than that with the reference-coding scheme in this

study. The power of LR with the additive-mode scheme

was the lowest in Model 1 (\8%) and was the highest in

Model 3 (85–99%). In Model 5, with a three-way dominant

interaction, the power of MARS was 57–85%; however,

the power of LR in both coding schemes was low (\4%).

Among all five interaction models, both MARS and LR

had the lowest power in detecting the dominant SNP–SNP

interaction in Model 1 and Model 5. LR with the reference-

coding scheme had the highest power in Model 2. In

general, the power of MARS and LR with the additive-

mode scheme increased, as expected, as the PENr

increased. The power of LR with the reference-coding

scheme in Model 3 also increased, whereas the power in

other models decreased as PENr increased.

Why did the power of some LRs decrease as PENr

increased? To answer this question, the power of LR with

the reference-coding scheme was obtained by stratifying

based on empty-cell status of the designated interaction

(SNPA–SNPB or SNPA–SNPB–SNPc). As shown in Table 3,

the empty-cell proportion in the designated interaction,

which is the proportion of at least one empty cell in 3 9 3 or

3 9 3 9 3 combination cells, increased as PENr increased.

Among the two-way interaction models, Model 1 had the

highest empty-cell proportions (35–88%) and Model 3 had

the lowest ones (2–18%). The range of the empty-cell

proportions in Model 5 with a three-way interaction was

67–98%. As we expected, the power of LR to detect SNPA–

SNPB without an empty cell was much higher than that with

at least one empty cell. Therefore, only the power of Model

3 increased as PENr increased in LRs with the reference-

coding scheme. In Model 5, the power was zero for the

designated interaction without an empty cell because of the

limited number of simulated runs.

Results of a real-data example: prostate cancer risk

In the control group, all ten SNPs followed the Hardy–

Weinberg equilibrium, and no strong pair-wise linkage

disequilibrium (D0[ 0.8) was found. The results are

shown in Table 4. In testing the association between each

SNP and prostate cancer risk using LR with the refer-

ence-coding scheme, Caucasians with ERCC2 312 DN

and NN (heterozygous and variant type) had lower

prostate cancer risk compared with ones with ERCC2 312

DD. The stepwise selection for up to three-way interac-

tions in LR with the reference-coding scheme also

achieved the same result. The same main effect (ERCC2

312) was selected in the univariate and stepwise selection

in LR with the additive-mode scheme for detecting up to

two-way interactions. When testing up to three-way

interactions, ERCC2 312–MSH3 940–ERCC2 751 was

selected.

The MARS one-way model was the same as the one

selected from LRs with the reference-coding scheme. For

testing up to two-way interactions in MARS, we observed

that individuals with the genotype combination of ERCC2

312 DN/NN and MSH3 940 RR had lower prostate cancer

Table 2 Power for multivariate adaptive regression splines (MARS)

and logistic regression (LR) to detect the specified single nucleotide

polymorphism–single nucleotide polymorphism (SNP-SNP)

interactions

Model PENr
a Power %

MARS Logistic regression

Reference

codingb
Additive

modec

1 0.15 74.2 1.8 5.5

0.3 85.0 1.7 4.4

0.5 96.5 1.3 7.7

2 0.15 99.5 78.0 57.0

0.3 99.9 68.0 73.4

0.5 100.0 50.0 89.0

3 0.15 97.0 61.4 85.2

0.3 99.5 70.3 97.3

0.5 100.0 72.9 98.9

4 0.15 99.3 44.1 49.9

0.3 100.0 35.2 44.5

0.5 100.0 23.4 44.7

5 (three-way) 0.15 57.2 0.4 2.5

0.3 76.2 0.3 1.9

0.5 85.4 0.1 3.2

a Penetrance in the risk cell
b SNP was treated as a categorical variable with the major homo-

zygous genotype as the reference group
c SNP was treated as a continuous variable with values of 0, 1, and 2
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risk [OR = 0.56, 95% confidence interval (CI) = 0.41–

0.78]. A model containing a two-way and a three-way

interaction was detected using up to 70 BFs and three DF

per BF. The interaction selected in the two-way MARS

model was also included, and one three-way interaction

was detected. The genotype combination of ERCC2 312

DD, XPC 499 AA and XRCC1 399 QQ is associated with a

significantly higher prostate cancer risk (OR = 6.99, 95%

CI = 1.59–30.85).

