
Abstract The tumor suppressor p53 plays a crucial

role in the cellular response to DNA damage by tran-

scriptional activation of numerous downstream genes.

Although a considerable number of p53 target genes

have been reported, the precise mechanism of p53-

regulated tumor suppression still remains to be eluci-

dated. Here, we report a novel role of the DFNA5 gene

in p53-mediated etoposide-induced cell death. The

DFNA5 gene has been previously reported to be

responsible for autosomal-dominant, nonsyndromic

hearing impairment. The expression of the DFNA5

gene was strongly induced by exogenous and endoge-

nous p53. The chromatin immunoprecipitation assay

indicated that a potential p53-binding sequence is lo-

cated in intron 1 of the DFNA5 gene. Furthermore, the

reporter gene assay revealed that the sequence displays

p53-dependent transcriptional activity. The ectopic

expression of DFNA5 enhanced etoposide-induced cell

death in the presence of p53; however, it was inhibited

in the absence of p53. Finally, the expression of

DFNA5 mRNA was remarkably induced by gamma-

ray irradiation in the colon of p53(+/+) mice but not in

that of p53(–/–) mice. These results suggest that

DFNA5 plays a role in the p53-regulated cellular re-

sponse to genotoxic stress probably by cooperating

with p53.
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Introduction

Mutations in the p53 gene are the most common genetic

alterations found in human cancers. A normal cell ex-

presses a low level of p53 protein because of its short

half-life. However, the expression level and functional

activity of p53 increases in response to various cellular

stresses. The activated p53 then functions as a tran-

scription factor that activates the transcription of many

target genes; this leads to the expression of multiple

physiological functions of p53 (Vogelstein et al. 2000;

Vousden 2002; Nakamura 2004; Arakawa 2005). Thus

far, a number of p53 transcriptional targets have been

identified. These include cell-cycle-regulating proteins
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(p21/WAF1, El-Deiry et al.1993; and hCDC4b, Kimura

et al. 2003a), apoptosis-regulating proteins (BAX, Mi-

yashita and Reed 1995; p53AIP1, Oda et al. 2000;

Matsuda et al. 2002; Yoshida et al. 2004; and STAG1

Anazawa et al. 2004), DNA damage-repair proteins

(p53R2, Tanaka et al.2000; Yamaguchi et al. 2001;

Kimura et al. 2003; and GADD45, Kastan et al. 1992),

negative regulators of p53 (MDM2, Barak et al. 1993;

and Pirh2, Leng et al. 2003), positive regulators of p53

(p53DINP1, Okamura et al. 2001), and inhibitors of

angiogenesis (TSP-1, Dameron et al. 1994; and BAI1,

Nishimori et al. 1997). On the other hand, the analysis

of a microarray including 6,000 human genes indicated

that 107 genes were up-regulated and 54 were down-

regulated in cells infected with the adenovirus vector

designed to express p53 (Zhao et al. 2000). These

observations clearly suggested that a considerable

number of p53 target genes have yet to be isolated.

Moreover, the identification of these additional p53

target genes is likely to be indispensable for under-

standing the mechanism of the p53-regulated cellular

response in order to prevent tumor formation and

progression.

The DFNA5 gene was initially identified as one of

the genes whose expression is inversely correlated with

that of the estrogen receptor in breast carcinomas, and

therefore, it was initially designated as ICERE-1 (in-

versely correlated with estrogen receptor expression)

(Thompson and Weigel 1998). However, later on, a

mutation in the DFNA5 gene was reported to be

associated with autosomal-dominant, nonsyndromic

hearing impairment in an extended Dutch family (Van

Laer et al. 1998). An insertion/deletion mutation in

intron 7 of this gene caused the skipping of exon 8,

which resulted in the premature termination of the

open reading frame (Van Laer et al. 1998). Thus far,

two additional mutations in DFNA5 have been re-

ported in a Chinese family and another Dutch family.

Interestingly, these mutations also cause skipping of

exon 8, thereby resulting in the generation of the same

aberrant transcript as in the case of the first Dutch

family identified with the mutations (Yu et al. 2003;

Bischoff et al. 2004). Therefore, it was speculated that

hearing impairment may not be due to haploinsuffi-

ciency but rather due to a gain-of-function mutation.

Furthermore, mutant DFNA5 may have a new dele-

terious function. Despite these observations, the

physiological function of the DFNA5 protein still re-

mains to be elucidated.

Here, we report an unexpected role of the DFNA5

gene in the p53-mediated cellular response to DNA

damage; this implies the involvement of DFNA5 in

tumorigenesis. These findings will shed light on the

mechanism of the p53-dependent pathway for sup-

pressing cancer.

Materials and methods

Cell lines and transfections

Human cancer cell lines HepG2 (hepatoblastoma),

H1299 (lung cancer), and COS7 (monkey kidney

fibroblast) were purchased from American Type Cul-

ture Collection. Human cancer cell line T98G (glio-

blastoma) was purchased from Human Science

Research Resource Bank (HSRRB, Japan). All cell

lines were cultured under conditions recommended by

their respective depositors.

