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Abstract In genomewide linkage scans for complex dis-
eases involving many loci with small genetic effects, it
may be the case that no loci reach conventional statistical
significance. A complementary method of evaluating
linkage results, locus counting, may provide evidence for
the existence of a number of genetic loci in these cases.
Sib-pair study designs are often used in genomewide
linkage scans, but because all genotype configurations
are consistent with Mendelian inheritance, genotyping
error will go largely undetected. Previous work on the
effect of genotyping error has focused on a single disease
locus. We considered the effect of two levels of geno-
typing error on genomewide evidence for linkage by
using the simulated GAW 13 data. For affected sib-pair
and non-parametric quantitative trait study designs, a
0.5% genotyping error rate reduced the number of
independent linkage regions towards that expected under
the null hypothesis of no linkage. A 2% genotyping error
rate yielded less independent linkage regions than ex-
pected under the null hypothesis of no linkage. For a
quantitative trait analysed using a parametric regression-
based method, there was very little erosion of the linkage
signal, even for error rates as high as 2%.

Keywords Genotyping error Æ Locus counting Æ QTL Æ
ASP Æ Microsatellites Æ Simulation

Introduction

For complex diseases where multiple genes of modest
effect size may be involved, many studies will have no

loci reaching conventional statistical significance (Alt-
müller et al. 2001). Evidence for multiple loci with
relatively small genetic effects can be obtained using a
locus-counting method (Wiltshire et al. 2002). This
approach has been used in several studies (Caulfield
et al. 2003; Frayling et al. 2003; Iyengar et al. 2004a,
2004b) to provide complementary evidence for linkage.
In this approach, for a given LOD score, the number of
independent regions of linkage (IRLs) expected under
the null hypothesis of no linkage is determined by
Monte Carlo simulation, and the number of indepen-
dent linkage regions observed in the data is compared
with this.

In all genetic studies, there will be some strategy
employed to verify the accuracy of the genotyping.
This may be achieved by checking that allele fre-
quencies are in Hardy–Weinberg equilibrium (Hosking
et al. 2004), comparing duplicated samples, indepen-
dently calling alleles or by checking that the genotypes
are consistent with Mendelian inheritance (Ewen et al.
2000). For diseases with a late age-at-onset, genome-
wide linkage studies utilising sibling pairs are a com-
mon study design due to the unavailability of parental
DNA. Sib-pair study designs have the disadvantage
that genotyping error is difficult to detect since all
genotypic configurations are consistent with Mendelian
inheritance. Methods for detecting unlikely genotypic
configurations are available (Abecasis et al. 2002;
Douglas et al. 2000), but in the absence of genotypes
from other family members, many genotyping errors in
sib-pair studies will go undetected. It is difficult to
gauge the level of genotyping error in most genetic
studies, as these figures are not routinely published. In
a study to determine the levels and types of genotyp-
ing error typically encountered with microsatellite
markers, Ewen et al. (2000) genotyped tens of thou-
sands of microsatellite markers within families using
both a commercial and custom-made marker set. By
inheritance and concordance checking, they found
genotyping error rates of 0.25% and 1.4% for the
commercial and custom-made sets, respectively.
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Clearly, these do not represent all the errors in the
data, only those that are inconsistent with Mendelian
inheritance or proved discordant when repeat samples
were typed. The true error rates are almost certainly
higher than the two figures quoted.

It has been demonstrated by simulation that geno-
typing error can substantially reduce LOD scores,
particularly for affected sib-pair (ASP) designs (Abec-
asis et al. 2001a; Sullivan et al. 2003). Studies
undertaken so far have simulated data for a single
disease-linked locus and investigated the effect of
genotyping error on the LOD score around this locus.
We are interested in the effect of genotyping error on
the number of linkage regions across the genome. Is the
effect of a given level of genotyping error the same in
genomewide terms as it is on a single locus? The locus-
counting approach is becoming more widely used, and
it is important to know the effect of genotyping error
on this method. Could an inconclusive result be due to
levels of genotyping error in the range typically
encountered for microsatellite markers? We examine
the effect of genotyping error on the number of inde-
pendent linkage regions across the genome. The data
are simulated under a model incorporating multiple
disease loci of varying effect size under conditions
typically encountered in an initial genomewide linkage
scan using microsatellite markers. We consider study
designs involving both quantitative trait loci (QTL) and
ASP using multi-point calculations of IBD probabili-
ties. We also examine a two-point analysis method for
the ASP design.

