
Abstract A model depicts the relationship between

clinical phenotypes and genotypes on a set of genetic

polymorphisms. After the model is constructed and

validated, it may be used to predict clinical pheno-

types such as traits of complex diseases. A phar-

macogenomic model is used to predict the efficacies

or adverse drug reactions of a medication. The con-

struction of a model is a challenging task. This is

because a single-locus polymorphism does not con-

tain enough information to stratify patients in gen-

eral, given the complex biological mechanisms

involved. An exhaustive search for the correct

combination of genotypes across multiple loci is,

however, computationally infeasible. We are, thus,

motivated to propose a novel algorithm for the

construction of models using the multiple single-

nucleotide polymorphism (SNP) information in dipl-

otype forms. This algorithm utilizes the techniques of

genetic algorithms and Boolean algebra (GABA).

The proposed algorithm is tested on simulated data,

as well as real genotype datasets of chronic hepatitis

C patients treated with interferon-combined therapy.

A model for predicting the treatment efficacy is

constructed and validated. The results showed that

the proposed algorithm is very effective in deriving

models comprising multiple SNPs.
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Introduction

Polymorphisms of the human genome are responsible

for the causations of many genetic-linked phenotypes,

including the traits of complex diseases, as well as the

efficacies of medications addressed in pharmacoge-

nomic studies. A model depicts the association be-

tween clinical phenotypes and multiple genetic

information, such as single-nucleotide polymorphisms

(SNPs) in either the haplotype or diplotype forms, or

short tandem repeats (STRs) (Cordell and Clayton

2002; Yang et al. 2003). A model may even include

physical information (such as the age, weight, diet, life

style, and state of health) and clinical information

(such as biochemical measurements, or the viral type

for viral infection diseases). Once the associations be-

tween the clinical endpoints and the multi-locus

genotypes are found and validated, the model could

serve as the basis of new clinical prediction or prog-

nostic methods. This paper presents a methodology for

constructing models for a case–control study by using

multiple SNP information in diplotype forms.

The rapid advance of genotyping techniques, exem-

plified by the recent Affymetrix GeneChip Human

Mapping 500K Array, enables association studies with

extensive genes and SNPs (Rabbee and Speed 2006).

The immediate hurdle is the lack of an adequate

strategy for multi-locus association and model con-

struction from the vast amount of data. A case–control

study is generally used for association studies, where
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the cases and controls refer to two distinct clinical

groups (Cordell and Clayton 2002). Statistical tests

based on the contingency tables (e.g., the v2 test) are

commonly applied to the examination of associations

for each screened diplotype polymorphisms (Pritchard

and Rosenberg 1999). The polymorphisms with the p

values smaller than a predefined threshold (commonly

set at 0.05 and then adjusted with respect to multiple-

comparison considerations) are declared significant in

association, implying that the polymorphism is statisti-

cally associated to, or even functionally responsible for,

a particular trait of interest.

Statistical tests of association are adequate particularly

for single-gene diseases. There are many such diseases in

the Online Mendelian Inheritance in Man database

(OMIM 2000). However, the prediction of common

multifactorial diseases is greatly improved by considering

multiple alleles concurrently (Yang et al. 2003). Most

pharmacogenomic studies also require an adequate

combination of multi-loci information, given the complex

pharmacokinetic and pharmacodynamic mechanisms

involved. Gene–gene interactions need to be considered;

therefore, a prediction model needs to characterize the

complex roles of genes which lead to the phenotype.

Hence, we propose an algorithm which evaluates a set

of SNPs simultaneously for model construction. A model

is represented by a Boolean expression, facilitating bio-

logical interpretations. The amount of prior assumptions

underlying the model is minimized. For example, the

number of SNPs in the model is automatically deter-

mined by the algorithm, based on the dataset. A variety of

models can be presented in Boolean expressions which

reflect various forms of gene–gene interactions.

The search space for an adequate model is linearly

proportional to the number of samples. It is, however,

exponentially proportional to the number of screened

SNPs when all of the combinations of SNPs need to be

enumerated and calculated. Hence, an exhaustive

search is prohibited, even for studies on hundreds of

SNPs, let alone the whole-genome screening studies.

