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Abstract Multiple testing occurs commonly in genome-

wide association studies with dense SNPs map. With

numerous SNPs, not only the genotyping cost and time

increase dramatically, many family wise error rate (FWER)

controlling methods may fail for being too conservative

and of less power when detecting SNPs associated with

disease is of interest. Recently, several powerful two-stage

strategies for multiple testing have received great attention.

In this paper, we propose a grid-search algorithm for an

optimal design of sample size allocation for these two-

stage procedures. Two types of constraints are considered,

one is the fixed overall cost and the other is the limited

sample size. With the proposed optimal allocation of

sample size, bearable false-positive results and larger

power can be achieved to meet the limitations. The simu-

lations indicate, as a general rule, allocating at least 80% of

the total cost in stage one provides maximum power, as

opposed to other methods. If per-genotyping cost in stage

two differs from that in stage one, downward proportion of

the total cost in earlier stage maintains good power. For

limited total sample size, evaluating all the markers on

55% of the subjects in the first stage provides the maximum

power while the cost reduction is approximately 43%.

Keywords Association studies � Optimal design �
Grid-search algorithm � Cost-efficiency � Truepositive rate

Introduction

With the recent advances in high-throughput genotyping

technology, many genome-wide association studies are

conducted to unravel the relation between disease and

genes. However, the advancement in biotechnology often

confronts with a statistical issue when dealing with large-

scale data (Hirschhorn and Daly 2005; Thomas et al.

2005). It encounters the multiple testing dilemmas that

most traditional statistical tests fail in reducing both

chances of making true-positives and false-positives (Bot-

stein and Risch 2003; Cardon 2001; Long and Langley

1999; Risch and Merikangas 1996). In addition, as the

number of markers escalates, the amount of genotyping

cost increases dramatically (Thomas 2006). For the first

difficulty, it is common to adopt Bonferroni correction to

solve the multiplicity effect when analyzing large-scale

association studies. For example, Klein et al. (2005) ana-

lyzed the relationship between age-related macular

degeneration and numerous single nucleotide polymor-

phisms (SNPs). They used Bonferroni correction to adjust

the significance level as the ratio of original nominal level

to the total number of SNPs. Although it controls the

family wise error rate (FWER), probability of claiming

more than one false alarm, the downward level results in

loss of power in detecting the relevant SNPs. Furthermore,

such a single-stage strategy is not cost-efficient under

limited resources, especially when testing a large number

of markers. Hence, a procedure that saves cost and main-

tains a satisfactory power simultaneously is in urgent need.

The great majority of unassociated markers can be elimi-

nated via multi-stage procedures, in particular the two-

stage methods have been proposed to optimize the power

and conserve the cost of such studies (Hirschhorn and Daly

2005; Skol et al. 2006).
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From the design viewpoint, there are two types of two-

stage procedures. One uses independent subjects at differ-

ent stages (Miller et al. 2001; Saito and Kamatani 2002),

where a large significance level is adopted to select

promising markers first, and then a stringent level is ap-

plied at the next stage to control the FWER. Ohashi and

Clark (2005) took cost-efficiency further into account and

conducted a stage-wise approach under limited total cost.

Instead of FWER, other studies control the false discovery

rate (FDR), false-positive proportion of significant markers

(Benjamin and Hochberg 1995), that attains larger power to

detect associated SNPs. van den Oord et al.(2003) sug-

gested to use independent samples at different stages and to

choose a suitable threshold for controlling FDR at an

arbitrary bound. However, one limitation of the approach is

that the whole information contained in the data is not fully

utilized. For instance, the data of subjects recruited in the

first stage are usually discarded, thus it does not satisfy the

purpose of preserving the cost as much as possible. Second,

when the primary concern is to reduce the number of false-

positive markers, usually less attention is placed on the

proportion of true-positive markers, which seems conflict

with the scientific interest of identifying the markers with

association. Third, the FWER-controlling method becomes

stringent when the total number of markers is huge.

