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Abstract X-linked hypohidrotic ectodermal dysplasia
(HED) is a rare disease characterized by the hypoplasia
or absence of eccrine glands, dry skin, scant hair, and
dental abnormalities. Here, we report a Mongolian
family with congenital absence of teeth inherited in an
X-linked fashion. The affected members of the family
did not show other HED characteristics, except hyp-
odontia. We successfully mapped the affected locus to
chromosome Xq12-q13.1, and then found a novel mis-
sense mutation, ¢.193C>G@G, in the ectodysplasin A
(EDA) gene in all affected males and carrier females. The
mutation causes arginine to be replaced by glycine in
codon 65 (R65G) in the juxtamembrane region of EDA.
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In addition, 33% (3/9) of female carriers have a skewed
X-chromosome inactivation pattern. Our result strongly
suggests that the c.193C > G mutation is the disease-
causing mutation in this family.
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Introduction

Tooth agenesis is a common human anomaly that affects
approximately 20% of the population and is associated
with more than 49 syndromes (Pinheiro and Freire-Maia
1994). Hypodontia is agenesis of two or more permanent
teeth without associated systemic disorders. The ecto-
dermal structural malformation involving hair, skin,
nails, and teeth can be inherited in autosomal dominant,
autosomal recessive, or X-linked patterns.

Since Charles Darwin described a peculiar disorder in
1875 (Darwin 1875), many similar cases have been re-
ported and are now referred to as anhidrotic (or hypo-
hidrotic) ectodermal dysplasia (EDA or HED, OMIM
305100). Three associated signs characterize EDA,
including sparse hair, abnormal or missing teeth, and
inability to sweat due to the lack of sweat glands. Prior
studies have determined that mutations of the ectodys-
plasin A (EDA) gene are responsible for X-linked HED
(Kere et al. 1996; Bayes et al. 1998; Monreal et al. 1998).
Ectodysplasin, the protein encoded by EDA, is a trans-
membrane protein member of the tumor necrosis factor
family (Ezer et al. 1999). Specific mutations in EDA or its
receptor, EDAR, result in manifestations of HED
(Monreal et al. 1998; Tucker et al. 2000).

We studied a Mongolian family segregating a unique
form of hypodontia in an X-linked recessive manner
(Fig. 1a). The affected individuals had normal hair, skin,
and nails, but lacked primary and permanent teeth
(Fig. 1b). However, the manifestation of hypodontia
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Fig. 1a—c Clinical evaluations. a Pedigree. All affected individuals
and carriers have the missense mutation in ectodysplasin A (EDA).
b V:1, 15 years old, has two permanent incisors, four permanent
first molars, and four milk molars, but only had two primary
incisors and four primary molars in his childhood. ¢ Synopsis of the

is not uniform in this family (Fig. 1c), indicating incom-
plete penetrance or variable expressivity. The affected
members commonly had two pairs of permanent
first molars. All of the affected members exhibited con-
genital absence of their lower incisors and lower lateral
incisors.

Subjects and methods

Informed consents were obtained from all subjects
participating in the study. Samples of peripheral blood
were taken from 30 available family members for DNA
extraction. Linkage analysis employed the Slink simu-
lation program and 50,000 iterations of two-point
simulation. By MSIM analysis (tetra=0.01), the simu-
lation result showed the maximum LOD score was 4.11

permanent dentition in affected family members. Filled squares
represent absent teeth. Asterisks (*) represent the affected family
members not included in Fig. 2. V:10 in Fig. 2 is too young to be
phenotyped in detail and the absence pattern of primary teeth was
not listed in detail because of lacking X-ray data

and the mean LOD score in this pedigree was 2.76.
Genotyping was performed using microsatellite mark-
ers with 10-cM resolution throughout the X chromo-
some. Two-point LOD scores were calculated by using
the MLINK program of the LINKAGE version 5.1
software package. For understanding the pattern of
X-chromosome inactivation, undigested DNA and
Hpall-digested DNA were used as a template to detect
the androgen-receptor triplet-repeat polymorphism. We
tested nine female carriers and nine unrelated normal
females.

