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Abstract Rett syndrome (RTT), an X-linked domi-

nant neurodevelopmental disorder in females, is

caused mainly by de novo mutations in the methyl-

CpG-binding protein 2 gene (MECP2). Here we report

mutation analysis of the MECP2 gene in 87 patients

with RTT from the Czech and Slovak Republics, and

Ukraine. The patients, all girls, with classical RTT

were investigated for mutations using bi-directional

DNA sequencing and conformation sensitive gel

electrophoresis analysis of the coding sequence and

exon/intron boundaries of the MECP2 gene. Restric-

tion fragment length polymorphism analysis was per-

formed to confirm the mutations that cause the

creation or abolition of the restriction site. Mutation-

negative cases were subsequently examined by multi-

ple ligation-dependent probe amplification (MLPA) to

identify large deletions. Mutation screening revealed

31 different mutations in 68 patients and 12 non-

pathogenic polymorphisms. Six mutations have not

been previously published: two point mutations

(323T>A, 904C>T), three deletions (189_190delGA,

816_832del17, 1069delAGC) and one deletion/inver-

sion (1063_1236del174;1189_1231inv43). MLPA anal-

ysis revealed large deletions in two patients. The

detection rate was 78.16%. Our results confirm the

high frequency of MECP2 mutations in females with

RTT and provide data concerning the mutation het-

erogeneity in the Slavic population.
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Introduction

Rett syndrome (RTT; OMIM 312750), first described

by the Austrian pediatrician Rett (1966), is one of the

leading causes of mental retardation and developmen-

tal regression in girls. Its prevalence is estimated to be

from 1:10,000 to 1:15,000 females worldwide with most

cases being sporadic (Hagberg 1995). Patients with

classical RTT show an apparently normal psychomotor

development during the first 6–18 months of life.

Thereafter, they enter a short period of developmental
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stagnation followed by a rapid regression in language

and motor development. Purposeful hand use is often

lost and replaced by repetitive, stereotypic movements.

Additional symptoms include acquired microcephaly,

gait ataxia/apraxia, seizures, and episodic apnea and/or

hyperpnea (Hagberg et al. 1983; Naidu 1997). The

causative gene was mapped to Xq28 and identified as

the MECP2 gene (Amir et al. 1999). It encodes the

methyl-CpG-binding protein 2 (MeCP2; OMIM

300005), which is involved in regulation oftranscription

repression, epigenetic gene silencing (Amir et al. 1999;

Van den Veyver and Zoghbi 2000), and RNA splicing

(Young et al. 2004). Several different MECP2 muta-

tions have been identified in up to 90% of classical RTT

patients worldwide. The mutation rate in atypical cases

is much lower: 20–40% (Hoffbuhr et al. 2002; Laccone

et al. 2004; Amir et al. 2005). We present a mutation

analysis of the MECP2 gene in RTT patients from the

Czech Republic, Slovakia, and Ukraine. We tested 87

patients with classical RTT to ascertain the spectrum of

disease-causing mutations of MECP2 gene in the Slavic

population.

Subjects and methods

Patients

Most of 87 unrelated sporadic female patients with a

clinical diagnosis of RTT were diagnosed in neuro-

logical, genetic, or pediatric departments. Several pa-

tients were identified from Institutes of social work for

mentally retarded children. All patients included in

this study were diagnosed as having classical RTT, with

psychomotor regression after a period of normal

development, severe mental retardation, postnatal

deceleration of head growth, loss of speech and pur-

poseful hand use, and the appearance of stereotypic

hand movements. The diagnosis was made according to

diagnostic criteria defined by the Rett syndrome diag-

nostic criteria work group (Kerr et al. 2001).

Molecular analyses

Genomic DNA was extracted from peripheral blood

samples anticoagulated with EDTA according to a

standard protocol. Coding sequences of exons 1, 2, 3,

and 4 with flanking exon/intron boundaries were

amplified using following primer pairs: 1Fw 5¢-tcaatc

gcccctcagagca-3¢, 1Rev 5¢-cacgtcccgcccctgaccc-3¢; 2Fw

5¢-aaaaaggtcgtgcagctcaa-3¢, 2Rev 5¢-ggccaaaccaggaca

tatac-3¢; 3Fw 5¢-tggcatgttctctgtgatactt-3¢, 3Rev 5¢-cctggg

cacatacattttcct-3¢; 4aFw 5¢-tttgtcagagcgttgtcacc-3¢,
4aRev 5¢-ctgcacagatcggatagaagac-3¢; 4bFw 5¢-ggcaggaa