For transfection, cells were seeded at 2·105 cells per

well of six-well plates. After 24 h, cells were trans-

fected with 1 lg of plasmid mixtures pre-incubated for

15 min with 6 ll of Fugene6 transfection reagent

(Roche).

DNA-damaging treatments

Cells were seeded 12 h before treatment and were 60–

70% confluent at the time of treatment. To examine

the expression of DFNA5 in response to genotoxic

stresses, HepG2 cells were continuously treated with

1.0 lg/ml adriamycin for 2 h, UV-irradiated at 30 J/m2

using a UV cross-linker (Stratagene), or c-irradiated at

50 Gy using a 60Co source.

DNA microarray

Total cellular RNA was extracted at the indicated time

from HepG2 cells infected with adenovirus vector at

30 moi, which was designed to express wild-type p53

(Ad-p53-WT), a mutant p53 (Ad-p53-46F) or EGFP

(Ad-EGFP) (Nakamura et al. 2006). For gene-expres-

sion profiling, GeneChip Human Genome U133A and

U133B microarrays (Affymetrix, Santa Clara, CA,

USA) were used that contain 22,215 and 22,577 probe

sets, respectively, to examine a total of about 39,000

transcripts. Target cRNA for microarray hybridization

was prepared from 5 lg of total RNA according to the

manufacturer’s instructions using a BioArray RNA

transcript labeling kit (Enzo Diagnostics, Farmingdale,

NY, USA). Hybridization to the microarrays, washing

and staining with the antibody amplification procedure,

and scanning were also carried out according to the

manufacturer’s instructions. The expression value of

each gene was calculated and normalized using Af-

fymetrix Microarray Suite software version 5.0.
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RNA interference

We established the p53 knock-down (HepG2-p53-KD)

and the control (HepG2-p53-Cont) cell lines as de-

scribed previously (Hara et al. 2004), which were de-

rived from a hepatoblastoma cell line (HepG2 that

contains wild-type p53). In brief, HepG2 cells were

infected with SI-MSCV-puro-H1R-p53Ri retrovirus

for down-regulation of p53 expression and with SI-

MSCV-puro-H1R retrovirus for negative control. Then

the infected cells were selected with 1 lg/ml puromycin

for 2 weeks, and the single clones were isolated.

Northern blotting

Using TRIZOL reagent (GIBCO BRL), total RNAs

were extracted at various time points from HepG2

infected with Ad-p53-WT, Ad-p53-46F or Ad-EGFP,

and also form HepG2-p53-KD and HepG2-p53-Cont

cells subjected to DNA damaging treatments. Total

RNAs were further purified to poly(A)+ RNA using

mRNA purification kits (TAKARA) according to the

manufacturer’s instructions. A 3 lg aliquot of each

poly(A)+ RNA was separated on 1% agarose gel

containing 1· 4-morpholinepropanesulfonic acid buffer

(MOPS) and 2% formaldehyde, and transferred onto a

nylon membrane. The blots were hybridized with a

random-primed 32P-labeled DNA fragment carrying

the coding-sequence of DFNA5, p21/WAF1, or b-actin.

ChIP assay

ChIP assay was performed using the chip assay kit

(Upstate Biotechnology) as recommended by the

manufacture. HepG2 cells (3·105 cells) were seeded on

a 10-cm dish, and infected with Ad-p53-WT, Ad-p53-

46F and Ad-EGFP at 30 moi. After 24 h, genomic

DNA and protein were cross-linked by adding formal-

dehyde (1% final concentration) directly into the cul-

ture medium and incubated for 15 min at 37�C. Cells

were lysed in 200 ll SDS lysis buffer with a protease

inhibitor cocktail and sonicated to generate DNA

fragments 200–1,000 bp long. After centrifugation, the

cleared supernatant was diluted 10-fold with ChIP assay

buffer and incubated at 4�C overnight with the specific

antibody at 4�C for 16 h with rotation. Immune com-

plexes were precipitated, washed, and eluted as rec-

ommended. DNA–protein cross-links were reversed by

heating to 65�C for 5 h. DNA was phenol-extracted,

ethanol-precipitated and resuspended in 50 ll of Tri-

s–EDTA. We used 2 ll of each sample as a template for

PCR amplification. PCR amplifications of DFNA5

intron 1, containing a predictive p53 binding-sites, were

performed on immunoprecipitated chromatin using

specific primers: 5¢-TCTGTGATTGAGTATCCTC

GT-3¢ (p53BS1, forward) and 5¢-CCTGGTGTTGCT

GACCATG-3¢ (p53BS1, reverse), or 5¢-GATGCCC

CTCTGTTCTAATT-3¢ (p53BS2, forward) and 5¢-GC

CTCATATGACTCATTCTGT-3¢ (p53BS2, reverse),

or 5¢-GCCAGGCTGGTTTCAAACTC-3¢ (p53BS3,

forward) and 5¢-ATGAAGGATCTAGAACTCAA

GT-3¢ (p53BS3, reverse), or 5¢-ATTCTGATCACAG

ATCCTCCA-3¢ (p53BS4, forward) and 5¢-GAT

GCTGTAGCTGAGGAGC-3¢ (p53BS4, reverse), or

5¢-ACCTTTCACCATTCCCCTAC-3¢ (p21/WAF1,

forward) and 5¢-GCCCAAGGACAAAATAGCCA-3¢
(p21/WAF1, reverse). To ensure that PCR was per-