Materials and Methods

Simulated data selection

The GAW 13 simulated data (Daw et al. 2003) mirror
data encountered in an initial genomewide linkage scan,
10-cM map, 399 polymorphic microsatellite markers.
The data were simulated without genotyping error. We
will refer to these data as the true data. The phenotype
we chose to analyse was the high-density lipoprotein
(HDL) trait, as it had 11 loci affecting the trait pheno-
type with a range of genetic effect sizes. The 11 loci were
distributed over seven chromosomes: three loci on
chromosome 17, two on chromosomes 1 and 9 and one
on chromosomes 3, 5, 11 and 21. For the quantitative
trait analysis, we selected 4,700 sib-pairs from the rep-
licates. We first adjusted for gender, smoking and
drinking status (covariates known to influence the sim-
ulated HDL value) and used the residuals to represent
the quantitative trait values. For the qualitative trait, we
selected only those sib-pairs where both exceeded some
threshold, chosen so as to provide a large enough
sample of 728 sib-pairs. The figure of 4,700 sib-pairs for
the quantitative trait was arbitrarily chosen so as to
provide enough sib-pairs for the qualitative trait anal-
ysis.

Linkage analysis methods

All linkage analyses were undertaken using MERLIN
(Abecasis et al. 2002). For the qualitative data, we per-
formed linkage analysis using the method of Kong and
Cox (1997) with a linear model. For the quantitative
trait, we considered both a parametric and non-para-
metric method of analysis. The parametric method is the
regression-based method of Sham et al. (2002). This
method requires estimates of the population mean,
variance and heritability. The sample values were used in
each case (sample heritability was estimated from a
variance components analysis of the true data). We
choose the method of Sham et al. (2002) rather than
variance components (VC) analysis because of the con-
siderable computational time required to perform VC
analysis on this many sib-pairs for 1,000 simulations
(estimated at over 80 days). We could find no other work
examining the effect of error on the method of Sham
et al. (2002) whereas the effect on a VC analysis has been
considered (Abecasis et al. 2001a), albeit under a single-
locus disease model. To allow a crude comparison, we
analysed 20 simulations using a VC method. For the
qualitative and the two quantitative trait analysis
methods, we undertook multi-point analysis. We also
performed two-point analysis for the qualitative trait.

Locus-counting method

For each analysis method, we counted the number of
independent regions showing linkage in the true data
across an appropriate range of LOD scores. Regions
were considered to be independent if their local maxima
were more than 40 cM apart (the same criterion as
Wiltshire et al. 2002). We then simulated 1,000 replicates
of the data by the gene-dropping method (implemented
in MERLIN, Abecasis et al. 2002) using the same
markers, genetic map distances and allele frequencies
under the null hypothesis of no linkage to any marker.
For each LOD score in the range we considered and for
each replicate, we counted the number of independent
genomic regions with a local maximum above the given
LOD score to obtain the empirical IRL distribution for
each LOD score. To assess statistical significance, we
could have used the 95th percentile of this empirical IRL
distribution for each LOD score. However, it has been
shown that for a given LOD score, the number of
independent linkage regions under the null hypothesis of
no linkage can be approximated by a Poisson distribu-
tion (Lander and Kruglyak 1995). Wiltshire et al. (2002)
validated the use of the Poisson approximation in the
sib-pair genome scan data they studied. Therefore, to
assess statistical significance for each LOD score, we
used the 95th percentile of the Poisson distribution with
mean given by the mean of the 1,000 replicates. We
chose to use the 95th percentile of the Poisson distri-
bution for ease of calculation, as we needed the mean
number of IRLs for each LOD score elsewhere.
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In the two-point case, we counted the number of loci
above a given LOD score and did not take proximity to
other loci exceeding the threshold into account. Because
the Poisson approximation in this case may not be
appropriate, we used the 95th percentile of the empirical
distribution of the number of markers exceeding the
given LOD score as a measure of statistical significance.
This guarantees a valid measure of statistical significance
whether or not the Poisson approximation is valid in this
case.

