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Abstract Investigations into the association between

diabetic nephropathy (DN) and MTHFR C677T gene

polymorphism in several case–control studies has yielded

contradictory results. To shed light on these inconclusive

findings, a meta-analysis of all available studies relating

the C677T polymorphism to the risk of developing DN was

conducted. The PubMed database was searched, and case–

control studies investigating the association between

MTHFR C677T gene polymorphism and DN were inclu-

ded in the meta-analysis. The meta-analysis included 15

studies, of which 8 involved Caucasians and 5 East Asians;

11 studies involved subjects with type 2 diabetes and 4

with type 1 diabetes. The main analysis (all studies)

revealed significant heterogeneity between the studies

(PQ \ 0.01) and a marginal association between the 677T

allele and the risk of developing DN; the random effects

(RE) pooled odds ratio (OR) was 1.30 (1.03–1.64). How-

ever, the sensitivity analysis (exclusion of studies not in

Hardy–Weinberg equilibrium) produced non-significant

results. The recessive model derived significant results in

main analysis [fixed effects (FE) OR = 1.32 (1.10–1.58),

PQ = 0.27], and in type 2 diabetes [FE OR = 1.30 (1.06–

1.60), PQ = 0.38]. The additive model produced significant

association in main analysis [RE OR = 1.65 (1.13–2.42),

PQ \ 0.01] in Caucasians [FE OR = 1.48 (1.11–1.98),

PQ = 0.17] and in type 2 diabetes [RE OR = 1.65 (1.03–

2.67), PQ \ 0.01]. However, sensitivity analysis dimin-

ished the significant results in type 2 diabetes. There is no

differential magnitude of effect in large versus small

studies. In conclusion, although there is some evidence of

association between MTHFR C677T gene polymorphism

and DN, the above findings reinforce the need for further

and more rigorous association studies.
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Introduction

Diabetic nephropathy (DN) is a serious chronic micro-

angiopathic complication of both type 1 and type 2

diabetes, and is the primary cause of end-stage renal failure

(Gross et al. 2005). The etiology of DN is multifactorial

and involves both environmental and genetic factors

(Shpichinetsky et al. 2000; Zintzaras and Stefanidis 2005).
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A familial clustering of DN indicated that a genetic pre-

disposition is implicated in the pathogenesis of DN in both

types of diabetes (Borch-Johnsen et al. 1992; Quinn et al.

1996; Strojek et al. 1997). Methylenetetrahydrofolate

reductase (MTHFR) catalyses the conversion of 5,10-

methylenetetrahydrofolate to 5-methyltetrahydrofolate, a

co-substrate for transmethylation of homocysteine to

methionine. An elevated plasma homocysteine level has

been identified as an independent risk factor for macroan-

giopathy (cerebrovascular or coronary artery disease), and

for arterial or venous thrombosis (Bostom et al. 2001;

Boushey et al. 1995; McCully 1996). A C677T transition is

a common ubiquitous missense mutation in the coding

region of the MTHFR gene (chromosome 1p36.3) (Goyette

et al. 1994), causing an alanine to valine (Al222Val) amino

acid substitution located in the anticipated catalytic domain

of the enzyme (Frosst et al. 1995) and resulting in a

thermo-labile MTHFR variant with reduced catalytic

activity. Homozygosity for the mutation (TT genotype)

predisposes to significantly elevated plasma homocysteine

levels (Frosst et al. 1995; Kang et al. 1991). Thus, MTHFR

C677T gene polymorphism associated with a predisposi-

tion to increased plasma homocysteine levels may present a

genetic risk factor for DN (Sun et al. 2004), a form of

diabetic microangiopathy.

Case–control studies investigating the association

between C677T gene polymorphism and DN have so far

provided conflicting or inconclusive results. Each study

involved only a small number of cases and controls, and

data interpretation was complicated by the fact that dif-

ferent populations and sampling strategies were used. In

order to shed some light on these controversial results, as

well as to decrease the uncertainty of the effect size of

estimated risk, a meta-analysis of all available studies

relating the C677T polymorphism of the MTHFR gene to

the risk of developing DN was carried out. In this meta-

analysis, a pooled estimate of the risk was obtained for the

allele contrast, and the additive and dominance models. In

addition, the heterogeneity between studies and the exis-

tence of bias were investigated.