The second type of two-stage procedures combines all

available data, including those of previously selected

promising markers. One advantage is the complete utili-

zation of all information. Another is putting more emphasis

on the power to detect associated markers than focusing

simply on false-positive rate (Wen et al. 2006). Kuchiba

et al. (2006) controlled the FDR with optimal sample size

and reduced cost. They also emphasized the influence of

the true proportion of associated markers on the perfor-

mance of two-stage designs. Satagopan et al. (2002, 2004)

proposed to employ a fraction of resources (either cost or

individuals) at an earlier stage, and to use all available

individuals in the final stage. Zehetmayer et al. (2005)

advocated two-stage designs with controlled FDR and split

sample size into two stages for gene-expression studies.

Wang et al. (2006) considered various configurations of

per-genotype cost ratio and significance levels in both

stages to achieve the desired power with minimum cost.

Wen et al. (2006) recommended excluding mostly irrele-

vant markers while adopting a large significance level in

the first stage, and controlling the overall false-positives

with a downward significance level in the second stage.

Different from Satagopan et al. (2002, 2004), they can

choose the promising markers at a pre-specified signifi-

cance level and control the false-positive rate (FPR) ade-

quately. However, the optimal allocation of subjects

remains an open issue. In practice, the costs or subjects are

limited and it affects the recruitment in both stages with

respect to error rates and power. In this paper, we propose

optimal designs in this two-stage setting to distribute sub-

jects and select associated markers under two different

situations, where one is fixed total genotyping cost (FTGC)

and the other is fixed sample sizes (FSS). In the following

sections, we introduce the rationale and implementation of

the optimal design for both FTGC and FSS. Simulation

studies are conducted to evaluate the performances of the

proposed approach based on limited cost and sample size.

The comparison with other existing alternatives is also

discussed.

Methods

In this section, we first brief the notation and then explain

the derivation of optimal allocation of sample size under

limited cost or total number of subjects. To detect the

association between markers and disease phenotype, we

consider SNPs as testing markers for illustration. Let d
denote the difference in the mean allele frequency between

cases and controls, let N1 be allele data for each group in

the first stage, M the total number of markers in linkage

equilibrium, and w the proportion of truly unassociated

SNPs. In the earlier stage, if the individual P-value for a

marker is less than the uncorrected level a1 (=0.05), the

marker is considered promising and will be verified further

with additional N2 allele data in the second stage. Here we

assume a balance population-based case control design,

and the total number of subjects in stage one and two are

N1 and (N1 + N2), respectively. Suppose a total of R

promising markers are considered in the second stage, and

a stringent significance level, a2=0.05/R, is adopted in this

stage to reduce the overall inflated type I error due to large

a1. We considered two indices, TPR (true-positive rate) and

FPR, to evaluate the performance of the two-stage proce-

dure. According to Wen et al. (2006), both overall FPR and

TPR are functions of sample sizes (N1, N2), significance

levels (a1, a2), number of total markers M, and the irrele-

vant proportion w. In addition, the disease model parame-

ters such as the allele frequency and effect size of tests also

affect the FPR and TPR. Therefore, an optimal design must

take these into account.

In the following, we introduce a grid-search algorithm for

optimal allocation of (N1, N2) with a desired power and

constrained resources. First, under FTGC, the total geno-

typing cost is given by T = MN1 + RN2, where R can be

replaced with E(R)=Mwa1+M(1–w)(1–b1), and (1–b1) rep-

resents the power in the first stage. For simplicity, let

N2=kN1, we maximize TPR with respect to k and N1 under

the constraint that T = MN1 + E(R)(kN1). Since N1 is related

to other factors, e.g. E(R) and significance level in stage 2, in

the overall power, it is more flexible to keep the optimiza-
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tion algorithm in a low-dimension setting than in high-

dimension of optimizing all factors simultaneously. Be-

sides, it is not feasible to compute the analytical form, and

hence we suggest a grid search for a wide range of (N1,

N2=kN1) and the one with maximum TPR would be the

optimal allocation of sample size. The second limitation

concerns the fixed total sample size N (= N1 + N2) used in

the genetic study. For simplicity, let N1 = p N, here p is the

proportion of N1 in N and ranges from 0 to 1. Given N, M,

and w, both the TPR and required costs are proportional to p.

Over a plausible range of p, one can conduct a grid search to

find the optimal p that attains the maximum TPR, as well as

a substantial cost reduction to strike a balance between

power and cost. We use a program written in S-plus 7.0 to

perform the searches (The program is available upon request

and more details of optimization are given in Appendix.).