Akaike information criterion (AIC) (Akaike 1974) and

Bayesian information criterion (BIC) (Schwarz 1978),

which are the common model selection criteria in LR, were

used to select the final model. The lower the criterion

value, the better the model. Based on the lower value of

Table 3 Power of logistic

regression (LR) with the

reference-coding scheme by

empty-cell status of the

designated interaction

a Penetrance in the risk cell
b SNPA 9 SNPB in Models 1–

4, SNPA 9 SNPB 9 SNPC in

Model 5

Model PENr
a Empty-cell %

in the designated

interactionb

Power %

Overall Empty cell in the designated interactionb

Yes No

1 0.15 34.9 1.8 0.3 2.6

0.3 66.5 1.7 0.9 3.3

0.5 88.3 1.3 0.7 6.0

2 0.15 3.9 78.0 2.6 81.1

0.3 22.5 68.0 8.0 85.4

0.5 48.4 50.0 8.7 88.8

3 0.15 2.3 61.4 4.3 62.7

0.3 7.7 70.3 27.3 73.9

0.5 17.8 72.9 37.6 80.5

4 0.15 21.1 44.1 30.3 47.8

0.3 53.8 35.2 24.9 47.2

0.5 78.9 23.4 17.7 44.5

5 (three-way) 0.15 66.5 0.4 0.3 0.5

0.3 93.4 0.3 0.3 0

0.5 98.3 0.1 0.1 0

Table 4 Model comparison of prostate cancer risk in Caucasians

Method Variable Adjusted OR

(95% CI)a
P value AICb BICc Bootstrap

(selected/total)

Univariate LR (R)

Stepwise LR (R),

up to three-way

ERCC2 312 (DN vs. DD) 0.69 (0.49–0.97) 0.035 873.7 905.0 (LR: R) 223/1,000

(NN vs. DD) 0.44 (0.27–0.72) 0.001

MARS, one-way (MARS) 249/1,000

Univariate LR (A) ERCC2 312 0.67 (0.53–0.84) \0.001 871.8 898.6 275/1,000

Stepwise LR (A),

up to two-way

Stepwise LR (A),

up to three-way

ERCC2 312 0.46 (0.32–0.66) \0.001 866.8 898.1 275/1,000

ERCC2 312 9 MSH3 940 9 ERCC2 751 1.09 (1.02–1.17) 0.010 92/1,000

MARS, up to two-way (ERCC2 312 DN/NN + MSH3 940 RR)

vs. others

0.56 (0.41–0.78) \0.001 871.6 898.4 161/1,000

MARS, up to three-way (ERCC2 312 DN/NN + MSH3 940 RR)

vs. others

0.60 (0.43–0.84) 0.003 863.3 894.6 161/1,000

(ERCC2 312 DD + XPC 499
AA + XRCC1 399 QQ) vs. others

6.99 (1.59–30.85) 0.010 220/1,000

LR logistic regression, R reference-coding scheme, A additive-mode scheme, MARS multivariate adaptive regression splines
a Odds ratio and 95% confidence interval for adjusting for age, family history, smoking history, and history of benign prostatic hyperplasia
b Akaike information criterion
c Bayesian information criterion
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both criteria, the MARS three-way model is better than

other models. Among 1,000 bootstrap data sets, ERCC2

312 was the most commonly selected term (223–275 out of

1,000). The three-way interaction ERCC2 312 DD–XPC

499 AA–XRCC1 399 QQ selected from MARS also had a

relatively high frequency (220 out of 1,000) to be associ-

ated with prostate cancer risk. However, the three-way

interaction detected by using LR with the additive-mode

scheme was rarely selected in the bootstrap data sets.

To present both disease distribution and ORs in the

specific genotype combinations, the final MARS model can

be displayed in a tree plot, as shown in Fig. 1. This

example demonstrated that MARS can effectively reduce

data dimensionality. Only two parameters were needed in

the model that contained one two-way and one three-way

interaction without specific inherent mode assumption.

This example shows that MARS is more powerful than LR

in detecting SNP–SNP interactions. It should be noted that

SNP–SNP interactions we found here were data driven.

More studies with larger sample size are needed to confirm

our novel findings.