Materials and methods

Selection of studies

All studies published before January 2007 were identified

by extended computer-based searches of the PubMed

database. The following search criterion was used:

(‘‘MTHFR’’ or ‘‘Methylenetetrahydrofolate reductase’’ or

‘‘C677T’’) and ‘‘diabetic nephropathy’’. The retrieved

studies were then read in their entirety to assess their

appropriateness for inclusion in the meta-analysis. All

references cited in the studies were also reviewed to identify

additional published work not indexed by the PubMed

database. Case reports, editorials and review articles were

excluded. The search was restricted to articles in English.

Case–control studies that determine the genotype dis-

tribution of the C677T polymorphism in cases with

diabetes and nephropathy, and in controls with diabetes and

free of diabetic nephropathy were eligible for inclusion in

the meta-analysis. Cases with diabetes were considered as

diabetic nephropathy on the basis of a persistent albumin-

uria (i.e. macroalbuminuria, equivalent to an overt

glomerular proteinuria) or a persistent microalbuminuria

with or without chronic renal insufficiency and in the

absence of non-diabetic renal disease. Case groups that

consisted exclusively of subjects with microalbuminuria

were excluded from the meta-analysis. The control groups

consisted of subjects with diabetes and free of diabetic

kidney disease, i.e. normoalbuminuria (urinary albumin

excretion \ 20 mg/24 h or \20 lg/min) and normal renal

function. The different methods used in the studies to

determine urinary albumin excretion and the respective

cut-offs to define macro- or microalbuminuria were all

equivalent and previously clinically validated (Gross et al.

2005) (Table 1). Only studies in human subjects and hav-

ing used validated genotyping methods were considered

(Frosst et al. 1995). Genome scans were excluded since

they investigate linkage (Zintzaras and Ioannidis 2005a),

and family-based studies association studies were also not

considered because of different design considerations.

Data extraction

From each study the following information was extracted:

first author, journal, year of publication, ethnicity of the

study population, demographics, clinical characteristics,

matching, validity of the genotyping method, and the

number of cases and controls. The frequencies of the

alleles and the genotypic distributions were extracted or

calculated for both cases and controls. In addition, whether

the genotyping in each study was blinded to clinical status

was recorded.

Meta-analysis

The meta-analysis examined the overall association of the

T allele with the risk of DN relative to the C allele, the

recessive model for T allele (TT vs TC + CC), the domi-

nant model for T allele (TC + TT vs CC), the additive

model for allele T (TT vs CC), and the co-dominance

model (TC vs TT + CC). All associations were indicated as

odds ratios (OR) with the corresponding 95% confidence
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interval (CI). A pooled OR was then estimated based on the

individual ORs.

The heterogeneity between studies was tested using the

Q-statistic, which is a weighted sum of squares of the

deviations of individual study OR estimates from the

overall estimate (Ioannidis et al. 2006; Zintzaras and Io-

annidis 2005b). Heterogeneity was considered statistically

significant if PQ \ 0.10. Heterogeneity was quantified with

the I2 metric, which is independent of the number of studies

in the meta-analysis (Zintzaras and Hadjigeorgiou 2004). I2

takes values between 0 and 100%, with higher values

denoting a greater degree of heterogeneity (I2 = 0–25%: no

heterogeneity; I2 = 25–50%: moderate heterogeneity;

I2 = 50–75%: large heterogeneity; I2 = 75–100%: extreme

heterogeneity; when I2 \ 0 then I2 = 0).

The pooled OR was estimated using fixed effects

(Mantel-Haenszel) and random effects (DerSimonian and

Laird) models (DerSimonian and Laird 1986). The calcu-

lation of pooled OR and Q used as a weighting factor (wi),

the inverse variance of hi = lnOR [i.e. wi = 1/var(hi)] of

each study i. Random effects modelling assumes a genuine

diversity in the results of various studies and incorporates a

between-study variance into the calculations. Therefore,

when there is heterogeneity between studies, the pooled

OR is estimated using the RE model (Whitehead 2002).