formed in linear range, template DNA was amplified

for a maximum of 30 cycles.

Gene reporter assay

A DNA fragment, including potential p53-binding sites

of DFNA5, was amplified by PCR, and cloned into the

pGL3-promoter vector (Promega, Madison, WI,

USA). The same primers were used for PCR as for the

ChIP assay. H1299 cells were plated in six-well culture

plates (1.5·105 cells per well) 24 h before cotransfec-

tion of 1 lg of reporter plasmid and either 1 lg of wild-

type (p53 WT) or mutant p53 (p53 MT) expression

vector in combination with 50 ng of pRL-CMV vector

(Promega). At 48 h after transfection, cells were rinsed

with PBS and lysed in 500 ll of a passive lysis buffer

(Promega). Cell lysates were used directly in the Dual

Luciferase assay system (Promega), which depends on

sequential measurements of firefly and Renilla lucif-

erase activities in specific substrates (beetle luciferin

and coelenterazine, respectively). Quantification of

luciferase activities and calculation of relative ratios

were carried out manually with a luminometer.

Plasmids

The entire coding sequence of DFNA5 cDNA was

amplified by PCR using KOD-Plus DNA polymerase

(Toyobo), and initially cloned into pCR-Blunt II-

TOPO (Invitrogen). The construct plasmid was con-

firmed by sequencing. Then the EcoRI-digested DNA

fragment from the pCR-Blunt II-TOPO plasmid,

which includes the entire coding region of DFNA5,

was inserted into the EcoRI site of pcDNA3.1(+)

(Invitrogen) to prepare the plasmids of pcDNA3.1(+)-

sense-DFNA5 and pcDNA3.1(+)-antisense-DFNA5

for colony formation assay, or into the EcoRI site of

pCMV-tag2A (Stratagene) to prepare the plasmid of

pCMVtag2A/DFNA5 for examination of subcellular
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localization using anti-FLAG antibody, or into the

EcoRI site of pIRES2-EGFP (BD Bioscience) to pre-

pare the plasmid of pIRES2-DFNA5 for establishing

the stable transformant expressing the EGFP signal

that represents the expression level of DFNA5 mRNA.

Primer sequences are forward, 5¢-AATGTTTGCC

AAAGCAACCAG-3¢; reverse, 5¢-CATCATGAATG

TTCTCTGCCT-3¢.

Western blotting

For preparation of whole-cell lysates, adherent and

detached cells were collected and lysed in chilled

RIPA buffer [1% NP40, 50 mM Tris–HCl at pH8.0,

150 mM NaCl, 0.5% DOC, 0.1% SDS, 1 mM phenyl

methylsulphonyl fluoride (PMSF)] for 30 min on ice.

Homogenates were centrifuged for 15 min in a micro-

centrifuge at 4�C and the supernatants were collected

and boiled in 5· SDS sample buffer (125 mM Tris–HCl

at pH 6.8, 4% SDS, 20% glycerol, 10% b-mercapto-

ethanol and 0.4 mg/ml Bromophenol Blue). Each

sample (10 lg) was loaded onto a 12% SDS–poly-

acrylamide gel electrophoresis (PAGE) gel and blotted

onto a nitrocellulose membrane (Amersham). Protein

bands on Western blots were visualized by chemilu-

minescent detection (ECL plus; Amersham).

Immunocytochemistry

Adherent cells were fixed with 4% paraformaldehyde

in PBS and permeabilized with 0.2% Triton X-100 in

PBS for 5 min at room temperature. The cells were

then covered with blocking solution (3% BSA/PBS

containing 0.2% Triton X-100) for 30 min at room

temperature and incubated with mouse anti-FLAG

antibody (diluted 1:250) in blocking solution for 60 min

at room temperature. Primary antibody was stained

with rat anti-mouse secondary antibody conjugated to

fluorescein isothiocyanate (FITC; diluted 1:1,000) for

1 h at room temperature, stained with PI and visual-

ized with a Radiance 2000 (Bio-Rad).

Semi-quantitative RT-PCR analysis

The RT-PCR exponential phase was determined on

15–30 cycles to allow semi-quantitative comparisons

among cDNAs developed from identical reactions.