To address this, the genetic algorithm is employed to

systematically explore the vast choices of models de-

scribed by Boolean expressions. The proposed algo-

rithm is, thus, referred to as the genetic algorithm with

Boolean algebra (GABA).

The GABA algorithm

Boolean algebra

Boolean algebra is a bivalent algebraic system (i.e.,

false and true, commonly shown as 0 and 1, respec-

tively). It is used as the mathematical framework for

representing the model. The defined operations of

Boolean algebra include addition (+), multiplication

(·), and negation (–) (Whitesitt 1995). They corre-

spond to the operations of union, intersection, and

complement in the set theory, respectively. The addi-

tion operation is also equivalent to the logical opera-

tion ‘OR’ and the multiplication operation to ‘AND’.

Boolean algebra has several basic algebraic properties,

such as the commutative and associative laws for

addition and multiplication, and so on (Whitesitt 1995).

A model, denoted as M, comprises a chain of poly-

morphisms joined together by Boolean operators. To

construct a model, a training dataset T containing

genotypes of cases and controls is required. T is pre-

sented as a master table, a two-dimensional table, with

each rank representing a sample of a subject (person),

and each column representing an SNP. Denote l as the

number of screened SNPs, therefore, T={SNPk|0£ k<l}.

The genotype dataset are commonly arranged in a

consecutive order according to their chromosomal

position. The assessment of an SNP is defined by a

model element (mi). On a typical biallelic SNP, a mode

element could, for example, represent either a reces-

sive mode of inheritance:

mi : SNPk ¼0 AA0 ð1Þ

or a dominant mode of inheritance:

mi : SNPk ¼0 AAþAT0 ð2Þ

The intersection of the model element (mi) and its

complement element (–mi) is an empty set. Their union

is the set containing all possible diplotypes in the SNP,

for example, {AA, AT, TT} at a biallelic A/T locus.

Hence, a model can be denoted succinctly as

M(mi|1£i£n, n£l), where n is the number of SNPs in the

model. The result of the assessment on an SNP locus

could be true or false. The model elements are then

joined together by either a multiplicative (·) or an

additive (+) operator of Boolean algebra. A possible

biological interpretation of the multiplicative (·)

operator is that, for example, the concurrent appear-

ance of two diplotypes activates a particular biological

pathway. A possible biological interpretation for the

additive (+) operator is that, for example, the muta-

tions on any of the two SNPs in the same gene, joined

by the additive operator, could result in the malfunc-

tion of this gene. It also represents the situation when

the two SNPs reside in two genes of the same biological

pathway, and the malfunction of either gene inactivates

the pathway.
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Given the genotypes of a particular subject, the

computational result of M is either 0 or 1, indicating a

control or a case, respectively. One negation operator

(–) could be positioned at the starting position of M,

converting those originally predicted cases to controls,

and vice versa.

Hence, a legitimate model with four elements is

exemplified as follows:

M m1; m2; m3; m4ð Þ ¼ m1 �m2 �m3 þm4

¼ SNP3 ¼0 AAþAT0ð Þ � SNP5 ¼0 CC0ð Þ
� SNP7 ¼0 CC0ð Þ þ SNP8 ¼0 TCþ TT0ð Þ

ð3Þ

M is a case model that, if the computational result of M

is true, then the subject is predicted as a case; other-

wise, it is a control. The complement of M, denoted as

MC, is a control model. According to DeMorgan’s law

in Boolean algebra (Whitesitt 1995), MC can be

exemplified as:

MC �m1ð Þ; �m2ð Þ; �m3ð Þ; �m4ð Þð Þ
¼ �m1ð Þ þ �m2ð Þ þ �m3ð Þð Þ � �m4ð Þ
¼
�

SNP3 ¼ 0TT0ð Þ þ SNP5 ¼ 0AAþAC0ð Þ
þ SNP7 ¼ 0GGþGC0ð Þ

�
� SNP8 ¼ 0CC0ð Þ

ð4Þ

Genetic algorithm

The genetic algorithm is a modern heuristic method for

solving combinatorial optimization tasks (Holland

1998; Goldberg 1989). The task of model construction

may be formulated as:

Mopt ¼ arg max
M

F Tð Þ ð5Þ

where F is the fitness score reflecting the prediction

performance of the model M on the dataset T. We

denote R as the case population and RC as the control

population; thus, T=R+RC. The sensitivity of a model

M on T is Pr(M|R), i.e., the probability of M being true

within the case population, and the specificity is

Pr(MC|RC), i.e., the probability of MC being true (M

being false) within the control population. In this pa-

per, we defined F as:

F ¼ Sensitivityþ Specificityþ Sensitivity� Specificity

ð6Þ

The sensitivity and specificity are used in the fitness

function because the purpose of a model is mainly for

clinical prediction, where the sensitivity and specificity

are two important and commonly used indexes of

performance. Different clinical applications may re-

quire different weightings on the sensitivity and spec-

ificity. Although positive predictive values (Pr(R|M))

and negative predictive values (Pr(RC|MC)) are also

clinically important, they are variable with respect to

the ratio of the numbers of cases and controls and,

therefore, are not used. The last term of the fitness

score, i.e., ‘Sensitivity·Specificity’, enable the algo-

rithm to select favorably those models with high values

in both sensitivity and specificity. The optimum fitness

score in this definition is three.

The fitness score F is a heuristic parameter which

should be defined according to the purpose of each

clinical study. The likelihood ratio (LR(M)) has been

used for measuring the performance of diagnostic

testing (Yang et al. 2003). It is also a function of the

sensitivity and specificity:

LR Mð Þ ¼ Pr MjRð Þ
Pr MjRCð Þ ¼

Sensitivity

1� Specificity
ð7Þ

It is worth noting that Akaike’s information criteria

(AIC) has been widely used for various model selec-

tion tasks, including biological studies and spectral

analysis (Gardner 1988). AIC is solidly based on

information theory, that it measures how good the

model approximates the data using the likelihood

function (Burnham and Anderson 2001). It also

penalizes the increase of model length, i.e., the number

of SNPs and their interaction terms, based on the

principle of parsimony. AIC is also an adequate choice

of F, where F can be defined as 1/AIC.

A parsimony constraint may be introduced to F so

that a model with a smaller number of SNPs will be

preferred. The parsimony constraint is to avoid over-

fitting of the model to the data. However, we found in

our simulation that the GABA algorithm can find the

model with an adequate number of SNPs automati-

cally, without the parsimony constraint (see section on

Performance evaluation, where no parsimony con-

straint is used). We observed that the addition of extra

SNPs to the optimum model will result in poorer per-

formance. Hence, the parsimony constraint is not

adopted in F.

A random model generator is required to initiate the

computation. To generate a random model, the num-

ber of n, n£l, is first randomly determined. Then, a

series of SNPk, k £l, are randomly chosen for model

elements mi, i={1,..., n}. Each SNPk has four possible

diplotypes in our implementation, each corresponding

to various dominant and recessive modes of inheri-

tance. For example, if SNPk is a ‘C/G’ allele, then SNPk
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will be assigned as ‘CC’, ‘CC+CG’, ‘GG’, or ‘GG+CG’

with equal opportunities for mi. The additive (+) and

multiplicative (·) Boolean operators are then ran-

domly chosen between the model elements. Finally, a

negation (–) operator is randomly determined whether

or not to appear in front of the entire statement.

The GABA algorithm employs mutation and cross-

over operations for altering an existing model.

Mutation operations

Five different types of mutations are employed in the

GABA algorithm: (1) element insertion, (2) element

deletion (3) element substitution, (4) operators ·/+

swap, and (5) case/control swap. The element inser-

tion operation introduces a new random element into

the model, increasing the model length by 1. The

element deletion operation removes an element from

the model. The element substitution operation chan-

ges the specified genotypes in a model element, for

example, from SNPk=‘CC’ to ‘CC+CG’. The opera-

tors ·/+ swap converts a multiplication (·) into an

addition (+), or vice versa. This operation changes the

nonlinear relationship among the model elements. For

example, if this operation modifies the model

M=m1+m2·m3·m4 as m1+m2+m3·m4, then the rela-

tionship between the elements is changed. Finally, the

case/control swap introduces a negation operator in

front of the model. If there is already a negation

operator, then this operation effectively removes the

original negation operator.