Results and discussion

In the two-point linkage analysis, the highest LOD score
of 3.55 was obtained at marker loci DXSI111,
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Fig. 2a, b Molecular analysis of a
human EDA. a LOD scores -
with chromosome Xql2-q13.1 LOD score at recombination fraction ( 9 )
. . . locus
microsatellite markers. b DNA 0 0.01 0,05 0.1 0.2 0.3 0.4
sequence electropherogram DXS991 infini 0.67 121 131 118 0.88 0.48
from individual IV:3, IV:4, V:1, . L N ) - o ) )
and V:2. Female carrier (IV4) DXS1213 -infini -3.34 -1.39 -0.67 -0.15 0.01 0.03
has C/G heterozygosity at DXSI1111 3.55 3.49 3.27 2.98 2.34 1.64 0.85
EP1§3 13 e;‘VOTISl and élef healthy DXS135 2.04 2.01 .85 1.66 1.25 0.83 0.4
usband (IV:3) is a DXS1690  2.65 2.6 2.43 221 1.73 1.2 0.62
hemizygote at the same
position. Their affected son DXS51689 3.55 3.49 3.27 2,98 2.34 1.64 0.85
(V:1) shows G193 and their DXS8107 2.65 2.6 2.43 2.2 1.73 1.2 0.62
unaffected daughter (V:2) is a DXS8101 3.55 3.49 3.27 2.98 2.34 1.64 0.85
C193 homozygote
DXS559 1.74 1.71 1.6 1.44 1.12 0.76 0.38
DXS1124 -infini -1.61 -0.33 0.13 0.42 0.42 0.27
DXS986 -infini -3.06 1.09 0.36 0.18 0.3 0.22
b Female carrier Normal male
C/G Heterozygosis (193) C (193)
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DXS1689, and DXS8101. The adjacent marker also
showed an LOD score of >2 (Fig. 2a). By haplotype
analysis of the pedigree (Appendix), the affected locus
was confined to a <6.48-cM interval between DXS1124
and DXS1213 at Xql2-q13.1.

Based on previous studies (Kere et al. 1996), we se-
lected ED A as the candidate gene and sequenced all eight
exons in two affected males, two female carriers, one
normal male, and one normal female subjects. We found
a novel missense mutation ¢.193C > G inexon 1 of EDA,
and found the mutation segregating with affected or
carrier status in the other family members recruited for

the larger linkage study (Fig. 2b). Exon 1 of EDA was
also sequenced from 90 unrelated normal Chinese Han
individuals, 45 females and 45 males, without detecting
any G alleles at bp193 of EDA. This mutation will cause
glycine to be substituted by arginine at the 65th residue of
ectodysplasin. The R65G mutation is on the edge of the
transmembrane domain of ectodysplasin, and changes
the isoelectric point and may alter the local structure of
EDA.