Each PCR regime involved a 5-min initial denaturing

step at 94�C, followed by 23 cycles (for DFNA5) or 17

cycles (for b2MG) at 94�C for 30 s, 55�C for 30 s and

72�C for 30 s on a Gene Amp PCR system 9700 (Ap-

plied Biosystems, Foster City, CA, USA). Primer se-

quences were, for DFNA5: forward, 5¢-ACCTTGT

GGCCTTCCTGCA-3¢ and reverse, 5¢-GACTAATGT

CAGCTGAGGCA-3¢; and for b2MG: forward, 5¢-TA

GCTGTGCTCGCGCTACT-3¢ and reverse, 5¢-GCG

CTACTCTCTCTTCTG-3¢.

Colony-formation assay

H1299 and T98G cells were plated at 1·105 cells per dish

in 10-cm culture dishes 24 h before transfection. For

each expression vector [pcDNA3.1(+)-sense-DFNA5,

pcDNA3.1(+)-antisense-DFNA5, or pcDNA3.1(+)],

6 lg was transfected using 18 ll of FuGENE6 reagent

(Roche). Forty-eight hours later, the harvested cells

were diluted and replated in 10-cm culture dishes.

Transfected cells were allowed to grow in the presence of

0.8 mg/ml G418 (GIBCO) for 2 weeks. The colonies

formed from each cell were fixed with 10% formalin,

stained with crystal violet, and counted. To confirm the

expression of DFNA5 in each dish, RT-PCR was con-

stantly performed.

Stable transformants

H1299 cells (3·105cells) were plated in a 6-cm dish 12 h

before transfection of 2 lg of each expression vector

(pIRES2-DFNA5 or pIRES2-EGFP) using 6 ll of

FuGENE6 reagent (Roche). Forty-eight hours later,

the harvested cells were diluted and replated in 10-cm

culture dishes. Stable transformants were selected in

the presence of 0.8 mg/ml G418 (GIBCO). Resistant

clones were expanded, selected for EGFP and tested

for DFNA5 by RT-PCR. At least 20 colonies were

tested in each case.

Apoptosis assay

Cells were trypsinized, washed, collected and fixed

with 70% ethanol at the indicated times. Fixed samples

were centrifuged, treated with RNase (1 mg/ml), and

resuspended in propidium iodide (50 lg/ml). The

stained cells were analyzed on a Becton Dickinson

FACScan flow cytometer. The sub-G1 fraction of the

cells was counted as the apoptotic cells, and the pro-

portion of the apoptotic cells to the total cells was

indicated as percentage.

p53 knock-out mice

p53-deficient mice were a gift from Dr. Aizawa, Center

for Developmental Biology, RIKEN (Tsukada et al.

1993). p53 (+/+) and p53 (–/–) mice were irradiated by

10 Gy gamma-rays, and the indicated organs were iso-

lated 24 h after irradiation. Total RNAs were purified
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from the tissues, from which cDNAs were synthesized,

and were subjected to RT-PCR analysis. All mouse

procedures were carried out according to the recom-

mendations of the Institutional Animal Care and Use

Committee of the National Cancer Center at Tsukiji,

Japan.

Results

In order to identify the additional p53-regulated genes,

we applied microarray analysis for screening the p53-

inducible transcripts in a hepatocellular carcinoma cell

line (HepG2) infected with adenovirus p53 (Ad-p53),

adenovirus p53-46F (Ad-p53-46F), or adenovirus

EGFP (Ad-EGFP). p53-46F was previously demon-

strated to be an activated form of p53 with an en-

hanced ability to induce p53-dependent apoptosis

(Nakamura et al. 2006). The RNAs were isolated from

the infected cells at 0, 6, 12, 24, and 48 h post-infection

and were subjected to microarray analysis. As shown in

Fig. 1a, the expression of the p53 mRNA increased in a

time-dependent manner in the cells that were infected

with Ad-p53 or Ad-p53-46F (Fig. 1a). The p21/WAF1

mRNA was also inducible in concert with the expres-

sion of p53 in these cells (Fig. 1a). In this system, al-

though nearly 100 genes were likely to be up-regulated

by p53, we focused on the expression of the DFNA5

gene, because the expression of DFNA5 showed a

clear increase in a p53- or p53-46F-dependent manner

(Fig. 1a). The gene was previously reported to be

responsible for autosomal-dominant, nonsyndromic

hearing impairment.

To confirm the results of the microarray analysis, we

performed a Northern blot analysis. As shown in

Fig. 1b, the expression of DFNA5 was specifically in-

duced by exogenous p53 protein derived from either

Ad-p53 or Ad-p53-46F; these observations are consis-

tent with those of the microarray analysis.

