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Abstract Analysis of epistasis, or gene–gene interac-

tions, is of particular importance for revealing the molec-

ular mechanisms of complex human diseases. Multiple

genes, each of which has a moderate effect, might interact

and produce a complex phenotypic trait. In this paper, we

present a novel method of epistasis analysis, utilizing

multiple phase-resolved haplotypes residing in different

genomic regions. Prediction models can then be derived

from the epistasis to indicate the susceptibility of a person

to a dichrotomous phenotypic trait. The simulation results

showed that the prediction accuracy of this method is

dependent on the penetrance rate of the underlying model.

The computation cost, on the other hand, is dependent on

the number of genomic regions involved for the complex

phenotypic trait.

Keywords Epistasis � Haplotype � Association �
Boolean algebra � Complex phenotypic trait � Multiple

genomic regions

Introduction

Population-based association study is one of the most

important approaches for discovering disease–genotype

relationships (Freimer and Sabatti 2004). The disease sus-

ceptibility of an individual may be predicted once the

disease–genotype relationship is found. Genetic associa-

tions have been performed on either unphased single

nucleotide polymorphisms (SNPs), or phase-resolved

haplotypes (Schaid 2004). A haplotype block spans a

chromosomal region where the allelic variants are tightly

linked to one another [i.e., in linkage disequilibrium (LD)]

(Schaid 2005). A haplotype is a combination of allelic

variants which are located within a haplotype block and

along a single chromosome (Epstein and Satten 2003).

Lengths of typical human haplotype blocks range from a

few kilo-bases to several hundred kilo-bases (Meng et al.

2003). The average length of human genes is 27 kb

(Carlson et al. 2004), which is approximately at the same

scale of haplotype blocks. Haplotype-based associations

could detect chromosomal regions which harbor disease-

causing variants, even when the variants themselves are not

genotyped (Evans et al. 2004; Fallin et al. 2001). In addi-

tion, haplotypes are more polymorphic than SNPs, offering

a more flexible stratification of the population. Haplotype-

based associations have been employed in many disease

association studies (Epstein and Satten 2003).

The International HapMap project accomplished a

valuable reference of haplotype blocks of the human gen-

ome (The International HapMap Consortium 2003). Hapl-

otypes of the entire block can be represented by a smaller

set of SNPs referred to as tagging SNPs (Meng et al. 2003).

It has been demonstrated empirically that uncommon

polymorphisms of drug-related genes can be well repre-

sented by haplotypes constructed using tagging SNPs

(Kamatani et al. 2004). Therefore, a proper selection of

tagging SNPs can reduce the cost, efforts and complexity of

the study while maintaining statistical power (Carlson et al.

2004; Goldstein and Cavalleri 2005; Meng et al. 2003).

Haplotypes of each individual can be derived from unph-

ased SNPs using a variety of well-tested algorithms such as

PHASE (Stephens et al. 2001) or HAPLOTYPER (Niu et al.

2002), among others. The derived haplotypes are then uti-

lized for haplotype-based associations (Fallin et al. 2001).
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A complex trait is unlikely to associate prominently with

a single allelic variant. On the contrary, it could be the

consequence of complex biological mechanisms involving

multiple genes in multiple genomic regions. Analysis of

epistasis has been advocated for deciphering the complex

mechanisms, particularly when each involved gene only

demonstrates a minor marginal effect (Bell et al. 2006;

Carlborg and Haley 2004). Interaction-based strategy has

been demonstrated to outperform locus-by-locus search

methods for complex traits (Marchini et al. 2005). Re-

cently, an interaction-based method, GABA, has been

proposed for detecting the epistasis among unphased SNPs

(Liang et al. 2006). GABA has also been employed on the

research of diabetic nephropathy (Hsieh et al. 2006). In this

paper, we address the issue of epistasis among haplotypes

in multiple genomic regions. The proposed methodology,

referred to as the Haplotype Association based on Boolean

Algebra (HABA), is an extension of GABA, aiming to

overcome the challenges incurred on the epistasis of

haplotypes. HABA can be used in conjunction with GABA,

as well as traditional locus-by-locus methods, for assessing

associations from both SNPs and haplotypes.