Discussion

MARS may overcome some limitations of LR and was

demonstrated to be more powerful in detecting SNP–SNP

interactions. The comparison of MARS and LR for

detecting SNP–SNP interactions is summarized in Table 5,

and the strengths of MARS are listed as follows. MARS

can be applied in various types of studies because of the

flexibility of outcome and covariates. The useful features of

MARS in detecting SNP–SNP interactions include flexible

reference group selection, automatic genotype combina-

tion, and automatic interaction pattern detection. As with

other traditional modeling, MARS can include multiple

terms (main effects and interactions) in a model simulta-

neously, and genetic interactions can be evaluated after

adjusting for potential confounding factors. This study

shows that empty-cell effect has a minor impact on MARS

compared with LR with the reference-coding scheme. In

addition, MARS is not restricted by the hierarchical rule.

As for result interpretation, the terms selected from MARS

can be easily converted into a logistic model, so the final

model can be displayed by a logistic model. Thus, the

straightforward result interpretation and comprehensive

model diagnosis method in LR can be applied to MARS.

The power of modeling to detect SNP–SNP interactions

depends on experiment design (Gauderman 2002), sample

size, genotype frequencies determined by allele propor-

tions, penetrance contrast between the comparative and

reference groups, interaction patterns, and variable

parameterization in modeling. In general, the larger sample

size and penetrance contrast between the risk and low-

effect cells, the higher the chance that the interaction can

be detected. In addition, some interaction patterns tend to

have lower power to be detected, such as a model con-

taining cells with low genotype frequencies and low

penetrances.

We can gain insight by comparing the power between

MARS and LR though the five interaction models. Both

MARS and LR had the lowest power to detect the two-way

(Model 1) or three-way (Model 5) SNP–SNP interaction,

which had a dominant–dominant interaction with major

alleles as the disease alleles, compared with the other three

models. The possible reason is that all the low-penetrance

*: Frequency of Case/ Control for complete data in the model 
   OR adjusted for age, family history, smoking history and BPH 

Total
Case/Control*= 360/ 289 

ERCC2 312 DN/NN 
176/174 

MSH3 940 RR
117/133 
OR=0.6 

(95%CI=0.43-0.84) 

XRCC1 399 RQ/QQ  
59/41 
OR=1

XPC 499 AV/VV
68/55 
OR=1

XPC 499 AA
116/60 

ERCC2 312 DD
184/115 

XRCC1 399 RR/RQ  
97/58 
OR=1

XRCC1 399 QQ 
19/2  

OR=6.99 
(95%CI=1.59-30.85) 

Fig. 1 Multivariate adaptive

regression splines (MARS)

model of prostate cancer risk for

Caucasians
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cells had low genotype frequencies, so the number of cases

in these cells was low or closes to zero. This enlarged the

standard errors of the model parameters that related to

these cells, so the power of Model 1 and Model 5 was the

lowest among the testing models.

Unlike traditional modeling, MARS does not need to

preselect a reference group for categorical covariates. The

reference group selection for each SNP in MARS is auto-

matic based on model improvement. Inappropriate

reference group selection due to modeling may diminish

the true magnitude of penetrance contrast between the risk

and low-effect groups. Because of the flexibility of MARS

in selecting the reference group, the penetrance contrast

between the reference and comparison group is close to the

true contrast between the risk and low-effect groups. In LR

with the reference-coding scheme, the reference group was

preselected and fixed. Among these four two-way interac-

tion models, LR with the reference-coding scheme had the

highest power in detecting the dominant–dominant inter-

action with minor alleles as the disease alleles in Model 2.

This is because the reference group selection in LR and in

Model 2 was consistent. In this way, true penetrance con-

trast is not reduced by the cross-distribution of risk cells in

both the comparative and reference group.

The empty-cell effect had minor impact on MARS

compared with the impact on LR with the reference-coding

scheme. For testing SNP–SNP interaction, the empty-cell

phenomenon is common. For just a two-way interaction,

the empty-cell proportion in LR may be as high as 90%. As

the penetrance contrast between the risk and low-effect

subgroups increased, the power of MARS for all testing

models increased, as expected. In LR with the reference-

coding scheme, however, power decreased as the pene-

trance contrast increased in some interaction models

(Models 1, 2, 4, and 5). The primary reason is that some

low-effect cells (with penetrance 0.01) had no cases. The

designated interaction was severely distorted by the empty-

cell effects in LR. As the PENr increased, the higher

chance of the empty-cell effect occurred and therefore the

lower power the LR had to detect the true SNP–SNP

interactions. Model 3, whose risk groups contained at least

one variant genotype, had the fewest number of cells with

low penetrances. These cells with low penetrances also had

a higher frequency of subjects, so the empty-cell effect had

minor impact on Model 3 compared with other models.