To examine whether endogenous p53 activates the

transcription of DFNA5 in response to genotoxic stres-

ses, we established a p53 knock-down (HepG2-p53-KD)
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Fig. 1a–c Identification of DFNA5 as a p53-inducible gene. a
Identification of DFNA5 as a p53-inducible gene by microarray
analysis. The expression of DFNA5, p21/WAF1, and p53 mRNA
in HepG2 cells at the indicated times after infection with Ad-
p53-WT, Ad-p53-46F, and Ad-EGFP are indicated by the green
and red intensities of the microarray analysis. The red and green
intensities indicate up- and down-regulated expression of the

genes, respectively. b, c Northern blot analysis of DFNA5
mRNA. The expression of DFNA5 mRNA in HepG2 cells
infected with Ad-p53-WT, Ad-p53-46F, and Ad-EGFP at the
indicated times after infection (b), and in HepG2-p53-Cont and
HepG2-p53-KD cells at the indicated times after treatment with
1 lg/ml adriamycin (c). p21/WAF1 and b-actin were used as the
positive and loading controls, respectively
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cell line derived from a hepatoblastoma cell line (HepG2

that contains wild-type p53) in which the expression level

of p53 was inhibited by siRNA. We also established a

control cell line that was infected with a retrovirus and

was devoid of any knock-down sequences (HepG2-p53-

Cont). The expression level of p53 protein was clearly

elevated in the HepG2-p53-Cont cells in response to

DNA damage whereas it was not at all in the HepG2-

p53-KD cells (data not shown). In concert with the

expression of p53, the expression of DFNA5 showed an

increase in the HepG2-p53-Cont cells but not in the

HepG2-p53-KD cells, although both the cell types were

treated with 1 lg/ml adriamycin (Fig. 1c). This implies

that endogenous activated p53 transactivated the

DFNA5 gene.

Further, we examined whether the expression of

DFNA5 is inducible in response to various cellular

stresses in a p53-dependent manner. Both HepG2-p53-

Cont and HepG2-p53-KD cells were treated with

H2O2, UV (30 J/m2) or gamma rays (50 Gy), and the

expression level of DFNA5 was examined by RT-PCR.

As shown in Fig. 2, the expression of DFNA5 as well as

p21/WAF1 mRNA was elevated in response to all

three types of cellular stresses in the HepG2-p53-Cont

cells but not in the HepG2-p53-KD cells. These results

suggest that the transcription of DFNA5 is activated by

endogenous p53 in response to various cellular stresses.

To determine whether the transcription of DFNA5

is directly regulated by p53, we searched for candidate

p53-binding sequence(s) in the genomic region of the

DFNA5 gene. Eventually, we found four possible

sequences in intron 1 that showed an approximately

75% or greater match to the consensus p53-binding

sequence, i.e., two copies of the 10-bp motif, 5¢-PuPu-

PuC(A/T)(A/T)GpyPyPy-3¢, separated by any 0- to 13-

bp sequence (Fig. 3a). To evaluate the in vivo binding

of p53 with these sequences, we performed a chromatin

immunoprecipitation (ChIP) assay for these sequences.

A protein complex including the p53 protein and its

associated genomic DNAs was immunoprecipitated

with an anti-p53 antibody, and the genomic DNAs

were subjected to PCR analysis for the four candidate

sequences. As indicated in Fig. 3b, the fragments

containing the BS1, BS2, and BS3 sequences were

amplified with the precipitated genomic DNAs,

whereas that containing the BS4 sequence was not; this

suggests that BS1, BS2, and BS3 probably interact with

the p53 protein in vivo.

In order to determine whether BS1, BS2, or BS3 is

responsible for p53-dependent inducibility of DFNA5,

each 300- to 400-bp DNA fragment containing either

BS1, BS2, or BS3 was cloned upstream to the SV40-

promoter in the pGL3-promoter vector (Promega,

Madison, WI, USA); the new vectors were designated

as pGL-pro-BS1, pGL-pro-BS2 and pGL-pro-BS3,

respectively. Either pGL-pro-BS1, pGL-pro-BS2, or

pGL-pro-BS3 was cotransfected with the wild-type p53

expression plasmid (WT-p53) into H1299 (p53-null)

cells. As shown in Fig. 3c, the transcriptional activity of

luciferase was strongly enhanced only when pGL-pro-

BS1 was cotransfected with WT-p53. In contrast, the

cotransfection of pGL-pro-BS2 or BS3 with WT-p53

DFNA5

UV

H2O2

γ-ray

0 6 12 24 48 0 6 12 24 48
HepG2-p53-Cont HepG2-p53-KD

(hr)

p21waf1

0 6 12 24 48 0 6 12 24 48 (hr)
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HepG2-p53-Cont HepG2-p53-KD

(hr)

β2-MG

0 6 12 24 48 0 6 12 24 48
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H2O2

γ-ray

HepG2-p53-Cont HepG2-p53-KD

Fig. 2 Endogenous p53-
dependent induction of
DFNA5 transcription in
response to various cellular
stresses. The expression of the
DFNA5 mRNA is indicated
by semi-quantitative RT-PCR
in HepG2-p53-Cont and
HepG2-p53-KD cells at the
indicated times after
treatment with H2O2

(100 lM), UV (30 J/m2), or c-
rays (50 Gy). p21/WAF1 and
b-MG were used as the
positive and loading control,
respectively. The PCR cycles
for DFNA5, p21/WAF1, and
b-MG were 24, 19, and 18,
respectively
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did not reveal any increase in the luciferase activity

(Fig. 3c). Moreover, mutant p53 did not activate the

transcription of pGL-pro-BS1 at all. Taken together,

these results indicate that BS1 is clearly a p53-respon-

sive sequence of the DFNA5 gene and that DFNA5 is a

bona fide target of the tumor suppressor p53.

