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Abstract We showed that humanin (HN), an endoge-
nous peptide against Alzheimer disease-related insults,
was expressed in muscles of patients with chronic pro-
gressive external ophthalmoplegia (CPEO), a major
mitochondrial disease. Because HN was recently found
to block proapoptotic Bax function and exert its versa-
tile cytoprotective effects in association with an increase
in ATP levels, HN expression may thus reflect a physi-
ological response against degenerative changes in the
muscles of patients with CPEO. We found HN expres-
sion in all four patients examined, each of whom had
different mitochondrial DNA mutations including two
different single DNA deletions, multiple deletions, and
no major mutations detected. We also found that HN
expression was not linked to focal cytochrome c defi-
ciency, strongly associated with the subtype of CPEO
with single deletions. These results suggest that HN
expression is more closely related to degenerative chan-
ges in all types of CPEO. Notably, HN was also ex-
pressed in non-degenerative muscle fibers of patients
with CPEO or Leigh syndrome, who had the 8993T>G
mutation in the mitochondrial ATPase 6 gene known to
be associated with impaired ATP synthesis. Collectively,

our findings suggest that HN may be specifically ex-
pressed in response to defects in energy production in
muscles with mitochondrial abnormalities.
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Introduction

Chronic progressive external ophthalmoplegia (CPEO)
is associated mainly with mitochondrial DNA
(mtDNA) abnormalities (Lee and Brazis 2002). About
60% of patients with CPEO have single large deletions
in mtDNA, while the others have multiple deletions, a
3243A>G point mutation, or no detectable major
mutations (Lee and Brazis 2002). Despite different
genetic backgrounds, the similar clinical and patho-
logical manifestations suggest a common mechanism
for the pathogenesis of CPEO, which may include
defects in mitochondrial energy production or in-
creases in reactive oxygen species (Wallace 2000).
These mechanisms also play a role in other mito-
chondrial diseases (Brown and Wallace 1994). We have
recently reported that skeletal muscles in patients with
mitochondrial myopathy, encephalopathy, lactic aci-
dosis and stroke-like episodes (MELAS) express
humanin (HN), an endogenous peptide that increases
cellular ATP (Kariya et al. 2005a). Although HN is
expressed mainly in ragged-red fibers (RRFs), its
expression is not a result of mitochondrial prolifera-
tion, since HN rather decreased pathological increases
in mtDNA in vitro (Kariya et al. 2005b). These find-
ings suggest that HN may be expressed in affected
muscles to cope with defects in mitochondrial energy
production in MELAS (Kariya et al. 2005b). To fur-
ther explore this hypothesis, we investigated the
expression of HN in muscles from patients who had
CPEO with different mitochondrial mutations. We also
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analyzed muscles from patients who had Leigh syn-
drome (LS) with 8993T>G mutations in the mito-
chondrial ATPase 6 gene, known to be associated with
impaired ATP synthesis.

Materials and methods

Patients

The clinical and genetic information on four patients
with CPEO and two patients with LS is summarized in
Table 1. Mitochondrial disease was diagnosed by means
of clinical, laboratory, histological, histochemical, bio-
chemical, and genetic investigations according to gen-
erally accepted criteria and methods (Morgan-Hughes
1994). While other patients had no family history, pa-
tient 3 has an affected relative (a daughter of father’s
sister), suggesting an autosomal dominant inheritance
with incomplete penetrance. Multiple deletions in
mtDNA may result from nuclear DNA abnormalities,
such as mutations in the ANT1, POLG1, and Twinkle
genes (Filosto et al. 2003) in autosomal disorders, al-
though the mutation in the causative autosomal genes in
this patient remains unknown. Muscle biopsy and
analysis of mtDNA in muscle tissue were performed as
described previously (Goto et al. 1992; Akanuma et al.
2000; Kariya et al. 2005b), after obtaining informed
consent from the patients or their guardians.