A cumulative and recursive cumulative meta-analysis

was carried out for each polymorphism to evaluate the

trend of RE OR in time for the genetic contrast under

investigation (Lau et al. 1992; Zintzaras et al. 2006a). In

cumulative meta-analysis, studies were chronologically

ordered by publication year; the pooled ORs were then

obtained at the end of each year, i.e. at each information

step. In recursive cumulative meta-analysis, the relative

change in pooled OR in each information step (OR in next

year/OR in current year) was calculated (Zintzaras et al.

2006b). Thus, cumulative and recursive cumulative meta-

analysis provide a framework for updating a genetic effect

from all studies and a measure of how much the genetic

effect changes as evidence accumulates (Zintzaras 2007).

A differential magnitude of effect in large versus small

studies (Zintzaras 2006a; Zintzaras and Hadjigeorgiou

2005) for the genetic contrast under investigation was

checked using the Egger regression test for funnel plot

asymmetry (Egger et al. 1997a, b) and the Begg–Mazumdar

test, which is based on Kendall’s tau (Begg and Mazumdar

1994). Given that these tests are underpowered, they were

always considered statistically significant for P \ 0.10

rather than for P \ 0.05. Whether the OR of the allele

contrast in the first study versus the pooled OR of sub-

sequent studies were different beyond chance (P \ 0.05)

was assessed using the Z-statistic (Zintzaras et al. 2005).

In addition to the main (or overall) analysis, which

included all available data, subgroup analysis for each

ethnic group and diabetes type was also performed. The

distribution of the genotypes in the control group was

tested for Hardy–Weinberg equilibrium (HWE) using an

exact test (P ‡ 0.05) (Weir 1996). Studies with controls not

in HWE were subjected to a sensitivity analysis (Zintzaras

2006c). Lack of HWE indicates possible genotyping errors

and/or population stratification (Zintzaras and Hadjigeor-

giou 2004). In sensitivity analysis, the effect of excluding

specific studies was examined. Analyses were performed

using Meta-Analyst (Joseph Lau, Boston, MA, USA 1998)

and CVF90 with IMSL library (Zintzaras et al. 2006d;

Zintzaras 2006b).

Results

Eligible studies

The literature review identified 29 titles in PubMed that

met the search criterion. The full articles of the retrieved

studies were read to assess their appropriateness for meta-

analysis according to the inclusion criteria. Data from 14

articles that investigated the association C677T and DN

met the inclusion criteria and were included in the meta-

analysis. One article (Bluthner et al. 1999) provided data

on both type 1 and type 2 diabetes separately. Thus, data

were obtained from 15 studies. Data were extracted by two

investigators (G.K. and K.U.) and disagreements were

resolved by discussion. The studies were published

between 1998 and 2007.

In all studies, validated genotyping methods were used

for the determination of the genetic polymorphism;

namely, polymerase chain reaction (PCR) analysis fol-

lowed by HinfI digestion (Frosst et al. 1995), except one

study that used PCR with allele-specific probes (Makita

et al. 2003). Seven studies stated that the controls were

age-, sex-, HbA1c-, body mass index (BMI)- or diabetes

duration-matched (Shpichinetsky et al. 2000; Sun et al.

2004; Bluthner et al. 1999; Fujita et al. 1999; Odawara and

Yamashita 1999; Moczulski et al. 2003). Studies were

conducted in populations of various ethnicity: eight

involved Caucasians (Bluthner et al. 1999; Makita et al.

2003; Moczulski et al. 2003; Boger et al. 2007; Ksiazek

et al. 2004; Shcherbak et al. 1999; Smyth et al. 1999), five

East Asians (Sun et al. 2004; Fujita et al. 1999; Odawara

and Yamashita 1999; Neugebauer et al. 1998; Yoshioka

et al. 2004), one a mixed population (Shpichinetsky et al.

2000), and one Arabs (Mtiraoui et al. 2007). Eleven studies

involved cases with type 2 diabetes (Shpichinetsky et al.

2000; Sun et al. 2004; Bluthner et al. 1999; Fujita et al.

1999; Odawara and Yamashita 1999; Moczulski et al.

2003; Boger et al. 2007; Ksiazek et al. 2004; Neugebauer

et al. 1998; Mtiraoui et al. 2007; Yoshioka et al. 2004), and
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four type 1 diabetes (Bluthner et al. 1999; Makita et al.