Results

Our purpose is to compare the TPR of the proposed method

with that of other single-stage design where all markers on

all samples are genotyped, and other alternative two-stage

designs. All strategies were tailored to use pre-specified

cost or sample size, and we compared the false-positive

results (i.e. FPR or FDR) and power for a broad range of

sample sizes. We also investigated the influence of dif-

ferent allele frequencies, effect sizes, and the allelic odds

ratios (OR). Under limited cost T, the sample size of a

single-stage design would be T/M. Bonferroni method for

this design is denoted as B(T/M). We denoted M(S) for a

single-stage method with the same significance level a2 for

the proposed two-stage method with fixed FPR. Table 1

lists the simulation results of TPR and FPR for the two-

stage method, B(T/M), and M(S) under FTGC for several

values of (w, p̄,d, OR) under a fixed array of 5,000 SNPs

and equal per-genotyping cost. The fifth column also shows

the proportion of cost in stage one, i.e. c1 ¼ MN1

T : Numbers

were close to the analytical results (data not shown). In

these examples, the false-positives such as FPR and FDR

(in Fig. 1) were bearably small under various combinations

of N1 and N2. However, the TPR of the proposed method

varied greatly with respect to ðN1;N2; �p; d;ORÞ; and was

often larger than that of single-stage methods, irrespective

Table 1 Simulation results for the proportion of total cost in stage one, TPR and FPR of two-stage method and two single-stage methods under

FTGC

ð�p; d;ORÞ N1 k N c1(%) TPR FPR*103

B(T/M) M(S) Two-stage B(T/M) M(S) Two-stage

(0.5, 0.1, 1.49)a 414 8.85 4,078 69.95 0.172 0.003 0.817 0.011 <0.001 <0.001

488 4.52 2,692 81.12 0.168 0.127 0.887 0.010 0.004 0.002

531 2.56 1,888 87.89 0.170 0.403 0.911 0.011 0.190 0.107

563 1.29 1,291 93.56 0.169 0.387 0.862 0.014 0.196 0.155

594 0.20 712 98.96 0.180 0.401 0.518 0.078 0.190 0.190

(0.5, 0.1, 1.49)b 414 8.34 3,868 69.95 0.172 0.006 0.818 0.010 <0.001 <0.001

488 4.24 2,557 81.12 0.169 0.154 0.881 0.011 0.008 0.004

531 2.39 1,803 87.89 0.169 0.390 0.901 0.006 0.173 0.108

563 1.21 1,244 93.56 0.167 0.390 0.859 0.010 0.163 0.151

594 0.19 705 98.96 0.171 0.389 0.506 0.009 0.171 0.166

(0.3, 0.08, 1.47)a 514 3.30 2,209 85.62 0.077 0.144 0.781 0.078 0.046 0.026

536 2.35 1,797 89.34 0.079 0.240 0.797 0.012 0.198 0.110

557 1.52 1,404 92.82 0.086 0.244 0.736 0.011 0.191 0.150

578 0.75 1,012 96.32 0.072 0.244 0.571 0.010 0.207 0.181

594 0.20 713 98.99 0.079 0.233 0.329 0.076 0.190 0.193

(0.3, 0.08, 1.47)b 514 3.11 2,114 85.62 0.082 0.170 0.781 0.010 0.067 0.039

536 2.22 1,725 89.34 0.080 0.237 0.779 0.009 0.189 0.111

557 1.43 1,355 92.82 0.078 0.232 0.722 0.010 0.180 0.155

578 0.71 986 96.32 0.079 0.239 0.541 0.009 0.180 0.166

594 0.19 706 98.99 0.078 0.232 0.320 0.011 0.186 0.171

The number of replication is 1,000 in simulation (T/M = 600, M = 5,000, w = 0.999, 0.995, and a1= 0.05)

c1: the proportion of total cost in stage one
a w = 0.999, b w = 0.995

B(T/M) Bonferroni method with T/M subjects. M(S): single-stage method with the same FPR with two-stage method
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of allelic odds ratio and the number of markers associated

with disease. Moreover, under the two-stage setting, large

total sample size did not yield larger power to detect the

markers associated with the disease. Hence, we recom-

mend determine the optimal k with easy-to-recruit sample

size on the condition that the TPR is manageable or desired

for FTGC. For example, the largest TPR(=0.911) occurred

at (N1, k)=(531,2.56) with total sample size N = 1,888 for

w = 0.999 and ð�p; d;ORÞ ¼ ð0:5; 0:1; 1:49Þ: This also

indicated that allocating 87.89% of the total cost in earlier

stage would maintain optimal power. The relationship be-

tween k and c1 could be derived as k ¼ M
EðRÞ �

1�c1

c1
:

Clearly, if one predetermines different allocations of cost

ratio (1–c1)/c1 or markers ratio, M/E(R), the settings would

affect allocations of (N1, N2).