Although the empty-cell effect makes a minor impact on

LR with the additive-mode scheme, its additive mode

assumption is only reasonable in some situations. For

example, the power of LR with the additive-mode scheme

was higher in Models 2 and 3 than the other two models.

That is because the additive mode using the major homo-

zygous genotype as a baseline is consistent with the

designated penetrance distribution. In contrast, MARS can

automatically combine empty cells into others, so the

power of MARS still increased with minor interference by

the empty-cell effect. This study result demonstrates how

severely the empty-cell effect impacts LR with SNPs using

the reference-coding scheme and MARS in correctly

detecting SNP–SNP interactions.

LR with SNPs using the reference-coding scheme had

low power for two primary reasons: the empty-cell effect

and the preselected reference group. This study shows

MARS performed better than LR with SNPs using both the

reference-coding and additive-mode schemes. Besides the

two coding schemes we examined in this study, Cocker-

ham’s (1954) coding scheme also has been used in LR to

detect SNP–SNP interactions. In this scheme, two dummy

variables (say x and z) are applied for an SNP, with x = 1

and z = -0.5 for one homozygote genotype, x = 0 and

z = 0.5 for the heterozygote genotype, and x = -1 and

Table 5 Comparison of logistic regression and multivariate adaptive regression splines (MARS) for detecting single nucleotide polymorphism–

single nucleotide polymorphism (SNP–SNP) interactions

Logistic regression MARS

Outcome Binary Binary or continuous

Covariate Categorical and continuous Categorical and continuous

Automatically detect interaction patterns to define

risk/protective subgroup

No Yes

Automatically categorized an SNP into appropriate

mode of inheritance

No Yes

SNP parameterization

Predefined reference group (reference coding) Yes No

Additive-mode assumption (additive mode) Yes No

Interference from the empty-cell effect Severe (reference coding) Minor

Minor (additive mode)

Number of parameters for an SNP, using a three-way

interaction as an example

Up to eight (reference coding);

one (additive mode)

May only need one parameter

for high-risk group vs. others

J Hum Genet (2008) 53:802–811 809
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z = -0.5 for the other homozygote genotype. It has been

shown that LR with the additive-mode scheme is sufficient

to detect SNP–SNP interactions comparing with LR using

the Cockerhams’ coding scheme (North et al. 2005; Bar-

hdadi and Dube 2007). We can expect that the empty-cell

effect has impact on LR using Cockerhams’s coding

scheme, which uses two parameters for each SNP. The

empty-cell effect also interferes with the performance of

MDR (Ritchie et al. 2001), which is a popular method for

testing SNP–SNP interactions. The dichotomizing process

in MDR interferes with the empty-cell effect, especially in

detecting high-order interactions for a small sample size

(Park and Hastie 2008).

Although MARS had useful traits for detecting SNP–

SNP interactions, it had the following weaknesses. There

are several ways to present the same interaction combina-

tion. The interaction combinations selected from MARS

may not be the best in terms of the number of degrees of

freedom. For example, in Model 1, the best term was

(SNPA = AA/Aa) 9 (SNPB = BB/Bb) with one DF.

MARS may display the same two-way SNP–SNP interac-

tion by two terms: (SNPA = AA/Aa) 9 (SNPB = BB) and

(SNPA = AA/Aa) 9 (SNPB = Bb) with two DF. How-

ever, this drawback may be conquered by manually

reselecting the best combinations among the terms selected

by MARS. In addition, the original MARS design is for

continuous outcomes. Although MARS can also be applied

for binary outcomes, the model prediction is not restricted

within 0 and 1 as probabilities (2001). This weakness can

be solved by using MARS as a screening tool to select the

significant terms and then by using LR to display the final

model. In addition, MARS is not designed for identifying

genetic heterogeneity. Before applying MARS to detect

genetic interactions, the cluster analysis was recommended

to detect genetic heterogeneity (Schork et al. 2001).

A revised logistic regression called penalized logistic

regression (PLR) has been proposed by Park and Hastie

(2008). PLR using quadratic penalization can improve the

unstable model coefficient estimates, and the empty-cell

effects when the number of parameters grows large.

However, with PLR, it is difficult to avoid the effect of a

preselected reference group, which has been shown in this

study to be an important issue in detecting SNP–SNP

interactions. In summary, this study shows MARS is a

powerful method to exploring SNP–SNP interactions. In

addition to comparing it with LR, it is important in future

studies to compare the performance of MARS with other

statistical methods that assess SNP–SNP interactions.
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