2003; Shcherbak et al. 1999; Smyth et al. 1999). One study

provided data for males and females separately (Moczulski

et al. 2003). Three studies (Smyth et al. 1999; Neugebauer

et al. 1998; Yoshioka et al. 2004) did not specify gender.

One study (Bluthner et al. 1999) did not specify what

proportion of cases had microalbuminuria.

Sensitivity analyses were performed for studies that may

involve cases with microalbuminuria (Shcherbak et al.

1999; Bluthner et al. 1999; Shpichinetsky et al. 2000; Sun

et al. 2004; Mtiraoui et al. 2007), and for studies involving

cases with chronic renal failure (CRF) and/or end stage

renal disease (ESRD) (Makita et al. 2003; Moczulski et al.

2003; Mtiraoui et al. 2007; Boger et al. 2007). A list of

details abstracted from the studies included in the meta-

analysis is provided in Table 1.

Summary statistics

The studies provided 1,877 cases and 2,150 controls. The

allele C was the most common. The frequencies of the CC

and TC genotypes were the highest in controls and in cases,

respectively, while that for genotype TT was the lowest

(Table 2). One study (Moczulski et al. 2003) did not pro-

vide data for all genotypes separately; it provided data only

for T-carriers. In three studies (Sun et al. 2004; Neugebauer

et al. 1998; Mtiraoui et al. 2007), the distribution of the

genotypes in the control group was not in HWE (P \ 0.05)

(Table 2).

Main results, subgroup and sensitivity analyses

Table 3 and Fig. 1 show the results for the association

between the C677T gene polymorphism and the risk of DN.

The main analysis for investigating the association

between C677T allele T and the risk of developing DN

relative to the allele C revealed significant heterogeneity

(PQ \ 0.01, I2 = 80%) between the 14 studies; the random

effects pooled OR was marginally significant: RE OR = 1.30

(1.03–1.64). However, the sensitivity analysis for HWE

(exclusion of studies not in HWE) yielded non-significant

results. The sensitivity analyses for microalbuminuria

(exclusion of studies involving cases with microalbuminu-

ria), and for CRF/ESRD (exclusion of studies involving

cases with CRF/ESRD) also yielded non-significant results.

In subgroup analysis, there was significant heterogeneity in

Caucasians and East Asians (PQ = 0.03, I2 = 57% and

PQ \ 0.01, I2 = 75%, respectively), and the associations

were not significant: RE OR = 1.19 (0.97–1.46) and RE

OR = 1.16 (0.79–1.17), respectively. In type 1 and 2

Table 2 The distribution of the MTHFR C677T genotypes for cases and controls and the allele frequencies (in parenthesis are the respective

percentages). The significance level (P-value) for Hardy–Weinberg equilibrium (HWE) testing for controls is shown

First author, year TT TC CC T C P-value

HWE
Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls

Neugebauer 1998 12 (17) 8 (12) 31(46) 18 (28) 24 (35) 37 (58) 55 (41) 34 (26) 79 (58) 92 (73) 0.03

Shcherback 1999 11(21) 5 (5) 21(41) 29 (32) 19 (37) 56 (62) 43 (42) 39 (21) 59 (57) 141 (78) 0.63

Fujita 1999 17 (16) 9 (13) 57(54) 39 (57) 31 (29) 20 (29) 91 (43) 57 (41) 119 (56) 79 (58) 0.14

Bluthner

(type 2) 1999

23 (15) 18 (12) 50 (34) 65 (44) 74 (50) 63 (43) 96 (32) 101 (34) 198 (67) 191 (65) 0.85

Bluthner

(type 1), 1999

13 (12) 18 (12) 54 (52) 67 (45) 35 (34) 63 (42) 80 (39) 103 (34) 124 (60) 193 (65) 0.98

Smyth 1999 16 (12) 15 (12) 62 (47) 57 (47) 53 (40) 47 (39) 94 (35) 87 (36) 168 (64) 151 (63) 0.72

Odawara 1999 26 (18) 25 (19) 65 (45) 68 (51) 52 (36) 38 (29) 117 (40) 118 (45) 169 (59) 144 (54) 0.57