A mutation rate (p) is required for a mutation

operation, where p percent of the model elements are

mutated and (1–p) percent are not mutated. Those

mutated elements are subject to one of the four

mutation methods (1)–(4) with equal opportunity. In

addition, the entire model is subject to mutation (5)

with 50% probability.

Cross-over operations

The cross-over operation is analogous to the chromo-

somal recombination events occurring in meioses of

cell cycles. Note that chromosomal recombination is a

basic concept underlying the discipline of statistical

genetics, particularly in linkage analysis, association, as

well as haplotype analysis (Cardon and Bell 2001;

Schaid 2004). The rationale for the cross-over opera-

tion is that, if the good performances of two models are

mainly due to parts of themselves, then a cross-over

operation may combine these two parts, resulting in a

model which outperforms the previous two models.

Using the defined operations of the GABA algo-

rithm, the models with higher fitness scores are ran-

domly mutated and crossed over with one another so

as to produce various candidate models, exploring the

entire solution space in a systematic manner. Each of

these models is used to predict the samples in the

training dataset. The prediction performances of the

models are then evaluated by their fitness scores.

Models and their elements with higher fitness scores

are preserved and also serve as the templates for

constructing the models in the next iteration. In this

way, a group of modes go through a nature selection

process. As candidate models are derived from well

performing models in the previous iteration, they

comprise advantageous components inherited from

their parents. This type of algorithm has been dem-

onstrated to avoid prolonged search according to the

theory of schemata (Holland 1998).

The algorithm

The GABA algorithm is designed to select n SNPs,

from a pool of l SNPs, for building a model. It is

summarized as follows:

1. Randomly generate a series of Boolean expres-

sions as the set of candidate models, denoted as S.

2. Use each candidate model in S to predict the

samples in T.

3. The fitness score of each model is calculated.

Those models with better performances are de-

fined as the set of preserved models Sp. The rest of

the models, Sd=S–Sp, will be discarded in the next

iteration.

4. The preserved models in Sp are used as templates

for producing a new set of candidate models Sd¢.
Each model of Sd¢ is generated using one of the

four methods:

• – (a) Randomly select one model from Sp and then

apply the mutation operation

• – (b) Randomly select two different models from

Sp and then proceed to apply a cross-over oper-

ation on them

• – (c) Randomly select one model from Sp and have

it crossed-over with a randomly generated model

• – (d) Produce a new model using the random

model generator

The four methods are selected randomly with equal

opportunities. A new set of candidate models S is thus

produced where S=Sp+Sd¢.
5. Steps 2–4 are iterated until the optimum fitness score

is achieved, or a maximum number of iterations
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(a user-defined value) is reached where the model

with the highest fitness score stays unchanged.

The number of models in S, Sp, and Sd are heuris-

tically determined by the user. They are constant in all

iterations throughout the computation.

The search space of an adequate model is linearly

proportional to the number of samples, yet, exponen-

tially proportional to the number of screened SNPs.

Hence, the increase of sample sizes is encouraged, as it

will enhance the probability of detecting an adequate

model at the reasonable expense of time. However, as

the number of SNPs increases, more computation is

expected, even for a heuristic search method such as

the GABA algorithm.

Comparison with other methods

Logistic regression is commonly used for the linear

combination of multiple genotypes and their interac-

tions (e.g., Cordell and Clayton 2002). However, this

method usually requires an enumeration of various

interaction terms, which grows rapidly as l increases. A

model must reflect the underlying disease etiology or

biological mechanism so as to achieve accurate pre-

diction (Yang et al. 2003). Since the order of interac-

tion is unknown, high-order interactions need to be

considered, which will complicate the computation. In

comparison, the GABA algorithm detects the order of

interactions automatically. The relationship between

two adjacent SNPs could be additive or multiplicative,

depending on the dataset.