Table 2 gives the simulation results of TPR, and FPR of

two-stage method, Bonferroni method (denoted as B(N))

and M(S) for FSS (N = 1,200). Column 4 shows the per-

centage of cost saving, namely the reduction in cost of a

two-stage method relative to a single-stage design,

ð1� pÞ 1� EðRÞ
M

� �
: By comparing columns 5–7, the TPR

of B(N) was the worst among the three methods. Over a

plausible range of p 2(0.55,0.95), the proposed method

yielded a power comparable to that of the more genotyp-

ing-effort single-stage design with similar FPR. Hence, we

suggest selecting the optimal range of p(=0.55) while the

TPR is satisfied and the reduction of cost is significant for

FSS. It is worth noting that at small values of p(£ 0.25), the

markers associated with disease in earlier stage were less

likely to be chosen for further testing, and the overall

power was lower than single-stage method. Alternatively,

we presented the simulation results in Figs. 1 and 2. The

false-positive results (FPR or FDR) of two-stage method

were stable small (in Fig. 1a–d). For FTGC, the TPR of the

two-stage setting varied dramatically with (N1, N2) and the

optimal k appeared to be the maximum TPR, as well as the

corresponding sample size was easy-to-recruit (in Fig. 2a–

b). Also, it corresponded to deposit at least 80% of the total

cost in stage one given the same unit typing cost in both

stages. For FSS, the optimal p was around 0.55 while the

corresponding design was at minimum cost on condition

that the overall power is near-optimal (in Fig. 2d). These

results for FSS are consistent with that in Wang et al.

(2006). However, under FTGC, such as given total or

minimum cost, there are still many options for (N1, N2)

with desired power, say 80%. Among those choices, the

one with easy-to-recruit total sample size conditional on

maximum TPR would be the optimal.

We further evaluated the performance of the optimal

two-stage method with some existing alternatives. Under
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Fig. 1 The curves based on simulations in a and c are false-positive

rate (FPR), in b and d are false discovery rate (FDR) with respect to

various N1. In all figures, M ¼ 5000; w ¼ 0:999; ð�p; d;ORÞ ¼ ð0:5;
0:1; 1:49Þ; and a1 = 0.05. In a and b FTGC with T = 600 M, and in c

and d FSS with N = 1,200. Three lines in a and d denotes M(S)

(dashed line), Bonferroni method (solid line) and two-stage method

(dotted line)
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FTGC, an alternative approach using 75% of the cost in

stage one to screen all markers and evaluate promising 10%

of the markers with the remaining cost in stage two was

proposed by Satagopan et al. (2002) (denoted as M(1)).

While the sample size was the primary constraint, Satago-

pan et al. (2004) (denoted as M(2)) advocated that evalu-

ating all the markers on 50% of the subjects in stage one and

selecting the most promising 10% of the markers on the

remaining individuals in the second stage yielded near-

optimal power. We let the total number of markers to be

selected at the end of the study is five for M(1) and M(2).

Table 3 lists the TPR, FPR, FDR, total sample size or cost

saving of optimal two-stage method, M(1), and M(2) under

several parameter configurations for M=100, and 5,000. By

comparing the FPR and FDR, the proposed optimal design

produced less false-positives than that of M(1) and M(2)

regardless of allelic odds ratio and the total number of

markers. Actually, the expected number of false-positive

results for proposed method was less than one at various M.

But for M(1) or M(2), it was larger than one false alarm.

Besides, looking at the TPR, the power of the optimal design

was consistently larger than that of M(1) and M(2). In

practice, the optimal two-stage design was also superior in

terms of total sample size or cost-efficiency. For example,

the optimal design recruited fewer individuals than M(1) for

FTGC under different allelic odds ratio. For FSS, the opti-

mal design produced similar cost reduction, but the power

was obviously larger, as well as less false-positive results.