Shpichinetsky 2000 10 (18) 6 (13) 22 (40) 16 (37) 23 (41) 21 (48) 42 (38) 28 (32) 68 (61) 58 (67) 0.32

Makita 2003 13 (14) 32 (10) 35 (39) 143 (46) 40 (45) 135 (43) 61 (34) 207 (33) 115 (65) 413 (66) 0.51

Moczulski 2003 76 (62) a 84 (52)a 45 (37) 75 (47) NAb

Sun 2004 26 (20) 16 (16) 53 (42) 23 (23) 45 (36) 57 (59) 105 (42) 55 (28) 143 (57) 137 (71) 0.00

Ksiazek 2004 29 (16) 15 (9,) 65 (38) 58 (37) 77 (45) 82 (52) 123 (35) 88 (28) 219 (64) 222 (71) 0.32

Yoshioka 2004 6 (15) 29(14) 13 (32) 107 (51) 21 (52) 71 (34) 25 (31) 165 (39) 55 (68) 249 (60) 0.26

Mtiraoui 2007 26 (27) 36(13) 56 (60) 79 (29) 11 (11) 152(56) 108(58) 151 (28) 78 (41) 383 (71) 0.00

Boger 2007 188 (42) 64(43) 219 (49) 69 (46) 32 (7) 15(10) 595(67) 197 (66) 283 (32) 99 (33) 0.56

Total 492 (26) 380(17) 803 (42) 838 (38) 582 (31) 932(43) 1,635(46) 1,430 (35) 1,877 (53) 2,552 (64)

a Data concerned (TC + TT)
b Non-applicable
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Table 3 Summary estimates

for the odds ratio (OR) of

MTHFR C677T in various

allele/genotype contrasts, the

significance level (P-value) of

heterogeneity test (Q-test) and

the I2 metric (when negative

was set to zero): overall

analysis, subgroup analyses and

sensitivity analysis

a Exclusion of studies with the

controls not in HWE
b Exclusion of studies that may

involve cases with

microalbuminuria
c Exclusion of studies that

involve cases with CRF and/or

ESRD

Genetic

contrasts

Studied population Studies

(N)

Fixed effects

OR (95% CI)

Random

effects

OR (95% CI)

I2

(%)

P-value

Q-test

T vs C All 14 1.27 (1.15–1.40) 1.30 (1.03–1.64) 80 \0.01

Excluded HWEa 11 1.08 (0.97–1.21) 1.10 (0.93–1.30) 51 0.03

Excluded
microalbumuriab

8 1.07 (0.94–1.22) 1.07 (0.90–1.28) 43 0.09

Excluded CRF/ESRDc 11 1.18 (1.5–1.34) 1.22 (0.99–1.51) 66 \0.01

Caucasian 7 1.16 (1.01–1.32) 1.19 (0.97–1.46) 57 0.03

East Asian 5 1.13 (0.94–1.37) 1.16 (0.79–
1.170)