gcgaaaagctgag-3¢, 4bRev 5¢-ctccctcccctcggtgtttg-3¢, 4cFw

5¢-ggagaagatgcccagaggag-3¢, 4cRev 5¢-gcactgatggcacc

gaaaac-3¢. The PCR amplification of exon 1 was carried

out as published elsewhere (Evans et al. 2005), exons 2,

3, and 4 were amplified in a total volume of 25 ll

including 1x Plain PP Master Mix [150 mM Tris–HCl,

pH 8.8, 40 mM (NH4)2SO4, 0.02% Tween 20, 5 mM

MgCl2, 400 lM dATP, 400 lM dCTP, 400 lM dGTP,

400 lM dTTP, 100 U/ml Taq DNA polymerase; Top-

Bio, Prague, Czech Republic] and 0.4 mM of each

primer. Thermal cycling conditions included an initial

denaturation at 94�C for 2 min followed by 33 cycles of

denaturation at 94�C for 30 s, annealing at 63�C for

30 s, and elongation at 72�C for 45 s, followed by final

extension at 72�C for 10 min.

PCR products were purified from agarose gels using

a QIAquick gel extraction kit (Qiagen, Hilden, Ger-

many). Exon 2 was analysed by conformation sensitive

gel electrophoresis (CSGE) as described (Bourdon

et al. 2001). Exons 1, 3, and 4 were sequenced in both

directions on automatic sequencer ABI PRISM 3100/

3100-Avant Genetic analyzer (Applied Biosystems,

Foster City, CA) using the ABI PRISM BigDye ter-

minator v3.1 (Applied Biosystems). Whenever the

identified mutation caused creation or loss of a

restriction site, it was confirmed by restriction fragment

length polymorphism (RFLP) analysis. To confirm del/

inv mutations, the PCR fragment with the mutation

was cloned into pCR4-TOPO vector (TOPO TA

Cloning Kit for Sequencing, Invitrogen, Carlsbad, CA).

Plasmid DNA was amplified in Top10 chemically

competent Escherichia coli cells (Invitrogen), isolated

using the QIAprep Spin Miniprep Kit (Qiagen), and

sequenced. We used probe mix P015 (MRC Holland,

Amsterdam, The Netherlands) for MLPA in all

mutation-negative patients. MLPA was performed

according to manufacturer’s protocol (see Supple-

mentary material). Genotyping was performed on an

ABI PRISM 3100/3100-Avant Genetic analyzer (Ap-

plied Biosystems). Aberrant results were indepen-

dently re-run in the second MLPA reaction for

confirmation.

Ethics

The study was carried out in accordance with the

Declaration of Helsinki of the World Medical Associ-

ation and was approved by the Committee of Medical

Ethics at the University Hospital. Informed consent

was obtained from parents of all patients.
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Results

The molecular analysis revealed 31 different mutations

in 68 patients (78.16%), which is consistent with esti-

mates reported elsewhere. Of the 68 patients with

mutations, 34 had a missense mutation, 18 had a non-

sense mutation, 13 carried a frame-shift mutation, 1

had an in frame deletion, and 2 had large-scale dele-

tions detected by MLPA (Table 1). Three mutations

were located in exon 3, the rest in exon 4. No sequence

change was identified in exons 1 and 2. We identified

six novel mutations (Fig. 1): two point mutations

(323T>A, 904C>T), three deletions (189_190delGA,

816_832del17, 1069delAGC), and one deletion/inver-

sion (1063_1236del174;1189_1231inv43).

We screened the parents and sisters of our patients

for the mutations found in their daughters and sisters if

their blood samples were available, but found none.

The mutations were thus either de novo or due to

germ-line mosaicism in the parents. Further sequenc-

ing analysis did not reveal any of newly described

mutations in 200 normal chromosomes tested. Twelve

non-pathogenic polymorphisms were identified in 14

patients, 4 of which are novel (Table 2).

Discussion

MECP2 is an X-linked gene encoding two almost

identical isoforms of MeCP2 with alternative N-termini

Table 1 Mutations in the methyl-CpG-binding protein 2 gene (MECP2) detected in reported patients with Rett syndrome (RTT).
MBD Methyl-CpG-binding domain, TRD transcription repression domain, C-ter C-terminal region, MLPA multiple ligation-depen-
dent probe amplification

Exon Nucleotide changea Amino acid
change

Domain
of MeCP2

Recurrence
(this study)