Materials and methods

Haplotype association based on boolean algebra

The proposed methodology is designed to discover epi-

static effects among phased-resolved haplotypes in multi-

ple genomic regions. The epistatic effects are shown as

prediction models to indicate the susceptibility of a person

to a dichotomous phenotypic trait.

Denote L as the number of genomic regions. Linkage

equilibrium is assumed among regions. Each region

accommodates a multi-allelic haplotype profile Hl {hl,0

,hl,1, hl,2,…hl,i}, where i is the index of haplotypes at a

particular genomic site l, 0 £ l < L. When x bi-allelic

SNPs occur within a region, the haplotype profile may have

2x different haplotypes. The number of real haplotypes in

Hl, however, is generally fewer.

Denote Bl = {bln1, bln2 | 0 £ n < N, bln1, bln2 2 Hl} as

the union of pairs of haplotypes at site l carried by the nth

individual, where N is the total number of individuals.

Denote T = {Bl | 0 £ l < L} as the entire dataset,

including both case and control individuals. In practice, T

is formatted as a two-dimensional table, with each rank

representing an individual, and each column representing

Bl. Each cell of T corresponds to a pair of haplotypes {bln1,

bln2} of a particular patient n at a particular site l.

A prediction model M comprises a chain of haplotype

markers (mk) joined together by the Boolean operators,

multiplication and addition {*, +}. It is denoted succinctly

as M(mk | 0 £ k < K, K £ L), where K is defined as the

number of haplotype markers in the model. Each haplotype

marker defines the assessment of a single genomic region

Bl, the result of which is either true or false. A haplotype

marker is denoted succinctly using a binary-valued vector:

mk = l Æhl,0, hl,1 ,hl,2,…hl,iæ. For example, mk = l Æ0, 0, 1, 0,

1, 0æ defines the following assessment on the nth individ-

ual:

mk ¼
True if any of bln 1or bln 2 equals to hl;2 or hl;4

False otherwise

�

ð1Þ

The complement marker of mk, denoted as mk
C, is defined

as

The intersection of a marker (mk) and its complement

marker (mk
C) is an empty set. Their union contains all

possible haplotypes in Hl. In this way, Hl is partitioned into

two mutually exclusive groups defined by mk and mk
C,

respectively. One group of haplotypes is associated to the

disease susceptibility while the other to non-susceptibility.

A typical type of haplotype-based association is performed

on each specific haplotype hl,i, reflecting the differences of

haplotype frequencies between case and control groups. In

comparison, the omnibus haplotype-profile test gives an

assessment on the entire haplotype frequency profiles of Hl

and reports an overall P-value (Fallin et al. 2001). Our

method, on the other hand, finds the optimum partition of

Hl {hl,0, hl,1, hl,2, ... hl,i}, which is a valuable additional

information to the above two methods.

A Boolean variable indicates the result of assessment of

a haplotype marker. The variables are linked together by

Boolean operators to construct M, a Boolean statement.

The prediction result of an individual (which is either true

or false) is computed from the values of Boolean variables.

A Boolean statement can accommodate various types of

relationships between variables, including the exclusive

OR relationship (see ‘‘Discussion’’).

mC
k ¼

True if both bln 1 and b
ln 2

equals to hl;0 hl;1 hl;2 hl;3 or hl;5;
False otherwise

�
ð2Þ
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Model optimization

We aimed to find a model which has the highest prediction

performance on the dataset T,

Moptimum ¼ arg max
M

F Tð Þ ð3Þ

where F(T) is the Fitness score indicating the prediction

performance of M on T. Similar to GABA, HABA adopts

the Genetic algorithm for the optimization process (Liang

et al. 2006), where candidate models are constantly altered

by either mutation or cross-over operations for finding the

adequate combinations of haplotype markers. Denote R as

the case population and RC the control population, thus

T = R + RC. The Sensitivity of a model M on T is

Pr(M = 1|R), the probability of M being true within the

case population; and the Specificity Pr(MC = 1|RC), the

probability of MC being true (M being false) within the

control population. In this paper, we defined F as

F ¼ sensitivity þ specificity: ð4Þ

Sensitivity and specificity are two important clinical

indexes of prediction performance. In comparison, positive

predictive values (Pr(R|M)) and negative predictive values

(Pr(RC|MC)) are posterior probabilities which are only

adequate when prior probabilities (such as Pr(R)) were

accurately estimated in the population (Yang et al. 2003).