75 \0.01

East Asian in HWE 3 0.86 (0.68–1.09) 0.86 (0.68–1.10) 0 0.04

Type1 diabetes 4 1.21 (1.00–1.47) 1.29 (0.90–1.86) 71 0.02

Type2 diabetes 10 1.29 (1.15–1.45) 1.30 (0.95–1.76) 84 \0.01

Type2 diabetes in HWE 7 1.02 (0.89–1.18) 1.02 (0.86–1.21) 28 0.22

Recessive model
for allele T

All 14 1.32 (1.10–1.58) 1.35 (1.10–1.66) 17 0.27

Excluded HWEa 11 1.21 (0.99–1.50) 1.22 (0.99–1.50) 2 0.42

Excluded
microalbumuriab

8 1.16 (0.92–1.45) 0.16 (0.92–1.45) 0 0.73

Excluded CRF/ESRDc 11 1.32 (1.05–1.67) 1.31 (1.04–1.66) 0 0.58

Caucasian 7 1.26 (1.00–1.59) 1.34 (0.98–1.83) 36 0.06

East Asian 5 1.17 (0.83–1.65) 1.17 (0.82–1.65) 0 0.92

East Asian in HWE 3 1.05 (0.67–1.63) 1.05 (0.67–1.63) 0 0.86

Type1 diabetes 4 1.40 (0.95–2.07) 1.48 (0.83–2.61) 50 0.11

Type2 diabetes 10 1.30 (1.06–1.60) 1.31 (1.06–1.63) 7 0.38

Type2 diabetes in HWE 7 1.16 (0.91–1.47) 1.15 (0.91–1.46) 0 0.73

Dominant model
for allele T

All 15 1.38 (1.20–1.59) 1.41 (1.01–1.97) 81 \0.01

Excluded HWEa 12 1.09 (0.93–1.27) 1.09 (0.87–1.38) 52 0.02

Excluded
microalbumuriab

9 1.10 (0.92–1.31) 1.09 (0.83–1.44) 56 0.02

Excluded CRF/ESRDc 11 1.19 (1.01–1.41) 1.23 (0.89–1.69) 71 \0.01

Caucasian 8 1.27 (1.01–1.44) 1.24 (0.96–1.59) 47 0.06

East Asian 5 1.17 (0.90–1.53) 1.17 (0.61–2.27) 83 \0.01

East Asian in HWE 3 0.70 (0.50–1.00) 0.70 (0.48–1.03) 14 0.31

Type1 diabetes 4 1.23 (0.94–1.60) 1.30 (0.84–2.00) 61 0.06

Type2 diabetes 11 1.45 (1.23–1.70) 1.45 (0.93–2.25) 85 \0.01

Type2 diabetes in HWE 8 1.02 (0.84–1.23) 1.01 (0.76–1.34) 51 0.05

Additive model All 14 1.61 (1.30–2.00) 1.65 (1.13–2.42) 66 \0.01

Excluded HWEa 11 1.29 (1.01–1.64) 1.30 (0.97–1.73) 26 0.19

Excluded
microalbumuriab

8 1.24 (0.94–1.64) 1.24 (0.93–1.65) 3 0.41

Excluded CRF/ESRDc 11 1.39 (1.08–1.78) 1.41 (1.02–1.96) 38 0.10

Caucasian 7 1.48 (1.11–1.98) 1.50 (1.05–2.15) 33 0.17

East Asian 5 1.22 (0.84–1.77) 1.24 (0.76–2.02) 38 0.17

East Asian in HWE 3 0.84 (0.51–1.37) 0.84 (0.51–1.37) 0 0.69

Type1 diabetes 4 1.51 (1.00–2.28) 1.64 (0.83–3.22) 59 0.28

Type2 diabetes 10 1.65 (1.29–2.11) 1.65 (1.03–2.67) 71 \0.01

Type2 diabetes in HWE 7 1.19 (0.89–1.60) 1.19 (0.88–1.61) 0 0.48

Co-dominance
model

All 14 1.13 (0.99–1.30) 1.15 (0.87–1.52) 74 \0.01

Excluded HWEa 11 0.93 (0.79–1.08) 0.93 (0.77–1.11) 22 0.23

Excluded
microalbumuriab

8 0.95 (0.79–1.13) 0.94 (0.74–1.19) 40 0.12

Excluded CRF/ESRDc 11 1.03 (0.87–1.22) 1.06 (0.81–1.39) 59 0.01

Caucasian 7 0.99 (0.83–1.19) 1.00 (0.81–1.22) 20 0.27

East Asian 5 1.07 (0.82–1.39) 1.09 (0.61–2.00) 78 \0.01

East Asian in HWE 3 0.71 (0.51–0.99) 0.71 (0.50–1.01) 8 0.33

Type1 diabetes 4 1.05 (0.81–1.37) 1.06 (0.79–1.42) 15 0.32

Type2 diabetes 10 1.16 (0.99–1.37) 1.17 (0.80–1.72) 80 \0.01

Type2 diabetes in HWE 7 0.87 (0.72–1.05) 0.86 (0.68–1.07) 25 0.24
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diabetes, the heterogeneity was again significant (PQ \
0.01, I2 = 80% and PQ \ 0.01, I2 = 80%, respectively), and

the associations were not significant: RE OR = 1.29 (0.90–

1.86) and RE OR = 1.30 (0.95–1.76), respectively.