The multifactor dimensionality reduction (MDR)

method has been proposed for the detection of high-

order interactions among loci (Ritchie et al. 2001). It

has been successfully used for the identification of

interactions among four SNPs in the estrogen metab-

olism genes associated with sporadic breast cancer

(Ritchie et al. 2001), as well as the three-locus epistasis

model for atrial fibrillation (Tsai et al. 2004). Similar to

logistic regression, the MDR method has to enumerate

all combinations of genotypes. The MDR method has

the following weaknesses: (1) it requires a dataset

where the numbers of cases and controls are close to

1:1; (2) it is difficult to make a biological interpretation

of an MDR model, which is presented in a lookup table

style (compare with Ritchie et al. 2001, p 144, Fig. 2).

The lookup table style may incur difficulties on the

biological interpretation of the model. It will be diffi-

cult to show the model in 2D lookup tables if more

than five SNPs are involved. Note that the MDR model

is analogous to the truth table in Boolean algebra, and

the Karnaugh map is a useful tool to convert a truth

table into a Boolean expression (Whitesitt 1995). The

GABA algorithm, on the other hand, presents the

model in a Boolean statement, which is easier to

comprehend, facilitating future biological investiga-

tions.

Performance evaluation

The GABA algorithm is tested on simulated genotype

data, as well as real genotypes from chronic hepatitis C

patients treated with interferon-combined therapy. In

our implementation, the mutation rate (p) is set at

20%. S contains 300 models; Sp contains 90 models and

Sd 210 models.

The first test is to examine the performance of the

GABA algorithm using the simulated dataset. We

employ datasets with 50 SNPs (i.e., l=50) and 400

samples (200 cases and 200 controls), a data size

commonly used for a typical small project. The SNPs in

the dataset are in Hardy–Weinberg equilibrium (where

the allele distribution is 1:2:1) and are also in linkage

equilibrium.

Five distinct simulation datasets are produced. These

datasets are embedded with models 1–5, representing a

single-locus model, as well as 2-, 3-, 4-, and 5-locus

interaction models (Table 1). These models are gener-

ated randomly. We can, therefore, evaluate whether the

embedded models can be detected by the GABA and

MDR methods. We repetitively tested the GABA

algorithm three times (i.e., tests 1–3) for each dataset,

and found that the algorithm can always identify the

embedded model accurately. The numbers of iterations

spent for finding the embedded models are presented in

Table 1. The average number of iterations increased

when the embedded model involves more SNPs (Fig. 1).

The cases:controls ratio of the datasets are 1:1, ful-

filling the assumption of the MDR method. Hence, the

MDR method is also tested on models 1–5 for com-

parison purposes. The open-source MDR software

v1.0.0rc1 is used, which is downloaded from Source-

Forge.net. The default setting of the MDR software is

adopted, except that the attribute count range (i.e., the

range of n in the MDR model) is changed from 1:4 to

1:5 for testing model 5. We found that the MDR

method can also detect models equivalent to models 1–

5 successfully. To illustrate the lookup table format of

MDR models, the MDR result for model 3 is presented

in Fig. 2. It is not difficult to envision that the MDR

models involving more SNPs are very difficult to

present and interpret.
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The MDR method detected the five SNPs of model

5 correctly, with a cross-validation consistency of 0.9

(Table 1). In one of the cross-validation tests, the

MDR method detects SNP0 instead of SNP43. The

orders of appearance of SNPs in various tests for

model 5 are summarized in Table 2. The computa-

tional process of test 1 is presented in terms of the

highest fitness score (Fig. 3) and the number of SNPs

detected (Fig. 4). The fitness score increases along

with the number of computations, showing a contin-

uous improvement. The length of the model varies

between 2 and 5. The number of correctly detected

SNPs increases gradually. At iteration 14,000, four

SNPs have been corrected detected, which results in a

fitness score of 2.99. The performance does not

change until the fifth SNP is incorporated at iteration

88,182.