The likelihood ratio (LR(M)) is another commonly-used

performance index (Yang et al. 2003).

LR Mð Þ ¼ PrðMjRÞ
Pr MjRCð Þ ¼

Sensitivity

1� Specificity
ð5Þ

Simulation

The penetrance rate of the underlying model was an indi-

cation of the difficulties of detecting the model accurately.

The penetrance rates of a single genetic marker m is de-

fined as a conditional probability (Zhao et al. 2003)

Penetrance rate of X ¼ PrðRjmÞ; ð6Þ

The penetrance rate needs to be distinguished from

prevalence, the proportion of affected individuals in a

population, i.e. Pr(R). We investigated both the penetrance

of individual haplotype markers at a single genomic region

as well as the penetrance of the entire model involving

several haplotype markers Pr(R|M). The aim of HABA is to

detect M at conditions when individual makers have mod-

erate marginal effects. The sum of Pr(R|M) and Pr(RC|MC)

has been proved to be greater than 1 (Appendix). To reflect

the level of difficulty of the simulation using both Pr(R|M)

and Pr(RC|MC), we assume they are equal in this simulation,

i.e. penetrance rate = Pr(R|M) = Pr(RC|MC). Under this

assumption, the minimum penetrance rate is 50.

Datasets for the simulation were generated randomly,

according to the specified number of cases and controls, as

well as L. For each region, a multi-allelic haplotype profile

Hl {hl,0, hl,1 ,hl,2,…hl,i} was randomly generated. The

number of haplotypes i was a randomly generated value

between 2 and 7, which are commonly observed numbers

of haplotypes in the human genome. Each haplotype in Hl

was assumed to have equal frequency for simplicity. The

underlying models were also generated randomly accord-

ing to the specified number of markers involved. The

markers were randomly chosen from the L regions and then

randomly determined based on Hl of the simulation dataset.

Finally, the haplotypes in the marker regions were ran-

domly modified, meeting the specified penetrance

requirement of the underlying model.

Three sets of simulations were conducted. The first set

of simulations demonstrated the characteristics/behavior of

HABA at various conditions when the underlying models

involved various numbers of genomic regions, and had

complete and various incomplete penetrance. Twenty dif-

ferent models were generated randomly, one for each

condition (number of markers = 1–4; penetrance = 60–

100%). The models were then used to dictate the genera-

tion of individual genotypes for 1,000 cases and 1,000

controls. Therefore N = 2,000. The number of genomic

regions (i.e. L) was 8. The halting condition of the program

was when the best model remained unchanged for 1,000

iterations.

The second set of simulations was designed to eval-

uate the average performance of HABA on 50 replicated

tests. We employed datasets comprising five genomic

regions and an embedded model comprising three

haplotype markers under a variety of penetrance rates

(60–100%). The number of iterations for halting in this

test is 300.

The third set of simulations was a permutation test

(Hirschhorn and Daly 2005) showing the empirical sig-

nificance level of the detected model when the dataset

contain 100 genomic regions. The number of iterations for

halting in this test is 150.

The heuristic parameters of this algorithm were identical

to those previously described (Liang et al. 2006). A total of

300 models were used within an iteration of the compu-

tation. The Fitness score is defined in Eq. (4). No parsi-

monious constraints were used, apart from the condition

when an equal Fitness score occurs on two candidate

models. In such a condition, the one involving fewer

markers would be ranked higher.
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Results

Table 1 presented examples of models which were em-

ployed in the first set of simulation. These models all

comprise four haplotype markers (each at a particular

genomic region) but have various penetrance to the data-

sets. The marginal haplotype frequency Pr(m) and pene-

trance Pr(R|m) varies because the models and datasets were

randomly generated (Table 1). However, it can be seen that

the penetrance of individual haplotype marker was usually

smaller than the model penetrance. Thus, the dataset sim-

ulates the epistasis where the associations reveal them-

selves at the combination of multiple haplotype markers,

rather than individual markers.