The recessive model derived significant results overall

[FE OR = 1.32 (1.10–1.58), PQ = 0.27, I2 = 17%], and in

type 2 diabetes [FE OR = 1.30 (1.06–1.60), PQ = 0.38,

I2 = 7%]; however, sensitivity analysis for HWE dimin-

ished the latter result. The sensitivity analysis for CRF/

ESRD did not alter the overall significance [FE OR = 1.32

(1.05–1.67), PQ = 0.58, I2 = 0%]. The dominant model

produced a marginal significant association overall [RE

OR = 1.41 (1.01–1.97), PQ \ 0.01, I2 = 81%]. Then,

overall, the additive model produced significant association

[RE OR = 1.65 (1.13–2.42), PQ \ 0.01, I2 = 66%],

whereas the co-dominant model did not [RE OR = 1.15

(0.87–1.52), PQ \ 0.01, I2 = 74%], as it was anticipated. A

similar pattern of results was found for studies not

involving cases with CFR/ESRD, Caucasians and type 2

diabetes; however, sensitivity analysis for HWE dimin-

ished the latter result.

Potential bias

None of the studies included in the meta-analysis stated

that genotyping was performed blinded to clinical status.

Overall, the cumulative and recursive meta-analyses for the

allelic contrast showed that the RE OR declined from 1.88

in 1998 to 1.20 in 1999 (relative change = 64%), and

remained fairly constant in the period 1999–2004, and then

increased to 1.30 in 2007 (relative change = 108%)

(Fig. 2). There is statistical difference between the OR of

the first study versus the pooled OR of subsequent studies

(P = 0.04). The pooled OR without the first study was RE

OR = 1.27 (0.99–1.62). The Egger test and the Begg–

Mazumdar test indicated that there is no differential mag-

nitude of effect in large versus small studies (P = 0.57 and

P = 0.23, respectively).

Discussion

Methylenetetrahydrofolate reductase (MTHFR) is involved

in the transmethylation of homocysteine to methionine and

a C677T polymorphism in the MTHFR gene yields a

thermo-labile MTHFR variant with reduced enzymatic

activity. This mutation is a genetic determinant of hype-

rhomocysteinemia in healthy subjects (Frosst et al. 1995;

Kang et al. 1991) and also in patients with diabetes

(Buysschaert et al. 2004). Hyperhomocysteinemia induces

endothelial dysfunction (Constans et al. 1999) and it has

been implicated as a risk factor not only for atherosclerosis

and arterial or venous thrombosis (Frosst et al. 1995;

McCully et al. 1969) but also for nephropathy in type 2

diabetes patients (Mtiraoui et al. 2007; Chico et al. 1998).

Generally, hyperhomocysteinemia promotes the athero-

sclerotic and thrombotic process by modulating vascular

cell proliferation and prothrombotic activities in the vas-

cular wall (McCully et al. 1996; Constans et al. 1999). In

addition, recent in vitro studies indicate that homocysteine

and other thiol-containing reductive compounds (i.e. thio-

lactone) increase the expression of vascular endothelial

growth factor (VEGF) in cell cultures via activation of

VEGF gene transcription (Maeda et al. 2003; Roybal et al.

2004). VEGF is a pro-angiogenic factor known to play a

role in the pathogenesis of DN (Sung et al. 2006). For these

reasons, it may be readily postulated that the C677T

MTHFR gene polymorphism as a determinant of hype-

rhomocysteinemia might be involved in the development

of DN.

This is the first meta-analysis to examine C677T

polymorphisms of the MTHFR gene and their relationship

to susceptibility for DN. The meta-analysis involved 15

studies, which provided 1,877 cases and 2,150 controls.

The strength of the present analysis was based on the

accumulation of published data giving greater information

to detect significant differences. Non-English, non-indexed

and non-published studies in the literature were not

reviewed, thus suggesting bias (Egger et al. 1997; Zintz-

aras and Kaditis 2007). Studies demonstrating significant

results are more likely to be published, especially in

Neugebauer,1998

 Shcherbak,1999

Fujita ,1999

Bluthner (type 2),1999

Bluthner (type 1l),1999

Smyth,1999

Odawara ,1999

Shpichinetsky ,2000

Makita, 2003

Sun,2004

Ksiazek, 2004

Yoshioka, 2004

Mitraoui, 2007

Boger,2007

  RE pooled

0,50,2 1 2 5 10

OR (95% CI)