Discussion

We propose an optimal two-stage design in genetic asso-

ciation studies under the constrained FTGC or FSS. Dif-

ferent from Wen et al. (2006), the optimization is related to

limited resources and focuses on efficient allocation of

subjects. To accomplish the purpose of maintaining good

power when detecting truly relevant markers, we suggest a

grid-search algorithm for optimal cost-efficient strategies.

Briefly, the concept can be applied to other two-stage

settings where the factors of the overall power interact

differently. Our proposal has several advantages. First, the

(N1, k) or (N1, p) can be determined analytically with

optimal TPR, bearable FPR and satisfied cost. When the

total resources are limited, there are many possible allo-

cations of N1 and N2. The impact of allocations on TPR is

Table 2 Simulation results for cost saving, TPR and FPR of two-stage method and two single-stage methods under FSS. The number of

replication is 1,000 in simulation (N=1,200, M=5,000, w=0.999, 0.995, and a1=0.05)

ð�p; d;ORÞ N1 p cs (%) TPR FPR*103

B(N) M(S) Two-stage B(N) M(S) Two-stage

(0.5, 0.1, 1.49)a 300 0.25 71.15 0.686 0.848 0.632 0.007 0.090 0.057

480 0.40 57.01 0.685 0.887 0.809 0.011 0.200 0.149

660 0.55 42.68 0.698 0.893 0.872 0.012 0.200 0.183

900 0.75 23.72 0.683 0.881 0.881 0.008 0.200 0.192

1140 0.95 4.74 0.677 0.878 0.881 0.010 0.193 0.193

(0.5, 0.1, 1.49)b 300 0.25 70.95 0.683 0.835 0.626 0.012 0.091 0.050

480 0.40 56.81 0.681 0.881 0.809 0.007 0.200 0.147

660 0.55 42.53 0.683 0.879 0.864 0.011 0.176 0.161

900 0.75 23.62 0.685 0.877 0.876 0.008 0.184 0.190

1140 0.95 4.72 0.682 0.877 0.877 0.009 0.169 0.175

(0.3, 0.1, 1.62)a 300 0.25 71.23 0.826 0.927 0.742 0.012 0.091 0.050

480 0.40 56.94 0.826 0.949 0.897 0.008 0.185 0.159

660 0.55 42.69 0.837 0.954 0.948 0.009 0.193 0.181

900 0.75 23.73 0.824 0.949 0.949 0.010 0.202 0.195

1140 0.95 4.74 0.832 0.949 0.952 0.007 0.185 0.192

(0.3, 0.1, 1.62)b 300 0.25 70.99 0.826 0.926 0.737 0.011 0.088 0.044

480 0.40 56.72 0.824 0.946 0.892 0.011 0.181 0.147

660 0.55 42.54 0.827 0.947 0.938 0.007 0.176 0.179

900 0.75 23.63 0.823 0.946 0.947 0.008 0.167 0.180

1140 0.95 4.73 0.826 0.949 0.948 0.011 0.170 0.171

cs Cost saving as compared with cost under Bonferroni method with N subjects. B(N): Bonferroni method with N subjects. M(S): single-stage

method with the same FPR with two-stage method
a w = 0.999, b w = 0.995
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more obvious than that on false-positive results. One would

also use the algorithm to examine adequate total cost or

sample size before studies. The rule of thumb is to identify

the mode of TPR curve against k (or p such as the case of

cost savings for FSS) to find the optimal condition.

Second, under FTGC, we show that the optimal de-

sign k is about 2.5 with moderate total sample sizes and

this translates to a design where M(=5,000) markers are

screened with approximately 88% of total cost in earlier

stage, and then R selected markers are tested with the
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Fig. 2 The curves based on simulations in a–d are true-positive rate

(TPR) with respect to various N1. In all figures, M ¼ 5000;
w ¼ 0:999; ð�p; d;ORÞ; ð�p; d;ORÞ ¼ ð0:5; 0:1; 1:49Þ and a1 = 0.05.