Incorporating genotyping error

For each analysis, we considered two rates of allelic
error: 0.25% and 1%. These correspond to genotyping
error rates of approximately 0.5% and 2%, respectively.
The lower figure might represent an average genotyping
error rate and the higher figure an upper boundary on
the unknown error rate (based on the figures of Ewen
et al. 2000). To allow comparison with other work in this
area, we refer to the genotyping error rate rather than
the allelic error rate in the rest of this paper.

There are several ways that genotyping error could
have been incorporated into the GAW data. We wanted
to use a simple model that would be general enough to
allow for some of the most common types of error.
Ewen et al. (2000) reported the type of microsatellite
genotyping errors found after concordance and inheri-
tance checking. They classified the genotyping errors
into five categories: microsatellite mutations, priming
site mutations, missed alleles, call errors and sample
swaps. Sample swaps would lead to either one or more,
probably two, of the alleles being misread. In genome-
wide sib-pair linkage scans, many of these will be de-
tected by relationship checking software such as GRR
(Abecasis et al. 2001b) and RELATIVE (Goring and
Ott 1997). Microsatellite mutations would generally
lead to a unit repeat change in one of the alleles. Call
errors (further classified as binning, leaking, low fluo-
rescence, etc.) could lead to different types of genotyp-
ing error (homozygote to a heterozygote, heterozygote
to a different heterozygote, etc.). The missed alleles and
priming site mutations would generally lead to hetero-
zygote genotypes being labelled as homozygote geno-
types. We could have allowed each of these different
types of error in our error model, but it is not clear what
probabilities to assign to these different types of error.
Because of the lack of studies focusing on this issue, we
kept our model simple by allowing single allele changes
rather than specifying probabilities for whole genotype
changes. Our model allowed each allele to be misread
with a fixed probability. If an allele was incorrectly
read, then it was declared as one of the observed alleles
at that marker with equal probability. One could change
to another allele with probability equal to the allele
frequency, but there is no evidence that this model
reflects the true situation any more than the model we

used. If an allele is misread, why is it more likely to be
read as one of the more common alleles? Our model
allows for the possibility of a heterozygote being mis-
read as a homozygote for one of the alleles and also
allows (albeit with low probability) for heterozygote
genotypes to be misread as heterozygote genotypes for
different alleles (to represent undetected sample swaps).
A drawback of our error model is the under-represen-
tation of missed allele and priming-site mutation type
errors (where heterozygote genotypes may be misread as
homozygote genotypes) according to the rates estimated
by Ewen et al. (2000).

For each of the two genotyping error rates, we gen-
erated 1,000 replicates of the true data in MERLIN
(Abecasis et al. 2002) and incorporated genotyping error
into each simulation, as described. For each error rate
and for a set of LOD scores covering the range of those
observed, we counted the number of regions showing
linkage for each simulation and averaged over the 1,000
replicates. In a true genome scan, allele frequencies
ought to be calculated taking account of the familial
relationships. Introducing genotyping error changes the
allele frequencies, and so we would need to estimate the
allele frequencies taking account of the familial rela-
tionship for each of the 1,000 replicates separately. This
is not a realistic proposition in a genome scan comprised
of 4,700 sib-pairs. We estimated allele frequencies for the
replicates with genotyping error by using all individuals
for each replicate separately. In order to make a fair
comparison, we used the same method of allele fre-
quency estimation with the true data.