The first set of simulation evaluates the performance of

HABA when various numbers of genomics regions (be-

tween 1 and 4) were involved, and when various pene-

trance rates (between 60 and 100%) were observed in the

data. The detected models were identical to all the under-

lying models when they had complete penetrance, resulting

in 100% sensitivity and specificity. The underlying models

were also detected accurately when their penetrance rates

were 90, 80 and 70%. When the penetrance rate of the

models was further reduced to 60%, ‘‘over-fitting’’ models

were detected instead of accurate underlying models,

resulting in Fitness scores higher than the expected value

(Table 2). The detected models not only contain some of

the correct markers, but also introduce several additional

markers (Table 2). From these experiments, we observed

that the prediction accuracy is independent of number of

regions involved. It is, however, dependent on the pene-

trance rate of the model.

We also compared the computation cost, shown as the

number of iterations, for detecting the optimum model at

various conditions (Table 3). The numbers of iteration did

not include the additional 1,000 iterations after the opti-

mum models were achieved (see ‘‘Materials and meth-

ods’’). Table 3 shows that the average number of iterations

is dependent on the number of markers in the underlying

model. The penetrance rate, on the other hand, did not

affect the computation cost.

Having observed the general performance of the algo-

rithm at a variety of conditions, we conducted the second

set of simulations to calculate the average performance,

Table 1 Marginal penetrance

of haplotype markers, as well as

the marker frequencies, when

four genomic regions were

involved in the underlying

model

The penetrance of individual

haplotype markers is generally

smaller than the penetrance of

the entire model

Model penetrance

(%)

Underlying model

(four regions)

Marginal penetrance of haplotype markers

Location Penetrance (%) Frequency

100 Control

1 Æ1, 0, 1æ 1 52.72 0.653

* 4 Æ1, 0æ 4 55.06 0.457

* 2 Æ1, 0, 0, 1, 0, 0æ 2 68.69 0.268

+ 0 Æ1, 0æ 0 100 0.287

90 Case

3 Æ1, 0, 1æ 3 90.52 0.372

+ 6 Æ0, 1, 1, 0, 1, 0æ 6 54.43 0.475

* 0 Æ1, 1, 0, 0æ 0 53.13 0.476

* 2 Æ0, 0, 0, 1, 0, 1æ 2 58.22 0.265

80 Control

5 Æ1, 1, 0, 0æ 5 54.62 0.492

* 1 Æ0, 0, 0, 0, 1, 0, 1æ 1 66.33 0.271

+ 7 Æ0, 1, 0, 0, 0, 1æ 7 60.56 0.322

* 4 Æ0, 1, 0æ 4 60.86 0.321

70 Control

5 Æ1, 0, 0, 0æ 5 71.37 0.225

+ 1 Æ1, 0, 0, 0æ 1 58.24 0.235

* 6 Æ0, 1æ 6 51.29 0.484

* 4 Æ0, 1æ 4 51.41 0.478

60 Control

0 Æ1, 0æ 0 60.69 0.255

+ 3 Æ1, 0, 1, 1, 1, 0æ 3 60.19 0.337

+ 1 Æ0, 1æ 1 51.52 0.388

* 4 Æ0, 1æ 4 52.92 0.339
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including the sensitivity, specificity and computational

cost, at various penetrance between 60 and 100%. The

underlying model comprises three haplotype markers and

characterizes control samples:

M = 3 h0, 1i + 2 h0, 0, 1i * 4 h0, 0, 1i.

The results are presented in Table 4, where each value is

an average of 50 tests. The error sum is defined as the

average of the sum of absolute differences between the

measured and expected sensitivity and specificity values.

The error sum increases as the penetrance decreases,

implying that the accuracy depends on the penetrance rate.

This is consistent with the observations from the first set of

simulation. The error count is defined as the number of

tests when the underlying model was not detected among

the 50 replicates. Although the underlying model was not

always accurately detected, HABA detected approximate

models, resulting in small error sum values. The compu-

tation cost, measured by the averaged numbers of itera-

tions, does not depend on the penetrance rate.

The third set of simulation is to observe the distribution

of performance indexes when the labels of phenotypes (i.e.