In a and b T = 600 M, and in c and d N = 1,200. Distinct lines

correspond to different methods. The solid line is for Bonferroni

method with the same resources, the dashed line is for M(S) and the

dotted line is for two-stage method

Table 3 Simulation results for TPR, FPR and FDR of optimal two-stage method, M(1) and M(2) under FTGC and FSS. The number of

replication is 1,000 in simulation

FTGCðT=M ¼ 600Þð�p; d;ORÞ TPR FPR · 102 FDR Total sample size Optimal two-stage design

2-stage M(1) 2-stage M(1) 2-stage M(1) 2-stage M(1) N1 k

(0.5, 0.1, 1.49) (a) 0.911 0.862 0.011 0.014 0.089 0.138 1888 1950 531 2.555

(b) 0.895 0.862 0.155 0.720 0.027 0.138 1276 1950 531 1.402

(0.3, 0.08, 1.47) (a) 0.797 0.734 0.011 0.027 0.104 0.266 1797 1950 536 2.352

(b) 0.792 0.775 0.346 1.183 0.068 0.225 999 1950 561 0.780

FSSðN ¼ 1200Þð�p; d;ORÞ TPR FPR · 102 FDR Cost saving Optimal two-stage design

2-stage M(2) 2-stage M(2) 2-stage M(2) 2-stage (%) M(2) (%) N1 p

(0.3, 0.1, 1.62) (a) 0.948 0.695 0.018 0.031 0.138 0.305 42.69 45 660 0.55

(b) 0.974 0.866 0.371 0.705 0.058 0.134 40.63 45 660 0.55

(0.5, 0.1, 1.49) (a) 0.872 0.603 0.018 0.040 0.152 0.397 42.68 45 660 0.55

(b) 0.928 0.824 0.319 0.925 0.053 0.176 45.19 45 600 0.50

(a) M = 5000, w = 0.999; (b) M = 100, w = 0.95. M(1) rule-of-thumb two-stage design in Satagopan et al. (2002) under FTGC, the corre-

sponding k is 10/3. M(2): rule-of-thumb two-stage design in Satagopan et al. (2004) under FSS, the corresponding p is 50%
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remaining cost. Furthermore, the grid-search algorithm

can be extended to different per-genotype cost ratio at

each stage for FTGC. For instance, using factor cg for

the ratio of per-genotype cost in stage 2 versus that in

stage 1, we present in Fig. 3 the relationships between

(FPR, FDR, TPR) and (N1, N2, k and c1), based on

simulations results under cg=15 (as suggested in Wang

et al. 2006). It is obvious that the optimal k is less than

1 and the corresponding proportion of total cost in stage

one is nearly 60–65%. Alternatively, if the sample size is

restricted, we recommend p between 0.5 and 0.6 to get a

higher overall power and substantial cost reduction. That

is, to screen M(=5,000) markers with nearly 55% of total

sample size in earlier stage, and then test all individuals

with the selected significant R markers. Finally, we

investigate the power and false-positive results of alter-

native two-stage methods. The optimal two-stage method

is superior to existing alternatives. The superiority re-

mains when compared in terms of cost-efficiency. The

proposed approach provides specific criteria in formal

testing with pre-specified significance level for each

stage. Satagopan et al. (2002) suggested to determine the

number of selected markers prior to a two-stage pro-

posal. This approach is not straightforward since the

number of markers associated with the disease is usually

unknown.

Our method will provide useful guidelines when

planning large-scale association studies. Besides, the

scheme of the method does not change with the test

statistic used. The same argument applies to the case

when more than one locus is considered, though the test

may become more complex. Other applications include

the association test for tag SNPs or haplotypes. Another

issue is if the proportion of cost at the earlier stage c1 is

chosen in advance, the TPR and FPR can be estimated

corresponding to N1=c1T/M, and k ¼ M
EðRÞ �

1�c1

c1
: More-

over, if one sets up a certain proportion of ‘promising’

markers, say 0.1 (i.e. E(R)/M=0.1), we could also perform

a grid search over a plausible range of k and find the

optimal allocation of (N1, N2). Kuchiba et al. (2006)

recommended the use of their proposal when the pro-

portion of true associated markers (they called it p1) is

greater than or equal to 0.01. In that case, this grid search

algorithm will provide optimal choice of N1 and N2 as

well.