To investigate the role of DFNA5 in p53-mediated

functions, we initially examined the subcellular locali-

zation of the DFNA5 protein. For this purpose, we

designed a plasmid to express DFNA5 with a FLAG-

tag at the N-terminus (N-FLAG-DFNA5). The N-

FLAG-DFNA5 plasmid was transfected into HepG2

cells, and the protein was immunostained with an anti-

FLAG antibody. As indicated by Western blotting in

Fig. 4a, the DFNA5 protein was highly expressed in

HepG2 cells transfected with N-FLAG-DFNA5. Fur-

thermore, in the same cells, an enormous proportion

showed strong staining of the protein in the cytoplasm,

and in a subset of the cells, the signal was detected in

the nucleus as well (Fig. 4b). Since the previous study

reported that GFP-DFNA5 was localized in cytoplasm

(Van Laer et al.2004), and the antibody against

endogenous DFNA5 is not still available, we suggest

that DFNA5 may be a cytoplasmic protein; however,

the observation should be confirmed by the antibody

that reacts with endogenous DFNA5.

Next, we examined if overexpression of DFNA5 af-

fected the growth of cancer cells. We prepared two

plasmids that were designed to express sense and anti-

sense DFNA5, i.e., pcDNA3.1(+)-sense-DFNA5 and

pcDNA3.1(+)-antisense-DFNA5, respectively. These

plasmids and the empty vector were transfected into a

lung-cancer cell line (H1299) and a glioblastoma cell

line (T98G). As shown in Fig. 5a, although we were not

able to examine the protein level of DFNA5, we con-

firmed that the mRNAs of the sense and antisense
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DFNA5 sequences were expressed in the H1299 cells.

The cells were then cultured in the presence of G418

and the colonies were counted 2 weeks later. We ob-

served the growth suppression effect of DFNA5 in the

H1299 cells to some extent (Fig. 5b). In the T98G cells,

there was no significant difference in the colony number

between the sense and antisense DFNA5 plasmids

(Fig. 5b).

The down-regulation of DFNA5 expression was

previously reported to contribute to acquired etoposide

resistance in melanoma cells, implying that DFNA5

may play a positive role in etoposide-induced apoptosis

(Lage et al. 2001). On the other hand, in the present

study, we have clearly demonstrated that the DFNA5

gene is a direct target gene of the tumor suppressor p53.

Therefore, we postulated that DFNA5 might be in-

volved in the p53-regulated cellular response to DNA

damage. To validate this hypothesis, we have estab-

lished a stable transformant expressing DFNA5 using

the H1299 cells (p53-null). The DFNA5 sense sequence

was cloned into the pIRES2-EGFP vector that has the

internal ribosomal site of the encephalomyocarditis

virus between the multiple cloning site (MCS) and the

EGFP gene to be translated from a single bicistronic

mRNA. Therefore, it is possible to monitor the

expression of DFNA5 by checking the EGFP signal.

Eventually, we selected two independent clones:

pIRES-DFNA5-18 and pIRES-DFNA5-21. As indi-

cated in Fig. 6a and b, the former expresses DFNA5

mRNA at very low levels, whereas the latter expresses it

at higher levels. Using these cell lines, we examined the

apoptotic cells after treatment with 1 lg/ml etoposide in

the presence or absence of wild-type p53. Unexpectedly,

the expression of DFNA5 inhibited etoposide-induced

apoptosis in the absence of p53 (Fig. 6c). However, in

the presence of p53, high levels of DFNA5 expression

enhanced etoposide-induced apoptosis in the late phase

(Fig. 6d). These results suggest that DFNA5 may play

dual roles in etoposide-induced apoptosis. That is, in the

absence of p53, DFNA5 contributes to the resistance of

etoposide-induced apoptosis, whereas in the presence of

p53, DFNA5 may be positively involved in p53-

mediated apoptosis in response to etoposide-induced

DNA damage.