The GABA algorithm is then applied to the con-

struction of a prediction model for the interferon-

combined therapy. Interferon-a combined with ribavi-

rin is a standard treatment for patients infected by

chronic hepatitis C viruses (HCV). The training dataset

comprises genotypes of 381 chronic hepatitis C pa-

tients. These patients are from National Taiwan Uni-

versity Hospital, Kaohsiung Medical University

Hospital, Kaohsiung Municipal Hsiaokang Hospital,

and Tri-Service General Hospital in Taiwan, and the

samples were collected between years 2002 and 2004.

Informed consent and the medical records related to

the history of the disease were collected for each sub-

ject. All patients had received interferon-a (3–6 MU/

dosage, three times per week) and ribavirin (1,000–

1,200 mg/day) for 6 months and then followed up for

6 months after the termination of treatment. Patients

with concurrent hepatitis B or D infection were ex-

cluded from the study. The responsiveness of the

treatment is determined by the detection of serum

HCV RNA at the end of the follow-up period. Among

the 381 patients, 243 are clinically diagnosed as

responders (i.e., no HCV RNA detected) and 138 as

non-responders.

Table 1 The models used for the simulation, as well as the number of iterations computed for each test of the GABA algorithm. The
last column presents the cross-validation consistency (CVC) of the multifactor dimensionality reduction (MDR) method

Boolean statement of cases Test 1 Test 2 Test 3 Average MDR
(CVC)

Model 1 SNP20=‘CC’ 15 4 2 7 10/10
Model 2 –[(SNP24=‘TT’+‘TC’)·(SNP36=‘AA’)] 210 646 516 457.3 10/10
Model 3 –[(SNP3=‘AA’)·(SNP8=‘AA’)+(SNP38=‘GG+AG’)] 6,670 340 8,226 5,078.7 10/10
Model 4 –[(SNP20=‘CC’)·(SNP21=‘GG’)+(SNP17=‘GG’)

·(SNP39=‘AA+TA’)]
13,562 28,095 31,928 24,528.3 10/10

Model 5 [(SNP29=‘TT+TG’)+(SNP32=‘CC’)+(SNP40=‘CC’+‘AC’)
+(SNP43=‘AA’)+(SNP47=‘GG’+‘TG’)]

88,182 18,521 9,394 38,699 9/10
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Fig. 1 The average numbers of iterations computed for detect-
ing the embedded models 1–5

Fig. 2 The detected MDR
model equivalent to model 3
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The training dataset comprises 24 SNPs of eight

genes involved in interferon signaling and immuno-

modulating pathways (Table 1). The SNPs were

genotyped using either direct sequencing or TaqMan

methods. Direct sequencing was conducted with the

ABI Prism 3700 instruments (Applied Biosystems) and

the data was analyzed using the Phred and PolyPhred

programs (Ewing et al. 1998; Nickerson et al. 1997).

The TaqMan method was carried out on an ABI Prism

7900 instrument and genotypes were called using the

SDS software (Applied Biosystems) supplemented

with manual curation. The gene symbols were provided

according to the HUGO gene nomenclature commit-

tee (Povey et al. 2001).

The eight genes of our study are hypothesized to be

influential to the treatment efficacy of interferon-

combined therapy (Hwang et al. 2006). ADAR is in-

duced by interferon alpha or gamma for its antiviral

effect. ICSBP1 is a member of the interferon regula-

tory factor family. It is a negative regulator on an

interferon-stimulated response element (ISRE). IFI44

has an interferon-stimulated response element in its

promoter region. TAP is a transporter involved in

antigenic peptides transfer into the endoplasmic retic-

ulum. TGFBRAP1 binds to Smad4 protein, which is

involved in many signaling pathways. CASP5 has a

central role in apoptosis. PIK3CG is the phosphoino-

sitide-3-kinase, catalytic, gamma polypeptide. FGFs

have mitogenic and cell survival activities and are in-

volved in liver organogenesis. During the progression

of CHC, the level of FGF is elevated.