Histological analysis

All specimens were obtained from biceps brachii muscles
and quickly frozen in liquid nitrogen-cooled isopentane.
Frozen serial transverse sections from four patients with
CPEO and two patients with LS were stained with
modified Gomori trichrome, succinate dehydrogenase
(SDH), and cytochrome c oxidase (COX). The sections
were also processed for immunostaining with a rabbit
polyclonal anti-HN antibody (dilution 1:200, Trans-
Genic, Kumamoto, Japan). In addition, frozen muscle
sections obtained from two patients with Duchenne
muscular dystrophy (DMD) were analyzed immuno-
histochemically. As a normal control, we analyzed
muscle specimens obtained from three patients who
underwent muscle biopsies to diagnose the cause of

neuromuscular symptoms, but were later confirmed to
have no abnormalities on clinical, electrophysiological,
or histological examinations. Normal mouse IgG,
diluted to the same concentration as the primary
antibodies, was used as a negative control. All muscle
samples were examined under a fluorescent microscope
(Axiophot2, Zeiss, Göttingen, Germany).

Results

Results of genetic analysis

Southern blot and sequencing of mtDNA revealed a
single 4,590-bp deletion [nucleotides (nt) 10,940–15,529]
with 5-bp direct repeats at the break points in patient 1,
and a 7,663-bp deletion (nt 6,342–14,004) with 10-bp
direct repeats at the break points in patient 2 (data not
shown). The deleted part of DNA in patient 2 encodes
all three mitochondrial subunits of COX, while that in
patient 1 does not encode any of these subunits.
Southern blot and long PCR analyses showed that pa-
tient 3 had multiple deletions in their mtDNA (Fig. 1).
Patient 4 had no deletions or major point mutations,
including 3243A>G, 3271T>C, 8344A>G, 8356T>C,
or 8363G>A mutations. Patients 5 and 6 (LS) had
essentially homoplasmic 8993T>G mutations in mito-
chondrial DNA (data not shown).

Expression of endogenous HN in CPEO muscles

Representative findings from patients 1 and 3 are shown
in Fig. 2. HN was strongly positive in all RRFs and
mildly positive in some non-RRFs of all patients
examined. The number of HN-positive non-RRFs is
summarized in Table 1. The remaining non-RRFs
showed a background level of HN expression. HN
immunoreactivity in control or DMD samples treated
with both first and secondary antibodies was slightly
stronger than that in samples treated with only a sec-
ondary antibody, indicating that endogenous HN was
marginally expressed in normal control fibers (not
shown) (Kariya et al. 2005b). However, the expression
level was much lower than that in CPEO muscles. This
study detected no apparent strongly SDH reactive blood

Table 1 Molecular and pathological background of four patients with chronic progressive external ophthalmoplegia (CPEO) and two
patients with Leigh syndrome (LS). mtDNA Mitochondrial DNA, del deletion, RRF ragged-red fiber, HN+ non-RRF humanin (HN)
positive non-RRF, COX cytochrome c oxidase

Patient # 1 2 3 4 5 6

Diagnosis CPEO CPEO CPEO CPEO LS LS
Age (year), sex 17, M 5, F 51, F 68, M 0.4, F 12, M
MtDNA mutation del 10940–15529 del 6342–14004 multiple del – 8993T>G 8993T>G
RRF (%) 5 7 6 2 0 0
HN + non-RRF (%) 4 2 4 5 6 2
Focal COX deficiency (%) 6 10 8 4 0 0
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vessels in CPEO muscles, consistent with the results of
previous studies (Goto 1995); consequently, no HN-
positive vessels were observed.

Expression of endogenous HN in muscles from LS

Alhough muscles from LS had no RRFs, some
non-RRFs were mildly positive for HN. Representative
findings from patients 5 are shown in Fig. 2. The
number of HN-positive non-RRFs is summarized in
Table 1.

COX and HN expression in CPEO

Focal COX deficiency was observed in all muscle spec-
imens from patients with CPEO, regardless of the type
of mitochondrial mutation and the deletion site. All
RRFs in CPEO associated with single deletions were
negative for COX, irrespective of deletion sites con-
taining mitochondrial COX subunits, as reported pre-
viously (Moraes et al. 1992). Similarly, patient 4, who
had no major mutations, showed COX-negative RRFs.
By contrast, all RRFs in CPEO with multiple deletions
were strongly positive for COX. Serial section analyses
showed that both COX-positive and -negative RRFs
were strongly positive for HN (Fig. 2).