Table 2 Comparisons of the

underlying models and the

detected models when the

penetrance rate was 60%

‘‘Over-fitted’’ models were

detected, resulting in Fitness

scores higher than the expected

value (i.e. 1.2)

No.

markers

Underlying model Detected model Sensitivity

(%)

Specificity

(%)

Fitness score

(%)

1 Control

0 Æ0, 0, 0, 1æ
Control

0 Æ0, 0, 0, 1æ
+ 2 Æ0, 0, 0, 0, 0, 1, 0æ
* 7 Æ0, 0, 1, 0, 1, 0, 0æ

53.7 67.6 121.3

2 Control

2 Æ0, 0, 1æ
+ 7 Æ1, 0æ

Control

2 Æ0, 0, 1æ
* 2 Æ1, 0, 0æ
* 4 Æ0, 0, 0, 1, 1, 0, 1æ
+ 2 Æ0, 0, 1æ
* 5 Æ0, 0, 0, 1, 0æ
* 4 Æ0, 0, 1, 0, 1, 1, 0æ
+ 7 Æ1, 0æ

65.1 56.9 122.0

3 Case

4 Æ0, 1, 1, 0, 1, 0, 0æ
* 1 Æ0, 0, 0, 1, 0, 0æ
+ 7 Æ0, 1, 0, 0, 1, 0æ

Case

4 Æ1, 1, 1, 0, 1, 0, 0æ
* 3 Æ1, 1, 0, 1, 0, 1æ
* 0 Æ1, 1, 0æ
* 1 Æ0, 0, 0, 1, 0, 0æ
+ 7 Æ0, 1, 0, 0, 1, 0æ

62.1 59.2 121.3

4 Control

0 Æ1, 0æ
+ 3 Æ1, 0, 1, 1, 1, 0æ
+ 1 Æ0, 1æ
* 4 Æ0, 1æ

Control

3 Æ1, 0, 1, 0, 0, 0æ
+ 3 Æ0, 0, 0, 1, 1, 0æ
* 6 Æ0, 1, 1, 0, 0, 0æ
* 5 Æ1, 1, 1, 0, 1, 0æ
* 1 Æ1, 0æ
* 7 Æ0, 0, 1, 0, 1, 1, 0æ
+ 0 Æ1, 0æ
* 7 Æ0, 1, 1, 0, 1, 0, 1æ
+ 0 Æ1, 0æ
* 6 Æ1, 0, 0, 1, 0, 1æ

65.7 57.6 123.3

Table 3 The iterations required for finding the optimum model

Iterations Penetrance rate

100% 90% 80% 70% Average

No. genomic regions involved

1 6 5 6 4 5

2 60 21 9 72 41

3 771 1,401 1,504 681 1,089

4 629 6,781 2,791 616 2,704

The average number of iteration increased as more genomic regions

were involved in the association

460 J Hum Genet (2007) 52:456–463
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R and RC) were randomly permuted (Hirschhorn and Daly

2005). An underlying model of two haplotype markers was

randomly generated. This model indicates control samples:

M = 8 h1, 0, 1, 0, 0, 0, 0i * 48 h0, 1, 0i.

This model was then used to guide the generation of a

dataset, comprising 100 genomic regions, 1,000 cases and

1,000 controls. HABA have repeatedly detected the

underlying model twice after 171 and 342 iterations of

computation, showing its capability on datasets when

L = 100. The labels of phenotype were then randomly

permuted, resulting in 116 permuted datasets. These data-

sets simulates the situation where no association occurs,

therefore the null distribution can be derived. The histo-

grams of sensitivity and specificity of the models detected

by HABA are illustrated in Fig. 1. This shows that the

distributions are approximately normal, with the bulk of

sensitivity and specificity occurring between 50 and 60%.

The histogram of Fitness represents the empirical null

distribution of prediction performance, which is illustrated

in Fig. 2. The bulk of the null distribution occurs around

110%. Although both sensitivity and specificity have wide

distributions, their sum (i.e. the Fitness) values were quite

narrowly distributed. According to the null distribution of

Fig. 2, the empirical type I error, or the P-value, is smaller

than 0.0172 (which is 2/116) if the Fitness of a model is

equal or greater than 115%.