Prior to model construction, the 24 SNPs are as-

sessed individually for differences of allele and

genotype frequencies between the case and control

groups using standard v2 statistics for contingency

tables (Schlesselman 1982). The level of significance

is set at 0.05. The genotype comparison employs a

3·2 contingency table, comparing three diplotypes at

two conditions (i.e., responders and non-responders).

Since 24 SNPs are assessed simultaneously, the issue

of multiple comparisons is considered and the

threshold on the p value (after Bonferroni correction)

is 0.0021. None of the SNPs could be declared as

significant according to the allele and genotype tests

(Table 3).

The GABA algorithm detects a model comprising

eight SNPs in five genes: ADAR, IFI44, ICSBP1,

PIK3CG, and CASP5. The non-responders are iden-

tified if the following statement is true:

SNP7 ¼0 CC=TC0ð Þ � SNP12 ¼0 GG0ð Þ
� SNP14 ¼0 AA=AC0ð Þ � SNP20 ¼0 CC=CT0ð Þ
þ SNP6 ¼0 CC0ð Þ � SNP9 ¼0 GG=GT0ð Þ
� SNP11 ¼0 AA=AG0ð Þ � SNP16 ¼0 AA=AG0ð Þ

ð8Þ

According to DeMorgan’s theorem (Whitesitt 1995),

the responders are identified if the following statement

is true:

½ SNP7 ¼0 TT0ð Þ þ SNP12 ¼0 AA=AG0ð Þ
þ SNP14 ¼0 CC0ð Þ þ SNP20 ¼0 TT0ð Þ�
� ½ SNP6 ¼0 AA=AC0ð Þ þ SNP9 ¼0 TT0ð Þ
þ SNP11 ¼0 GG0ð Þ þ SNP16 ¼0 GG0ð Þ�

ð9Þ

Table 2 The order of SNPs appearing in the model construction
process of model 5

MDR SNP29, SNP40, SNP47, SNP32, SNP43
Test 1 of the

GABA algorithm
SNP29, SNP40, SNP47, SNP32, SNP43

Test 2 of the
GABA algorithm

SNP29, SNP40, SNP47, SNP43, SNP32

Test 3 of the
GABA algorithm

SNP29, SNP40, SNP47, SNP43, SNP32

2.75

2.8

2.85

2.9

2.95

3

0 20000 40000 60000 80000 100000
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Fig. 3 The performance, shown as the fitness score, is improved
gradually after more iterations during the detection of a five-SNP
model. The fitness score for a correct model is 3.0, representing
100% sensitivity and specificity
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Fig. 4 The number of SNPs per iteration during the detection of
model 5. The dashed line is the number of SNPs in the model and
the solid line represents the number of correct SNPs compared
with model 5. It shows that the entire set of five SNPs are
correctly detected after 88,182 iterations
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When the eight SNPs are combined for the classifi-

cation of patients, the prediction result is as shown in

Table 4. The p value of the chi-square test of Table 4 is

1.79·10–7, showing a strong association in the training

dataset. The performance indexes are as follows: the

sensitivity is 62.1%, the specificity is 70.0%, the posi-

tive predictive value (PPV) is 79.0%, and the negative

predictive value (NPV) is 50.7%.

A prediction model needs to be validated using an

independent dataset, from either prospective or ret-

rospective studies, so as to demonstrate its capability

of prediction. The above model is, thus, validated

using samples of 159 persons (121 responders and 38

non-responders). These samples were collected during

the years 2004–2005. The validation result is shown in

Table 5, where the sensitivity is 54.7%, the specificity

is 71.4%, the PPV is 86.4%, and the NPV is 32.1%.

The p value of the chi-square test of Table 5 is 0.0067,

a very small number, which shows a strong association

with the validation dataset. The similarity of the

sensitivity and specificity values enhances our confi-

dence that the model has a certain degree of consis-

tency for predicting the efficacy of interferon-

combined treatment.