We obtained the mean number of IRLs (and conse-
quently the upper 5% tail of the Poisson distribution) by
simulation using the allele frequencies from the true
data. In a study that contained genotyping error, one
would observe the data with error and simulate the null
distribution based on the allele frequencies from these
observed data. We simulated the null distribution based
on allele frequencies from the true data containing no
errors. The allele frequencies in the true data and the
data with genotyping error will be different. Because of
the way that genotyping error was simulated, it ought
not to be clustered at particular markers, and because
the rates are relatively low, the differences in allele fre-
quencies should not be pronounced. We found that
minor changes in the allele frequency distribution had
very little effect upon the distribution under the null
hypothesis. It is therefore reasonable to compare the
results from the replicates with genotyping error with the
distribution under the null hypothesis simulated using
allele frequencies from the true data. As previously dis-
cussed, another potential genotyping error model in-
volves changing a misread allele to another allele with
probability equal to the allele frequency. One advantage
of this alternative genotyping error model is that the
expected allele frequencies of the data with simulated
genotyping error would be the same as the observed
data, thus obviating this problem.
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Results

The effect of genotyping error on the actual number of
IRLs for the QTL non-parametric, QTL regression-
based and ASP cases analysed using multi-point IBD
calculations are shown in Fig. 1. In all three cases, the
number of independent linkage regions observed in
the true data generally exceeds the 95th percentile of the
appropriate Poisson distribution. Thus, in each case, it
would be concluded that there is significant evidence for
the presence of genetic loci contributing to the disease
phenotype. It is difficult to compare the three methods
directly, as there is varying evidence across the LOD
score range in each case. To allow comparison across the
different analysis types, the percentage of the number of
IRLs retained is shown in Fig. 2. At both error rates, the

effect of error in the ASP case is more severe than in
both of the QTL cases.

Non-parametric QTL

For the non-parametric QTL method, the variation in
the percentage of the number of IRLs retained is much
less than in the ASP case. Apart from the very top end of
the LOD score spectrum, the effect of 0.5% genotyping
error is to reduce the number of IRLs by approximately
20–40%. With this level of genotyping error, the number
of IRLs is still well above the 95th percentile of the null
IRL distribution. At the higher rate of error, the number
of IRLs is generally less than the expected number under
the null hypothesis, removing all evidence of genetic loci
affecting the trait value. At this level of error, the
number of IRLs is, on average, reduced to 75% of the
number without error.

Regression-based QTL

For the regression-based method, the effect of error on
the percentage of IRLs retained is more complicated.
For some LOD scores, there is an increase in the number
of IRLs. With 0.5% genotyping error rate, the per-
centage decrease in the number of IRLs is generally less
than 20% and the increase generally less than 10%. The
effect of the larger error rate on the number of IRLs is
generally in the same direction as the lower error rate
but is more pronounced.

Fig. 1 a Number of independent regions of linkage (IRLs) for non-
parametric quantitative trait loci (QTL) analysis: solid line
corresponds to no error, solid line with circle to the expected
number under the null hypothesis of no linkage, short dashed line to
0.5% error, long dashed line to 2% error and solid triangles to the
5% tail value of the appropriate Poisson distribution. b Number of
IRLs for regression-based QTL analysis: solid line corresponds to
no error, solid line with circle to the expected number under the null
hypothesis of no linkage, short dashed line to 0.5% error, long
dashed line to 2% error and solid triangles to the 5% tail value of
the appropriate Poisson distribution. c Number of IRLs for
qualitative trait multi-point analysis: solid line corresponds to no
error, solid line with circle to the expected number under the null
hypothesis of no linkage, short dashed line to 0.5% error, long
dashed line to 2% error and solid triangles to the 5% tail value of
the appropriate Poisson distribution
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Qualitative trait

For the ASP method, even at the smaller level of error,
the number of IRLs decreases by more than 40% for
about a half of the LOD score domain. This low rate of
error brings the number of IRLs below the 95th per-
centile everywhere except for LOD scores exceeding 2
although the number of regions is still more than would
be expected under the null hypothesis of no linkage
across the whole LOD score range. At the higher error
rate, the reduction in the number of linkage regions is
more than 80% virtually everywhere, with a mean
retention of around 10%. This higher rate of error re-
moves all evidence of linkage such that the number of
IRLs observed is considerably less than that expected
under the null hypothesis for all LOD score values.