The most important question is how and where does

DFNA5 function as a mediator of p53? To address this

issue, we examined the p53-dependent induction of

DFNA5 in various tissues of mice. We irradiated p53(+/

+) and p53(–/–) mice with gamma rays, and the RNAs

were isolated from the thymus, colon, brain, spleen, and

small intestine 24 h after radiation. Interestingly, p53-

dependent induction of DFNA5 in response to DNA
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Fig. 4a, b Subcellular
localization of the DFNA5
protein. a Western blot
analysis of the DFNA5
protein. N-FLAG-DFNA5
and N-FLAG-empty plasmids
were transfected into H1299
cells and the cell lysates were
subjected to Western blot
analysis. The expression of
the DFNA5 protein was
detected with the anti-FLAG
antibody in the cells
transfected with N-FLAG-
DFNA5 but not in the cells
with N-FLAG-empty
plasmids. b
Immunocytochemical analysis
of the DFNA5 protein. In the
same cells as in a, the DFNA5
protein was immunostained
with the anti-FLAG antibody
and detected by the FITC
signal (green). The nuclear
DNA was stained with PI
(red). The nuclear staining of
DFNA5 is indicated by
arrows
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damage was observed in the colon (Fig. 7). Moreover,

p53-dependent expression of DFNA5 was observed in

the brain and colon in the absence of DNA damage

(Fig. 7). These data strongly suggest that DFNA5 may

play an important role in the p53-mediated cellular

response to DNA damage in various tissues other than

the cochlea.

Discussion

It has been previously reported that the down-regu-

lation of DFNA5 contributes to acquired etoposide-

resistance in melanoma cells (Lage et al. 2001).

Etoposide is a DNA topoisomerase II inhibitor that

induces double-strand DNA breaks, resulting in

apoptosis in cancer cells. Therefore, etoposide is one

of the commonly used anticancer drugs in cancer

therapy. In one study, DFNA5 mRNA was identified

by utilizing a differential display method, and its

expression in the etoposide-resistant human mela-

noma cell line MeWo-ETO-1 was found to be

remarkably decreased as compared to that in the

parental nonresistant human melanoma cell line

MeWo (Lage et al. 2001). Further, it was demon-

strated that the enforced expression of DFNA5 in

MeWo-ETO-1 cells showed approximately 30–35%

increased sensitivity to etoposide as compared to that
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Fig. 6a–d Positive and negative roles of DFNA5 in etoposide-
induced cell death and its p53-dependency. a The expression
levels of EGFP in the transformed cell lines. The expression
levels of EGFP in two independent clones, pIRES2-DFNA5-18
and pIRES-DFNA5-21, were found to monitor the expression
levels of DFNA5. b The expression levels of DFNA5 mRNA in
the transformed cell lines. RT-PCR results indicated the
expression levels of DFNA5 mRNA in pIRES2-DFNA5-18
and pIRES2-DFNA5-21. c Antiapoptotic role of DFNA5 in
etoposide-induced cell death in the absence of p53. Each cell line
was treated with 1 lg/ml etoposide. Apoptotic cells were

evaluated by FACS scan analysis at the indicated times after
the treatment. d Proapoptotic role of DFNA5 in etoposide-
induced cell death in the presence of p53. Each cell line was
infected with Ad-p53 (10 moi), and 12 h later, the cells were
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by FACS scan analysis at the indicated times after the treatment.
All experiments were repeated independently three times in
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Fig. 7 Potential in vivo role of DFNA5 in p53-regulated
response to DNA damage. RT-PCR results indicated expression
levels of m-DFNA5 and m-p21/WAF1 mRNA in various tissues,
including thymus, colon, lung, brain, spleen, and small intestine

tissues. Each tissue was isolated from p53+/+ or p53–/– mice 24 h
after irradiation with c-ray (10 Gy). The number of cycles for
each RT-PCR is indicated in parentheses
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in the parental MeWo-ETO-1 cells; this increased

sensitivity is responsible for the increase in the

number of apoptotic cells and the caspase-3 activity

(Lage et al. 2001). Therefore, it was suggested that

DFNA5 is positively involved in DNA damage-in-

duced apoptosis. In contrast, in the present study, the

ectopic expression of DFNA5 alone in H1299 cells

reduced the number of etoposide-induced apoptotic

cells (Fig. 6c, left), thereby suggesting that DFNA5

may have some role in cell survival following the

genotoxic stress caused by etoposide in H1299 cells.

Conversely, the coexpression of DFNA5 with wild-

type p53 in the H1299 cells enhanced cell death 72 h

after DNA damage (Fig. 6c, right), as seen in the

case of MeWo-ETO-1 cells.

How do we explain such contrasting dual roles of

DFNA5 in the cellular response to DNA damage? Our

data in the case of the H1299 cells clearly indicated

that DFNA5 might contribute to cell survival in the

absence of p53, whereas in the presence of p53,

DFNA5 may exert a positive role in DNA damage-

induced cell death. The role of DFNA5 in genotoxin-

induced cell death is probably dependent on the pres-

ence or absence of p53.