Discussion

This study showed, for the first time to our knowledge,
high HN expression in all RRFs and mild expression in
some non-RRFs of all patients with CPEO examined.
Given that HN increases ATP levels in vitro (Kariya
et al. 2005b), our results suggest that defects in energy
production by affected muscle fibers may be initially
compensated for by HN, whereas further progressive
defects may ultimately lead to degenerative RRFs
(Kariya et al. 2005b). Although its precise physiologi-
cal role remains unknown, HN was originally identi-
fied as an endogenous peptide against Alzheimer

Fig. 1 Southern blot (a) and long PCR (b) analyses of mtDNA
from control (C) and patient 3 (P). Normal bands (arrows) in
addition to bands for multiple deletions (arrowheads) are shown

Fig. 2a–p Expression of
endogenous humanin (HN) in
muscle specimens from patients
with chronic external
ophthalmoplegia (CPEO) and
Leigh syndrome (LS). a, e, g, k,
m Modified Gomori trichrome;
b, h, n succinate dehydrogenase
(SDH); c, i, o cytochrome c
oxidase (COX); d, f, j, l, p HN.
A goat anti-rabbit FITC-
conjugated IgG antibody was
used to visualize HN. a–d, e–f
Patient 1 (single mtDNA
deletion); g–j, k–l patient 3
(multiple deletions), m–p
patient 5 (LS) are transverse
serial sections. Muscle
specimens from patient 1
showed a COX-negative
ragged-red fiber (RRF), while
those from patient 3 showed a
COX-positive RRF. HN was
strongly positive in all RRFs
(asterisks in panels d and j) and
mildly positive in some non-
RRFs (asterisks in panels f, l,
and p)
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disease-related insults (Hashimoto et al. 2001) and was
found to block proapoptotic Bax function and exert its
versatile cytoprotective effects in association with an
increase in ATP levels (Hashimoto et al. 2001; Guo et al.
2003; Kariya et al. 2003, 2005b). HN expression may
thus reflect a physiological response against degenerative
changes in the muscles of patients with CPEO.

HN expression was found in patients with CPEO,
regardless of the type of mitochondrial mutation. To
support the association of HN expression with the
common pathological pathway in CPEO, especially with
ATP deficiency, we analyzed muscles from two patients
with LS who had essentially homoplasmic 8993T>G
mutations in the mitochondrial ATPase 6 gene, which
are known to be associated with impaired ATP synthesis
(Sgarbi et al. 2006). Although patients with LS generally
lack RRFs similar to our patients (Uziel et al. 1997),
mildly increased HN expression was observed in some
non-RRFs of both patients. This finding suggests that
HN expression is not necessarily associated with RRFs,
but may be associated with ATP deficiency. However,
because HN expression was not increased in many
muscle fibers, factors other than ATP levels, including
ATP demand in muscle fibers, may determine HN
expression.

One major reported difference between MELAS and
CPEO is distinct COX expression levels in RRFs: COX
expression levels range from low to high in MELAS or
CPEO with a 3243A>G mutation, but are nil or mini-
mal in CPEO associated with single deletions (Goto
et al. 1990). Our study similarly showed that COX
expression was negative in muscles associated with single
deletions or no major mutations. In addition, we found
that COX expression levels were high in the muscles of a
patient with multiple deletions, a finding not reported
previously. In this patient, COX deficiency may not have
been primarily responsible for defective energy produc-
tion. This remains speculative, however, because we
studied only a single patient with multiple deletions;
confirmation must await further studies. In contrast to
different COX levels in RRFs, HN was expressed in all
RRFs, indicating that COX expression and HN
expression were independently regulated. This finding
also suggests that HN expression is more closely related
to degenerative changes in all types of CPEO. In con-
trast, COX expression appears to be more strongly
associated with the subtype of CPEO with single dele-
tions, since in this subtype the frequency of focal COX
deficiency is significantly linked to an increased ratio of
deleted mtDNA (Goto et al. 1990).

In summary, we found that HN was expressed in
the muscles of patients with CPEO, independently of
mtDNA deletions and of COX expression. However,
HN expression was apparently not nonspecific because
detectable expression levels of HN were marginal in
normal controls and patients with DMD. Although
our present and previous studies did not examine
muscles affected by mitochondrial diseases other than
CPEO, MELAS, and LS, our findings suggest that HN

may be specifically expressed in response to defects in
energy production in muscles with mitochondrial
abnormalities.
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