Conclusions

The genetic algorithm and Boolean algebra (GABA)

algorithm systematically investigates multiple single-

nucleotide polymorphisms (SNPs) and their adequate

combinations for predicting phenotypic traits of com-

plex diseases or pharmacogenomic studies. The GABA

Table 3 The 24 SNPs and their association test results, including the allelic comparison, the genotypic comparison of three genotypes
(GG/GC/CC), and the Hardy–Weinberg test, shown in p values

SNP ID dbSNP ID Gene symbols Allele Number p value

R NR Allele Genotype Hardy–Weinberg

SNP0 rs2241796 TGFBRAP1 T/C 242 135 0.5967 0.1837 0.2358
SNP1 rs1866040 TGFBRAP1 A/G 237 134 0.5692 0.6881 0.9519
SNP2 rs2576737 TGFBRAP1 C/T 213 116 0.3657 0.6618 0.1136
SNP3 rs518604 CASP5 A/G 238 131 0.1204 0.0658 0.0995
SNP4 rs2282658 CASP5 C/G 231 134 0.3622 0.6042 0.5344
SNP5 rs484345 CASP5 A/G 235 132 0.7719 0.6343 0.1957
SNP6 rs1699087 CASP5 C/A 233 126 0.7154 0.6206 0.3463
SNP7 rs7515339 ADAR C/T 217 128 0.0598 0.0845 0.8721
SNP8 rs903323 ADAR T/C 229 125 0.5916 0.5574 0.0934
SNP9 rs2148686 IFI44 G/T 240 130 0.0765 0.2166 0.0013
SNP10 rs2070123 IFI44 T/C 235 132 0.6468 0.6920 0.8029
SNP11 rs273249 IFI44 A/G 232 130 0.0576 0.1606 0.9005
SNP12 rs12120187 IFI44 G/A 232 129 0.0041 0.0096 0.3928
SNP13 rs305067 ICSBP1 G/C 217 117 0.9664 0.7854 0.3264
SNP14 N/A ICSBP1 A/C 241 135 0.4295 0.5724 0.9529
SNP15 rs305088 ICSBP1 C/T 234 134 0.0737 0.1605 0.9300
SNP16 rs870614 ICSBP1 A/G 232 127 0.3460 0.6174 0.8828
SNP17 rs2071543 TAP2 G/T 230 132 0.8306 0.8882 0.0876
SNP18 rs1800453 TAP2 T/C 237 126 0.3302 0.5974 0.8765
SNP19 rs1526083 PIK3CG G/A 233 127 0.6117 0.5488 0.4493
SNP20 rs3779501 PIK3CG C/T 238 135 0.2079 0.4581 0.3740
SNP21 rs249926 FGF1 C/T 236 128 0.0540 0.1428 0.6239
SNP22 rs11117421 ICSBP1 A/G 217 112 0.9223 0.7109 0.0003
SNP23 rs305095 ICSBP1 C/T 240 133 0.6499 0.7775 0.9464

Table 4 The prediction performance of the model on the
training dataset (381 patients). Only 283 patients are shown in
the table. The other 98 patients have missing data in the
genotypes, and, thus, were not predictable

Training Clinical status

Positive Negative

Prediction Positive 113 30
Negative 69 71

Table 5 The model derived from the training dataset is then
used to predict the samples in a validation dataset (159 patients).
Only 152 patients are shown in the table. The other seven
patients have missing data in the genotypes, and, thus, were not
predictable

Validation Clinical status

Positive Negative

Prediction Positive 64 10
Negative 53 25
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algorithm shows promising capabilities in deriving a

model from a large pool of SNP genotypes. This is

demonstrated by experiments on the simulated data-

sets, as well as a real dataset of interferon-combined

treatment. A Boolean expression model detected by

the GABA algorithm is easily comprehensible, inter-

pretable, and examinable by physicians and scientists.

This is a merit of the GABA algorithm compared with

other methods, such as multifactor dimensionality

reduction (MDR) or logistic regression.

Although we use SNP diplotypes to demonstrate the

algorithm, the GABA methodology should be able to

incorporate haplotypes and other physical information,

provided that this information can be represent ade-

quately as model elements mi. This remains as our

future research direction.
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