Fig. 1 Random effects (RE) odds ratio (OR) estimates with the

corresponding 95% confidence interval (CI) for the allele contrast T

vs C of MTHFR C677T gene polymorphism. The OR estimate of

each study is marked with a solid black square. The size of the square

represents the weight that the corresponding study exerts in the meta-

analysis. The CIs of pooled estimates are displayed as a horizontal
line through the diamond. The horizontal axis is plotted on a log scale
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English language indexed journals, as opposed to studies

presenting negative findings, which are more likely to be

published in a local journal, often non-indexed. In the

present study, the effect of allele frequency and the effects

of the dominant, recessive, additive and co-dominance

models were estimated. In addition, the consistency of

genetic effects across populations from different ethnici-

ties was investigated. Ethnicity was categorised into two

main groups: (1) Caucasian descent, and (2) East Asian

descent (Zintzaras et al. 2005, 2006c). However, the

consistency of genetic effects across these traditionally

defined ethnicities does not necessarily mean that ethnic-

ity-specific genetic effects are exactly the same. Subgroup

analysis by diabetes type, and sensitivity for studies not in

HWE was carried out.

The overall data showed an excess of heterozygotes for

cases, and an excess of homozygous CC alleles in controls.

The main analysis (all studies) produced significant results

for the allele contrast, the contrast of the extreme homo-

zygotes, and the recessive and dominant models. The co-

dominance model produced non-significant association.

Overall, the meta-analysis results indicated that homozy-

gocity in allele T was associated with a 65% increased risk

of DN compared with homozygocity in allele C, and it can

be excluded with 95% certainty that heterozygotes would

have less than 52% odds for developing DN and more than

15% for preventing DN. Caucasians and East Asians pro-

duced no significant associations, with similar estimated

risks in all genetic contrasts. Type 2 diabetes showed sig-

nificant results; however, sensitivity analysis diminished

their significance, and thus, any interpretation must be

cautious. In general, there is some indication of consistency

of genetic effects between type 1 and 2 diabetes. The lack

of association in subgroup analyses could be due to lack of

power to detect existing significant associations and to

other loci that are probably in linkage disequilibrium and

that may affect (or mask) MTHFR susceptibility to DN

(Imperatore et al. 1998). Cumulative meta-analysis showed

a trend for stabilising the association as evidence accu-

mulates, although the first published study showed an

exaggerated association. There are no potential sources of

bias, and there is no differential magnitude of effect in

large versus small studies.

Sampling variability and stratification in case–control

study design could be a possible confounding factor on the

role of genetic markers. The meta-analysis included studies

with a case group consisting of patients with persistent

macro- or microalbuminuria, and thus the pooled estimated

risk of DN may underestimate the true risk. However, the

meta-analysis excluded case groups that consisted exclu-

sively of patients with microalbuminuria. Although the

presence of microalbuminuria may be an early finding in

DN it is not invariably equivalent to it. A major limitation

of using a meta-analytic approach for population-based

observational studies is the confounding factors (e.g. age,

sex, and lifestyle) that influence the estimates of associa-

tions. In this meta-analysis, only unadjusted pooled ORs

could be calculated since data for each level of possible

confounding factors were not provided. The cases and

controls of each study were well defined and had similar

inclusion criteria, although they unavoidably cover a wide

spectrum of disease in terms of duration, demographics and

other clinical manifestations. In addition, the risk effect

may depend on the interaction with other risk factors, such

as lifestyle (i.e. smoking, alcohol consumption, control of

diabetes and body mass index), all of which directly

modulate the development of DN (Passaro et al. 2003; Ma

et al. 1997).

The present meta-analysis provided evidence that the TT

genotype of the MTHFR C677T polymorphism contributes

to susceptibility to DN. DN is a complex disease with a

multifactorial etiology and therefore the contributing

pathogenetic role of lifestyle factors and dietary intake

should also be considered. The existence of gene–envi-

ronment interactions may explain the discrepancy of results

obtained in individual genetic association studies, and thus

case–control studies that investigate gene–environment

interactions (Clayton and McKeigue 2001) might help

further elucidate the genetics of DN.
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