Reference

3 189_190delGA E63fsX27 – 1 This study
3 316C>T R106W MBD 5 (4b) Amir et al. 1999
3 323T>A L108H MBD 1 This study
4 397C>T R133C MBD 6 (1b) Amir et al. 1999
4 401C>G S134C MBD 1 Cheadle et al. 2000
4 403A>G K135E MBD 1 Laccone et al. 2001
4 423C>G Y141X MBD 1 (1b, 1c) De Bona et al. 2000
4 430A>T K144X MBD 1 Buyse et al. 2000
4 455C>G P152R MBD 1 Cheadle et al. 2000
4 473C>T T158M MBD 11 (10b, 1c) Amir et al. 1999
4 502C>T R168X – 3 (4b, 1c) Wan et al. 1999
4 611C>G S204X – 1 (1b, 1c) Buyse et al. 2000
4 674C>G P225R TRD 1 (1c) Cheadle et al. 2000
4 750_751insC G252fsX7 TRD 1 Zeev et al. 2002
4 763C>T R255X TRD 5 Amir et al. 1999
4 806delG G269fsX20 TRD 2 Wan et al. 1999
4 808C>T R270X TRD 3 (1b) Cheadle et al. 2000
4 816_832del17 G273fsX52 TRD 1 This study
4 856_859del4 K286fsX2 TRD 1 Hoffbuhr et al. 2001
4 880C>T R294X TRD 4 (1b, 1c) Cheadle et al. 2000
4 904C>T P302S TRD 1 This study
4 916C>T R306C TRD 5 (2b, 1c) Wan et al. 1999
4 1063_1236del174;1189_1231inv43 S355fsX37 C-ter 1 (1b, 1c) This study
4 1069delAGC DS357 C-ter 1 (1b) This study
4 1116_1201del86 H372fsX4 C-ter 1 (1b) Amir and Zoghbi 2000
4 1157_1197del41 L386fsX5 C-ter 1 (1b) Cheadle et al. 2000
4 1157_1200del44 L386fsX4 C-ter 1 Huppke et al. 2000
4 1162C>T P388S C-ter 1 Conforti et al. 2003
4 1164_1207del44 P389fsX1 C-ter 3 (1b, 1c) Buyse et al. 2000
Large deletions identified by MLPA
3,4 Deletion of exon 3 and a part of exon 4 1 This study
4 Deletion of exon 4 near stop codon 1 This study

a Numbered according to GenBank NM_004992
b Number of parents tested for the MECP2 mutation identified in proband
c Number of sisters tested for the MECP2 mutation identified in proband
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Fig. 1a–e Novel mutations in
the methyl-CpG-binding
protein 2 gene (MECP2) in
sporadic Rett syndrome
(RTT) patients. a–e Top
patient, bottom healthy
control. f Region containing
del/inv mutation cloned into
pCR4-TOPO vector. Each
allele was sequenced
separately. Top Allele with
mutation (arrow indicates the
first mutated base), bottom
normal allele

Table 2 Non-pathogenic polymorphisms in the MECP2 gene detected in reported patients with RTT

Exon/intron Nucleotide
change

Amino acid
change

Domain
of MeCP2

Recurrence
(this study)

Parental
origin

Reference

Intron 3 IVS3 + 22C>G – – 2 NAa Couvert et al. 2001
Intron 3 IVS3–17delT – – 1 Paternalb Erlandson et al. 2001
Exon 4 587C>G T196S – 1 Paternal Shibayama et al. 2004
Exon 4 686C>T S229L TRD 1 NA Cheadle et al. 2000
Exon 4 815C>T P272L TRD 1 Paternal RettBASEc

Exon 4 819G>T G273G TRD 1 NA RettBASEc

Exon 4 1161C>T P387P C-ter 1 NA RettBASEc

Exon 4 1335G>A T445T C-ter 1 NA RettBASEc

Exon 4 1553C>T – 3¢UTR 1 NA This study
Exon 4 1789G>A – 3¢UTR 2 Paternal (both) This study
Exon 4 1820G>C – 3¢UTR 1 NA This study
Exon 4 1824G>C – 3¢UTR 1 NA This study

a DNA from parents not available
b Polymorphism identified also in father’s mother
c RettBASE: http://www.mecp2.chw.edu.au/
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(Mnatzakanian et al. 2004). The MeCP2 protein has

two major functional domains: the methyl-CpG-bind-

ing domain (MBD), which binds specifically to DNA

methylated at CpGs; and the transcription repression

domain (TRD), which mediates transcription repres-

sion through the recruitment of other proteins (Jones

et al. 1998; Nan et al. 1998).

In this paper, we report the mutational analysis of

the whole coding sequence of the MECP2 gene.