Comparing different QTL results

We looked at why the regression-based QTL method
leads to increased mean numbers of IRLs at certain
LOD scores but the non-parametric QTL method does
not. To compare with the VC case, we also analysed 20
replicates of the data with a 0.5% genotyping error rate

using the VC method implemented in MERLIN (A-
becasis et al. 2002). We determined some summary sta-
tistics for the effect of 0.5% genotyping error at two
markers on one of the chromosomes. We chose one
marker with a high and one with a low LOD score to see
if the effect of genotyping error varied with the size of
the LOD score. Table 1 shows the results for the high
and low LOD scores. Given in Table 1 are the true LOD
score, the mean and maximum LOD for the replicates
with 0.5% error (percentage increase compared with the
true LOD) and the number of replicates with a LOD
score greater than the true LOD score. We checked that
none of the replicates produced higher LOD scores than
the true score in the ASP case.

For the three QTL methods, the results show that it is
both the size of the increase and the probability that
genotyping error causes an increase that explains why
the regression-based method leads to a mean increase in
the LOD score whilst neither the non-parametric
method nor the VC method do. For QTLs at markers
with low LOD scores, the presence of genotyping error
will result in a greater chance of the error increasing the
LOD score compared with genotyping error around
markers yielding higher LOD scores. The size of the
effect is also likely to be greater around markers pro-
ducing low LOD scores. These findings are reinforced by
Fig. 1b. For the regression-based method, compared
with the case without error, genotyping error increases
the number of linkage regions only at lower LOD scores.
Due to the limited number of observations for the VC
analysis, the true LOD score is less than one standard
error away from the sample mean in both cases and so
the results must be treated cautiously. However, this
reduction in LOD score for the VC case in the presence

Fig. 2 a Percentage of independent regions of linkage (IRLs)
retained for non-parametric quantitative trait loci (QTL) analysis:
solid line corresponds to 0.5% error and short dashed line to 2%
error. b Percentage of IRLs retained for regression-based QTL
analysis: solid line corresponds to 0.5% error and short dashed line
to 2% error. c Percentage of IRLs retained for qualitative trait
multi-point analysis: solid line corresponds to 0.5% error and short
dashed line to 2% error

0

20

40

60

80

100

0

LOD

%
 o

f I
R

Ls
 r

et
ai

ne
d 

0.5% error

2% error

1 2 3

40

60

80

10

12

14

16

0 1 4

LOD

%
 o

f I
R

Ls
 r

et
ai

ne
d 

0.5% error

2% error

0
0 0.5 1 1.5 2 32.5

20

40

60

80

100

LOD

%
 o

f I
R

Ls
 r

et
ai

ne
d 

0.5% error

2% error

2 3 5 6

a b

c

333



of genotyping error is consistent with the observations
of Abecasis et al. (2001a).

Two-point analysis

We also performed a two-point ASP analysis. IBD
sharing probabilities were calculated at each marker
using only the genotype data for that marker. Ignoring
the inheritance information at surrounding markers has
the disadvantage that information content may be con-
siderably diminished but has the advantage of being
unaffected by genotyping error should it exist in sur-
rounding markers. Since the IBD probabilities were
calculated using the marker data only, we simply
counted the number of markers exceeding the LOD
score and did not take the LOD scores of neighbouring
markers into account. As a measure of statistical sig-
nificance, we used the 95th percentile of the empirical
distribution of the number of markers exceeding the
given LOD. The results are shown in Fig. 3. As in the
multi-point case with no error, the number of markers
exceeding a given LOD score is in the 5% tail of the
empirical distribution, providing evidence for genetic
effects across the entire LOD score range considered. A

genotyping error rate of 0.5% does not generally reduce
the number of markers below the 95th percentile for
most LOD scores. This was not the case for the ASP
multi-point analysis where this level of error brought the
number of IRLs below the 95th percentile, removing
much of the significant evidence for an excess in the
number of independent linkage regions. The effect of 2%
genotyping error is also less extreme in the two-point
compared with the multi-point case. For this error rate,
the number of markers with a LOD score above a given
value is similar to that obtained by simulating under the
null hypothesis of no linkage.