Appendix

Following the work of Wen et al. (2006), the overall FPR,

probability of claiming unassociated SNPs significant in

both stages, is approximated by â2ðN1Þ below,

F
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R
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Fig. 3 The curves based on simulations in a and b are false-positive

rate (FPR) and false discovery rate (FDR), and c, d are true-positive

rate (TPR) with respect to various N1 for cg = 15 under FTGC. In all

fi g u r e s , ð�p; d;ORÞ ¼ ð0:5; 0:1; 1:49Þ;T ¼ 1000 M;M ¼ 5000;

w ¼ 0:999 and a1=0.05. Distinct lines correspond to different

methods. The solid line is for Bonferroni method, the dashed line is

for M(S) and the dotted line is for two-stage method
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where the expected value of R, E(R), can be estimated

by Mwa1 + M(1–w)(1–b1(N1)), with 1� b1ðN1Þ ¼
U

ffiffiffiffi
N1

p
d�r0za1=2

r1

� �
as the power in the first stage, F is the

cumulative density function of standard normal distribu-

tion, and za1/2 represents the 100(1–a1 /2)-th quartile of the

standard normal distribution. Similarly, the other index

TPR ffi 1� b2 ¼ U
ffiffiffiffiffiffiffiffiffiffi
N1þN2

p
d�r0zâ2ðN1Þ=2

r1

� �
; the probability of

declaring truly associated SNPs as significant in both

stages, is approximately (1–b2) with respect to â2ðN1Þ and

N1+N2. Where r 0 and r1 denote the standard deviation of

difference in mean allele frequencies under the null and

alternative hypothesis, respectively.

Considering fixed total genotyping cost T=MN1+RN2

with the same per-genotyping cost in both stages and fixed

M and w, the optimal design is to allocate N1 and N2

efficiently to achieve maximum TPR. For simplicity, let

N2 = kN1 and R can be replaced with E(R). Therefore, T

can be rewritten as T=MN1+(Mwa1+M(1–w)(1–b1(N1)))kN1.

In other words, k=(T–N1M)/(N1E(R)) is a function of N1.

The goal is to find the best value of (N1, k) such that the

two-stage method has maximum power. The TPR is

defined as

TPR ¼ 1� b2ðN1Þ

¼ U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ðT � N1MÞ=N1EðRÞÞN1

p
d� r0zâ2ðN1Þ=2

r1

 !

where â2ðN1Þ ¼ minð0:05=EðRÞ; 2� ½1� Uð
ffiffiffiffiffiffiffiffiffiffiffi
1þ k
p

�za1
=2Þ�Þ; and F, za_1/2, r0 and r1 are defined as previous.

It is not straightforward to derive the analytical form of k,

but the maximum TPR can be searched through the range of

N1. The upper bound for N1 is T/M, which implies all re-

sources are allocated in the first stage. By setting the power in

the first stage larger than 0.8, we can obtain a reasonable

range for N1 based on N1(0) and T/M, where N1(0) satisfies the

equation 1� b1ðN1ð0ÞÞ ¼ U
ffiffiffiffiffiffiffi
N1ð0Þ
p

d�r0za1=2

r1

� �
¼ 0:8: Given

T, M, w, allele frequency �p and the effect size d, we perform a

grid search of (N1, k) for the optimal design.

When the total number of participants (=N) is lim-

ited and when N1=p N, the TPR is defined as TPR ¼
1� b2ðN1Þ ¼ U

ffiffiffi
N
p

d�r0zâ2ðN1Þ=2

r1

� �
� 1� b1ðN1Þ; where

â2ðN1Þ ¼ minð0:05=EðRÞ; 2� ½1� Uðza1=2=
ffiffiffi
p
p
Þ�Þ: Given

N, M, and w, the TPR is only affected by â2ðN1Þ and is

smaller or equal to 1–b1(N1). If p is smaller, the TPR is

bounded from above by 1–b1(N1), which is small as well.

On the other hand, if p is large, the TPR is likely to be

large, but the cost increases dramatically. Hence, one needs

to strike a balance between genotyping cost and the TPR.

Denoting the cost as

TðpÞ ¼ ðMpþ EðRÞð1� pÞÞN ¼ ðpþ ðwa1 þ ð1� wÞ

ð1� b1ðN1ÞÞÞð1� pÞÞMN;

where T(p) is also a function of p given N, M, and w.

Similarly, a grid search of p can be set up to find the

maximum TPR and affordable cost analytically.
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