Analysis of the pattern of X-chromosome inactiva-
tion showed that 33% of nine female carriers had a
skewed pattern, while the others showed a random
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[\ v:2 V3 V4 Vs V6 V7 v:8 v:8 v:10 v:11 v:12 v:13 V:14 V:15 v:18 v:17 v:18
DXS991 3 3 3 3 2 2 4 3 4 3 4 3 4 4 11 4 3 4 4 4R[]3 4 4 3 4 4 4 3 4 3 3
DXS1213 4 4 3 3 11 3 4 3 4 3 4 3 3 3 3 3 4 3 3 3 4 4 4 3 4 2 2 3 3 3 3
DXS1111 1 1 2 2 4 4 3 1 3 1 3 1 2 2 2 2 2 1 2 2 2 1 3 3 1 3 2 2 1 3 2 2
DXS135 2 2 11 2 2 1 2 1 2 1 2 2 2 2 2 2 2 11 2 2 2 2 2 2 2 2 2 1 2 2
DXS1690 2 2 11 2 2 2 2 2 2 2 2 2 2 3 3 2 2 2 2 2 2 2 2 2 3 2 2 2 3 2 2
DXS1689 1 1 2 2 5 5 5 1 5 1 5 1 3 3 2 2 3 1 5 5 3 1 4 4 1 5 5 5 1 5 5 5
DXs8107 1 1 2 2 2 2 1 1 1 1 1 1 11 2 2 1 1 2 2 1 1 2 2 1 2 2 2 1 2 2 2
DXS8101 1 1 2 2 2 2 3 1 3 1 3 1 3 3 4 4 3 1 4 4 3 1 3 3 1 4 3 3 1 4 3 3
DXS559 1 1 2 2 3 3 4 1 4 1 4 1 11 4 4 1 1 5 5 1 1 4 4 1 1 2 2 1 1 2 2
DXS1124 2 2 2 2 2 2 2 2 2 2 2 2 3 3 2 2 3 1 2 2 3 1 3 3 1 3 2 2 1 3 4 4
DXs986 5 5 5 5 2 2 6 5 6 5 6 5 3 3 2 2 3 2 6 6 32 5 5 2 3 2 2 2 3 11

Vi vi2 V3 V4 V5 V6 v A%:] v vi10

DXS991 3 3 2 4 5 4 4 4 4 4 3 3 4 4 3 3 4 4 3 3

DXS1213 4 4 1 4 4 4 4 4 3 3 3 3 4 4 3 3 2 3 3 3

DXS1111 1 1 4 3 2 2 2 2 1 1 1 1 3 3 1 1 2 3 1 1

DXS135 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2

DXS1690 2 2 2 2 2 2 2 2 2 2 2 2 3 3 2 2 2 3 2 2

DXS1689 1 1 5 5 3 3 3 3 1 1 1 1 5 5 1 1 5 5 1 1

DXs8107 1 1 21 11 11 1 1 1 1 2 2 1 1 2 2 1 1

DXs8101 1 1 2 3 5 3 3 3 1 1 1 1 4 4 1 1 3 4 1 1

DXS559 1 1 3 4 2 1 11 1 1 1 1 11 1 1 2 1 1 1

DXS1124 2 2 2 2 3 3 3 3 1 1 1 1 3 3 1 1 2 3 3 3

DXS986 5 LIs 2 8 4 3 3 3 2 L2 2 L2 3 3 2 L2 2 3 3 3

Appendix Haplotype analysis in the family. Marker order was
determined from the Généthon sex-averaged genetic map, the
CHLC sex-averaged genetic map, and the Genome Database. Open
symbols indicate unaffected individuals, blackened symbols indicate
the affected individuals, squares indicate men, and circles indicate

X-chromosome inactivation manner. III:2 and IV:10
showed extremely skewed (>90%) methylation of one
X chromosome and IV:19 revealed moderately skewed
(80-90%) methylation. Skewed inactivation of the X
chromosome bearing the wild type EDA gene may in-
crease the proportion of mutated protein in the symp-
tomatic carrier 1V:10.

Our results indicate that the novel missense muta-
tion in EDA is associated with tooth agenesis. Though
the family inherited unique hypodontia in X-linked
manner without abnormalities of other ectodermal or-
gans, our genetic study is consistent with X-linked
HED. So, we think the unique hypodontia phenotype
may be a clinical subtype of X-linked HED. Ectodys-
plasin may play a different role in the early develop-
ment of teeth than with the other ectodermal organs.
The Arg65Gly mutation may have an effect in one of
several ways: (1) affecting the overall structure of ec-
todysplasin; (2) abnormal transmembrane trafficking
and proteolytic cleavage; (3) gain of function due to a
novel interaction site; (4) interaction of ectodysplasin
with EDAR. Further in vivo expression and functional
characterization of the mutated protein may advance
our understanding.

women. The blackened bars are the seven contiguous-marker
disease-linked haplotypes shared by all patients and female carriers.
Recombinations of maternal alleles on V:5 and V:10 suggested the
boundary of disease-linked haplotypes
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