Effect of genotyping error on the position of the maxi-
mum LOD score

As well as looking at the effect of genotyping error on
the strength of evidence for linkage, we also investigated
the localisation of the true linkage peaks. The GAW
data contained 11 trait loci distributed over seven
chromosomes. All four (a two-point and three multi-
point) types of analysis without genotyping error cor-
rectly identified either four or five true loci with a LOD
score exceeding 1. Between three and nine false positives
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Fig. 3 Number of independent
regions of linkage (IRLs) for
qualitative trait two-point
analysis: solid line corresponds
to no error, solid line with circle
to the expected number under
the null hypothesis of no
linkage, short dashed line to
0.5% error, long dashed line to
2% error and solid triangles to
the 5% upper tail value of the
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Table 1 The effect of 0.5% genotyping error at high and low LOD scores for a quantitative trait loci (QTL).a VC variance components

LOD Mean Maximum Number exceeding true LOD

High LOD
QTL non-parametric 3.60 3.15 3.73 (3.6%) 4/1,000
QTL regression-based 4.59 4.55 5.35 (16.6%) 412/1,000
VC 5.71 5.67 6.32 (10.7%) 8/20
Low LOD
QTL non-parametric 0.670 0.507 0.74 (10.4%) 18/1,000
QTL regression-based 0.803 0.806 1.15 (43.2%) 491/1,000
VC 0.790 0.786 0.95 (20.2%) 9/20

aLOD represents the score without error; the last three columns refer to the simulations with error; in brackets, the percentage increase
over the true LOD
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were identified. For the two-point analysis, the average
marker spacing was 10 cM. For the multi-point analysis,
LOD scores were also calculated at two equally spaced
distances between all genotyped markers, as might be
done in a true linkage scan, to allow for more accurate
positioning of the maximum LOD score. Spacing be-
tween LOD score calculations was therefore 3.3 cM for
the multi-point analysis.

In the multi-point case, for each of the correctly
identified loci, we examined the LOD scores in a region
spanning five positions (16.5 cM) either side for each
replicate. Because of the greater spacing of points at
which LOD score calculations are performed in the two-
point analysis, we considered only two markers either
side of the true marker. We calculated the percentage of
replicates for which the position with the highest LOD
score in this region was different to the position identi-
fied in the analysis without genotyping error. As well as
examining how frequently the position of the maximum
LOD score changed in this region, we were also inter-
ested in the distance between the true position and the
suggested position for each replicate. We calculated the
percentage of replicates (where the position had been
incorrectly specified) in which the position of the maxi-
mum LOD score changed by more than one. For each
method of analysis, we combined the results for all the
correctly identified loci in the true data. The results are
given in Table 2.

For brevity, Table 2 gives the mean across all true
disease loci. There was considerable variation at indi-
vidual loci that was not explainable either in terms of
the size of the true LOD scores or in the level of
genotyping error. It might be expected that the pro-
portion of incorrectly specified positions and the size of
the misspecification would increase with the level of
genotyping error and that higher LOD scores would be
more robust to genotyping error in terms of localisa-
tion; this was not consistently observed. Although there
were no obvious patterns within the analysis methods,
there are generalisations that can be made between the
different methods. From Table 2 it is clear that at both
error rates, the regression-based QTL analysis was
most affected in terms of disease localisation. It had the
highest proportion of replicates that incorrectly speci-
fied the disease location and the highest proportion that