Altogether, we identified a heterogeneous spectrum of

mutations, including several novel MECP2 mutations

and polymorphisms, in a high proportion (78.16%) of

classical RTT patients. The transversion 323T>A in

exon 3 leads to a substitution of a highly conserved

lysine to histidine at position 108. The mutation is

localized within the MBD and may affect methylation-

specific binding of the protein to the DNA template.

Missense mutations in the MBD most likely disrupt the

integrity of the domain or interfere with MeCP2’s

ability to bind methylated DNA. The 904C>T transi-

tion causes the substitution of proline with serine at

position 302, which lies within the TRD. This sequence

change probably alters the ability of the protein to

recruit co-repressor complexes and affects its function

in the process of transcription repression. Mutations

involving the TRD could interfere with the assembly of

the transcriptional silencing complex, abolishing

interactions with the Sin3A corepressor or histone

deacetylase recruitment. Binding of truncated MeCP2

to methylated DNA could also provide steric hin-

drance to the transcription complex. MBD-containing

mutant proteins without TRD might accomplish some

degree of silencing, either by recruiting the silencing

complex by a TRD-independent mechanism or by di-

rectly interfering with binding of transcription factors

(Ballestar et al. 2000). The 189_190delGA deletion in

exon 3 causes a frame-shift, with threonine at position

63 as the first affected amino acid. The mutation

introduces a premature stop codon occurring 27 codons

downstream (E63fsX27). Another frameshift mutation

due to a 17-bp deletion (816_832del17) creates a stop

codon after 51 missense amino acids in the TRD

(G273fsX52). Deletion 1069delAGC leads to the re-

moval of one serine without alteration of the coding

frame (DS357). The deleted serine is a part of the

SSSASS motif (deleted S357 underlined), which is

conserved between human, rat and mouse. Its function

is still not clear. A combined deletion/inversion muta-

tion 1063_1236del;1189_1231inv43 was confirmed by

cloning of the affected region of the MECP2 gene into

a vector and sequencing of each allele separately. The

mutation alters the open reading frame, with codon

355 being the first affected, and leads to the creation

of a premature stop codon 37 codons downstream

(S355fsX37).

Most of the missense mutations were located in the

MBD, while the nonsense mutations were more scat-

tered, located from the end of MBD to the TRD.

Deletions were located mostly in the C-terminal re-

gion. The eight most common mutations (316C>T,

397C>T, 473C>T, 502C>T, 763C>T, 808C>T, 880C>T,

916C>T), accounting for more than half of all muta-

tions in probands with RTT, were located at CpGs,

which would support the hypothesis that these motifs

are mutation hot-spots, as suggested by, among others,

Wan et al. (1999).

Novel polymorphisms 1553C>T, 1789G>A,

1820G>C, and 1824G>C are localized in the 3¢UTR

and do not affect the protein sequence. Unfortunately,

we were not able to obtain DNA samples from the

parents of these patients, hence the parental origin of

the polymorphisms is unknown.

No pathogenic sequence variant was found in 19

patients, although they may have MECP2 mutations

that our methods could not reveal, e.g., mutations in

the promotor region or intronic variations introducing

novel splice sites. There have also been suggestions

that RTT is a genetically heterogeneous disorder, and

that other causative genes might exist. Several recent

studies identified mutations in the CDKL5 gene

(OMIM 300203) encoding cyclin-dependent kinase-

like 5 (formerly known as serine/threonine kinase 9;

STK9) in patients with an atypical, early seizure vari-

ant of RTT (Tao et al. 2004; Weaving et al. 2004; Mari

et al. 2005). CDKL5 is a nuclear protein whose

expression in the nervous system overlaps with that of

MeCP2 during neural maturation and synaptogenesis.

Both proteins interact in vitro and in vivo but the role

of CDKL5 in the pathological mechanisms of RTT is

still not clear (Mari et al. 2005). A mutation screen of

CDKL5 should be considered in mutation-negative

patients with early-seizure variant RTT. Moreover,

one case of a Netrin G1 mutation has been shown to be

associated with a phenotype strongly overlapping that

of RTT (Borg et al. 2005), but the causal link of this

mutation with RTT, if any, remains to be established.

With the discovery of mutations in the MECP2

gene, RTT became the first human disorder known to

be caused by genetic defects in a component of the

epigenetic silencing machinery. It is the first pervasive

developmental disorder with a known genetic cause

and is a prototype for the genetic, molecular, and

neurobiological analysis of neurodevelopmental disor-

ders. This study is the first report to document a

mutation analysis of the MECP2 gene in RTT patients

of Slavic origin.
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