Although p53 mutations are very rare in most mel-

anomas, the melanoma cell line MeWo was reported to

contain a p53 nonsense mutation at codon 341 (Albino

et al. 1994). According to our hypothesis, theoretically,

if the function of p53 is completely impaired in MeWo

cells, DFNA5 may not contribute to DNA damage-

induced apoptosis in these cells. In other words, if

MeWo cells do not contain mutant p53, the expression

of DFNA5 in the etoposide-resistant MeWo-ETO-1

cells might increase the number of apoptotic cells in

response to etoposide-induced DNA damage. On the

other hand, it may be possible that the MeWo mutant

might not cause a complete loss of the p53 functions.

Thus, a small increase (30–35%) in sensitivity was

obtained by the expression of DFNA5 despite the

presence of mutant p53. Consistent with this notion, a

very recent study reported that a small pharmacologi-

cal compound activated the transcription of p21/

WAF1, Bax, and PUMA in MeWo cells, resulting in

the activation of the p53-dependent apoptotic pathway

(Ho and Li 2005). This observation is in agreement

with the idea that the function of p53 in MeWo cells

may not be completely impaired.

Thus far, the physiological function of DFNA5 re-

mains to be elucidated. The sequence of the DFNA5

protein revealed no significant homology with any

other protein. However, a study has revealed that

DFNA5 shares sequence similarity with the Mcm10

family of DNA replication proteins in a small region

(~50 a.a.) of a conserved zinc finger-like motif referred

to as the CCCH domain, which is essential for the

Mcm10 function (Gregan et al. 2003). Previously, it

was known that a mutation in DFNA5 is associated

with nonsyndromic hearing impairment and that it

generates a new protein that is derived from the

DFNA5 transcript lacking exon 8. In the above-men-

tioned study, the ectopic expression of mutant DFNA5

led to cell-cycle arrest at the G1 or early S phase in

yeast cells, whereas overexpression of wild-type

DFNA5 did not reveal any change in the phenotype,

implying that DFNA5 mutation results in a gain of

function and that mutant DFNA5 may have a new

deleterious function (Gregan et al. 2003). Further,

another study has recently demonstrated that overex-

pression of disease-associated mutant DFNA5 in

mammalian cells induces cell death; however, wild-

type DFNA5 does not (Van Laer et al. 2004). There-

fore, mutations of the DFNA5 gene that occur in pa-

tients with hearing impairment are unlikely to result in

loss of function of wild-type DFNA5.

Next, in order to address the question regarding the

physiological function of the DFNA5 protein, DFNA5

knock-out (KO) mice were generated and analyzed

(Van Laer et al. 2005). Although specific deletion of

exon 8 alone was attempted in order to mimic the

human disease in these mice, the DFNA5 protein that

is derived from the resulting transcript lacking exon 8

was not detected; this implies that the DFNA5-KO-

mice lacked the DFNA5 protein completely (Van Laer

et al. 2005). Surprisingly, although there were some

significant differences in the number of fourth row

outer hair cells between DFNA5-WT and DFNA5-KO

mice, neither hearing impairment nor other remark-

able abnormalities were detected in the DFNA5-KO

mice, as observed in the case of p53-KO-mice (Van

Laer et al. 2005). These observations supported the

notion that the mutation of the DFNA5 gene that oc-

curs in hearing impairment does not cause loss of

function of wild-type DFNA5 but rather acquires a

new toxic function. The data also suggest the possibility

that the normal function of wild-type DFNA5 is not

related to hearing and that wild-type DFNA5 may play

a small role in the cochlea.

Furthermore, does DFNA5 mediate the p53-regu-

lated cellular response outside the cochlea? To address

this question, we examined the p53-regulated induction

of DFNA5 mRNA in response to gamma-ray irradiation

in various tissues, including the thymus, colon, brain,

spleen, lung, and small intestine. Interestingly, the

expression level of DFNA5 mRNA was remarkably in-

creased 24 h after gamma-ray irradiation in the colon of

p53(+/+) mice but not in that of p53(–/–) mice, implying

662 (2006) 51:652–664

123



that DFNA5 may play a role in p53-mediated cellular

response to DNA damage in the colon. Intestinal tissues,

including the colon and small intestine, are well-known

target organs for p53-induced apoptosis following gam-

ma-ray irradiation (Merritt et al. 1994; Fei et al. 2002).

Therefore, along with our observations on the involve-

ment of DFNA5 in etoposide-induced cell death and

p53-regulated expression, we speculate that DFNA5

might be one of the mediators of p53 that is involved in

p53-induced apoptosis in response to DNA damage.

In the present study, we reported an unexpected role

of DFNA5 as a p53 target gene in the p53-regulated

cellular response to DNA damage. The mechanism for

this phenomenon still remains unclear. However, a

clarification on the role of DFNA5 in the cellular re-

sponse to DNA damage will certainly shed light on the

mechanism of the p53-regulated apoptotic pathway.

Further, careful investigation is necessary to unravel

the role of this interesting molecule in tumorigenesis.
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