incorrectly specified by more than one position. The
multi-point analysis of the qualitative trait was the next
worst performer in terms of localisation, particularly at
the higher error rate. At the lower error rate, the
positions of the highest LOD scores for both the non-
parametric QTL and two-point analysis of the quali-
tative trait were largely unaffected by genotyping error.
At most, 5% of the replicates incorrectly specified the
position of the true locus and never by more than one
position. The non-parametric QTL method is clearly
the most robust of the multi-point methods in terms of
disease localisation. Even with a 2% genotyping error
rate, 85% of replicates correctly specify the location of
the disease gene, and of those that do not, 86% are
only 3.3 cM away. Although the proportion of incor-
rectly identified loci is quite low for the two-point
analysis, the consequences are potentially severe be-
cause of the spacing of the markers; however, where a
genome scan is undertaken, two-point analysis would
usually be used in conjunction with a multi-point
analysis of the trait.

Discussion

In our simulated genomewide linkage scan involving a
quantitative trait, where the Sham et al. (2002) method
implemented in MERLIN (Abecasis et al. 2002) was
used and a locus-counting approach employed as a
complementary method of assessing evidence for link-
age, the presence of 0.5–2% genotyping errors had very
little net effect on the number of IRLs across the whole
LOD score range. Indeed, at low LOD scores, geno-
typing error was found to increase the mean number of
IRLs. For the non-parametric quantitative trait analysis
implemented in MERLIN (Abecasis et al. 2002) and the
affected sib-pair design using the method of Kong and
Cox (1997), the effects were considerably more severe.

Our results, combined with those of Abecasis et al.
(2001a), show that genotyping error (percentage reduc-
tion) has a more severe effect upon the number of
linkage regions than on the actual LOD score at a dis-
ease-linked marker. From our own results (not shown),
we see that under an ASP study design, a locus pro-
viding evidence suggestive of linkage could remain sug-
gestive of linkage in the presence of a genotyping error
rate of 0.5%; a LOD score of 3.04 reduces to a mean
LOD score of 2.48 under a 0.5% genotyping error rate,
both of which are suggestive of linkage under the
guidelines suggested by Lander and Kruglyak (1995).
Using a locus-counting method, this level of error
changes the interpretation considerably. Where with no
error the locus-counting results provide complementary
evidence for a genetic basis for the disease, with just
0.5% error there is virtually no evidence of a genetic
component, as the number of independent linkage re-
gions is little more than that expected under the null
hypothesis of no linkage. So it is possible in ASP studies
for the results from a linkage scan to provide several loci

Table 2 The percentage of replicates for which the marker with the
greatest LOD score in a region surrounding a true locus is not the
correct marker. QTL quantitative trait loci

0.5% error
rate (%)a

2% error
rate (%)a

Non-parametric QTL 2 (0%) 15 (14%)
Regression-based QTL 33 (34%) 46 (40%)
Qualitative trait (multi-point) 6 (1%) 38 (34%)
Qualitative trait (two-point) 5 (0%) 13 (5%)

aIn brackets, the percentage of those replicates incorrectly speci-
fying the location in which the location is incorrectly specified by
more than one marker is given
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with results suggestive of linkage according to the con-
ventional genomewide significance levels (Lander and
Kruglyak 1995) but for the number of independent re-
gions showing evidence of linkage not to significantly
exceed the number expected under the null hypothesis of
no linkage. Using an ASP design, a lack of evidence
using the locus-counting method could be due to geno-
typing error at a rate of around 1%. The same com-
ments apply to the non-parametric QTL analysis
method although the genotyping error rate would
probably have to exceed 1–1.5% in order for all evidence
of genetic effects to be removed. Particularly for the ASP
case, using a locus-counting method may provide evi-
dence of genotyping error. If the number of independent
regions showing evidence of linkage is less than the null
across a substantial proportion of the LOD score range,
then this may indicate the presence of genotyping error.
Under an affected-sib-pair design using a two-point
analysis, the reduction in the number of linkage regions
is less than in the multi-point case, but error rates of 1–
2% would still make the results difficult to interpret.