Discussion

Analysis of epistasis and haplotype-based association are

both important issues for genetic associations. The pro-

posed HABA methodology addresses both issues at the

same time. It can be used to construct prediction models

involving multiple haplotypes in different genomic regions.

HABA enables the discovery of relationship among these

haplotypes, facilitating further interpretation on biological

mechanisms.

De Morgan duality and mode of inheritance

A model can address both dominant and recessive modes

of inheritance at a genomic region. At the level of single

haplotype markers, mk describes the dominant mode of

inheritance, while mk
C accommodates the recessive mode of

inheritance (cf. Eqs. 1, 2). According to the De Morgan’s

law on duality (Liang et al. 2006), if a model is constructed

by mk for predicting either a case or control group with a

dominant mode of inheritance, then a corresponding

model, consisting of mk
C, is simultaneously determined for

Table 4 The averaged

performance of 50 tests under

various penetrance between 60

and 100%

Penetrance

(%)

Sensitivity

(%)

Specificity

(%)

Error sum

(%)

Error

count

No. of

iterations

SD of no.

of iterations

100 100.00 100.00 0.00 0 128.92 105.37

90 90.07 89.20 0.97 6 166.08 164.68

80 80.03 79.86 0.21 1 159.22 123.11

70 70.02 69.99 0.04 1 150.10 124.49

60 60.69 59.14 2.59 13 197.02 178.29

Histogram

0

5

10

15

20

25

30

35

40

45

50

25 35 45 55 65 75 85 95

%

sensitivity

specificity

C
ou

nt

Fig. 1 The histogram of

sensitivity and specificity when

the label of phenotypes (R and

RC) were permuted randomly
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indicating the other group with the recessive mode of

inheritance. In other words, M(mk | 1 £ k £ K, K £ L)

and MC(mk
C |1 £ k £ K, K £ L) are a pair of models for

a dichotomous trait, where Pr(M + MC) = 1. Whether M or

MC is associated to case or control depends on model

optimization. HABA cannot accommodate the additive

mode of inheritance at this moment.

The epistasis between different genomic regions might

appear in a more complex format known as the exclusive

OR logic (XOR), apart from simple AND/OR relation-

ships. The exclusive OR logic can also achieved by the

HABA structure because exclusive OR is equivalent to the

following equation composed of {*, +} operators:

m1 XOR m2 ¼ m1 * mC
2 þ mC

1 * m2: ð7Þ

Therefore, our formation of models can accommodate the

XOR relationship between genomic regions.

HABA is mainly designed for datasets where all the

haplotypes of each individual have been unambiguously

determined. However, it is almost impossible for all the

haplotypes in all the regions to be unambiguously deter-

mined from phase unknown samples. If only a small por-

tion of missing/ambiguous haplotypes occur among the

entire dataset, then the algorithm can temporarily discard

those samples with missing/ambiguous haplotypes occur-

ring at the marker site of interest. However, further re-

search on technologies for resolving phases unambiguously,

as well as on the improvement of HABA for addressing

the ambiguity of haplotypes, is required so as to facilitate

the practical use of epistasis analysis on real haplotype

datasets.

In conclusion, our simulation results show that this

algorithm can detect or approximate the underlying

models, provided that the underlying model has reason-

ably high penetrance (e.g., higher than 70%) in the

dataset. The prediction accuracy of this method is

dependent on the penetrance rate of the underlying model.

The computation cost, on the other hand, is dependent on

the number of genomic regions involved for the complex

phenotypic trait. This methodology will facilitate the

discovery of novel associations based on the epistasis of

haplotypes, an important aspect of research on complex

diseases.

Appendix: Proof of Pr(R|X) + Pr(RC|XC) > 1

Making m a maker of a dichrotomous trait R, a sufficiently

large relative risk of m against mC must be observed. That

is

PrðR j mÞ[ Pr RjmC
� �

Since Pr(R) + Pr(RC) = 1, it can be derived that

Pr(R|mC) = 1 – Pr(RC|mC);

Therefore

PrðRjmÞ[1� Pr RCjmC
� �

which will give

PrðRjmÞ þ Pr RCjmC
� �

[1

Hence, Pr(R|m) and Pr(RC|mC) cannot be smaller than

0.5 simultaneously.
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