In terms of localisation of disease genes, the robust-
ness of the regression-based method does not hold. It
performed worse than all the other methods in terms of
the proportion of replicates incorrectly specifying the
disease gene location and in terms of the distance of the
suggested location from the true location of the maxi-
mum LOD score. The consequences of this will depend
to some extent on the follow-up from the initial linkage
scan. Often, a further linkage analysis is performed using
a more dense set of markers in regions of interest to
further define a putative disease-linked locus. If these
new markers span a large enough distance (15 cM, say),
then the true position of the locus may be included
within this set.

The ASP design is more severely affected by error, as
error tends to reduce the mean IBD sharing. This reduces
the evidence for linkage. For the quantitative trait
methods, the presence of genotyping error can increase
the linkage signal and so the mean effect on the number of
IRLs is less severe. The implications of this are that in the
presence of genotyping error, some false positives may be
inflated under QTL designs and some true positive LOD
scores may be diminished. In the case of QTLs, the locus-
counting method has the advantage that counting the
number of regions across the genome will act to balance
these fluctuations in the number of independent linkage
regions. This may give a more accurate genomewide re-
sult when there are locus-specific inflations and reduc-
tions in LOD scores due to genotyping error.

The results from a locus-counting approach can be
difficult to interpret unless the number of IRLs exceeds
the 95th percentile of the Poisson distribution with
appropriate mean across a large proportion of the LOD
score range. These results show that just 0.5% geno-
typing error rate can make the interpretation difficult,
particularly under an ASP study design. These simula-
tions assume that no genotyping error is found. With
sib-pairs and no other relatives, all genotypic configu-

rations are consistent with Mendelian inheritance, and
error detection relies upon looking for unlikely geno-
types, checking for Hardy–Weinberg equilibrium, etc.
With other family members, some erroneous genotypes
will be detected and either corrected or removed from
the analysis resulting in lower genotyping error rates
than those considered in this study.

The conclusions of this paper are of course limited to
the particular genetic model used in the simulation of the
GAW 13 data and therefore cannot necessarily be gen-
eralised to other models. This will always be the case
since in order to examine the effect of genotyping error,
one has to start with clean (i.e. simulated) data. How-
ever, the model used to simulate the GAW 13 data
represents a considerably more sophisticated multi-locus
model than the single-locus cases that have so far been
considered in the context of estimating the effect of
genotyping error. The results also depend upon the
genotyping error model used. The allele-change model
we use under estimates certain types of error and over
estimates others, as will all error models. We could have
based our model on, for example, the work of Ewen
et al. (2000), but then the conclusions would not apply to
studies where genotyping error manifests itself in a dif-
ferent form. The aim of this paper was to compare the
effects of genotyping error on the genomewide number
of linkage regions using different methods of analysis
rather than to examine the effect of different error
models.

The effect of genotyping error depends upon the
distribution of errors as well as the rate. In this study,
genotyping error is approximately uniformly distributed
over all markers. In reality, the error may be more
clustered at ‘‘poor’’ markers. The effect of this error
clustering will depend upon the proximity of the cluster
to a true disease susceptibility locus. This paper em-
phasises the need to minimise genotyping error using all
available techniques, as no methods yet exist for the
inclusion of genotyping error in model-free linkage
analysis. Genomewide linkage scans using SNP markers
are now a feasible study design (John et al. 2004). Given
sufficient density, SNP markers can extract as much of
the inheritance information as a standard 10-cM mi-
crosatellite map (Evans and Cardon 2004) and are
subject to much lower rates of genotyping error. In light
of the results of this study, it may be that a genomewide
scan using SNPs that extracts a lower percentage of the
inheritance information than a 10-cM microsatellite
scan may provide more complementary evidence for
linkage, assessed by locus counting, due to the lower
genotyping error rate associated with this technology
although this needs further consideration.
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