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Abstract A genome-wide linkage equilibrium mapping is
an emerging strategy to identify risk-modifying genes for
common diseases, despite unsettled controversies upon
many aspects, including its premises, designs, marker
choices and cost benefits. One large-scale attempt in
Japan aims to identify disease-associated single nucleo-
tide polymorphisms (SNPs) for five diseases among the
Japanese population: Alzheimer’s disease, gastric can-
cer, diabetes, hypertension and asthma. Following an
initial screening of c.a. 100,000 SNPs on 940 subjects
(five diseases · 188 patients) to select about 2,000 SNPs,
we compared which subsequent screening design is more
appropriate, and an additional one or two screens to
further narrow down any disease-associated SNPs
within a fixed total volume of 15,040,000 typings (2,000
SNPs · five diseases · 1,504 subjects, comprising 752
cases and 752 controls). We employed a Monte Carlo
simulation to evaluate the probability of identifying
truly disease-associated SNPs. The results suggest the
single additional stage design (i.e., total two-stage design
including the initial screening of 100,000 SNPs) was
more practicable for the simple reason that the gain in
probability is considered insufficient relative to an
associated increase in study complexity in the three-stage
design.
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Introduction

The development and progression of common diseases
apparently occur through interactions of multiple factors
that include those for life-style, environment, aging, and
genes. One popular theory for the genetic basis of com-
mon disease susceptibility is the ‘‘common disease–
common variant’’ hypothesis (Wright and Hastie 2001),
which predicts that an association study can identify
multiple genes with risk-modifying common alleles, each
with low-to-moderate genetic relative risks. Unveiling
such relatively common but ‘‘weak’’ disease genes may
lead to at least three important developments in medicine
in the postsequencing era: First, a high-population-
attributable risk may aid in the identification of a
high-risk population, which would benefit from specific
preventive interventions, such as chemoprevention or a
life-style modification clinic. Second, once all or a
majority of the risk-modifying genes and alleles are dis-
closed, the disease risk for each individual can be eval-
uated with good accuracy (Pharoah et al. 2002). Third,
but most importantly, identification of disease-associ-
ated genes should lead us to the uncovering of the
molecular pathogenesis of a disease, which is the ultimate
basis for development of targeted therapy, diagnosis, and
prevention.

Even though the human genome sequencing per se
was declared over, about 40% of the identified or pre-
dicted genes are tagged with no known functions (Venter
et al. 2001; Okazaki et al. 2002), and it is obvious that
our knowledge of the remaining ‘‘annotated’’ genes is far
less complete. The realization of this serious dearth of
knowledge has prompted many scientists to advocate a
genome-wide screen for disease-gene hunting in addition
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to the candidate gene approach, which relies upon an a
priori selection of small numbers of candidate genes
based on the existing information or hypothesis.

Two crucial fundamentals have been developed for
the genome screen in Japan: First, a very high-
throughput, low-cost, and DNA-saving single nucleo-
tide polymorphism (SNP) typing platform (Ohnishi
et al. 2001); and second, a high-quality and compre-
hensive gene-centric SNP database with allele frequency
information among the Japanese population, designated
JSNP (Haga et al. 2002; Hirakawa et al. 2002). The
combined power of the two fundamentals crystallized in
the first success in the whole-genome association study
led by RIKEN, identifying functional SNPs that are
associated with susceptibility to myocardial infarction
(Ozaki et al. 2002), under the auspices of the govern-
ment-sponsored Millennium Genome Project of Japan.
In 2001, another whole-genome association study based
on JSNP was launched within the Millennium Genome
Project to identify genes associated with Alzheimer’s,
gastric cancer, diabetes, hypertension, and asthma
(Yoshida 2002; Yoshida and Yoshimura 2003). This
five-disease, joint, whole-genome association study has
been organized as a collaboration of many institutions
in Japan, including RIKEN, which provided the high-
throughput typing technology (Ohnishi et al. 2001) and
a significant portion of the typing itself. The number of
SNPs analyzed by the first-stage screening in the whole-
genome association study was about 100,000 per person,
and a total of 940 patients (188 patients per disease)
were genotyped. In the five-disease, whole-genome
association study, 188 patients (cases) and 752 patients
with other diseases (controls) were compared for each
disease calculating sample odds ratios (ORs) for each
SNP. In general, a common disease is expected to have
more than ten genes with a population OR of 1.5–2.0
(Wright et al. 1999; Pharoah et al. 2002; Ponder 2001).

When 100,000 SNPs are analyzed in the first-stage
screening, numerous false-positive results ensue due to
the multiplicity of choices. Following the selection of a
certain number of SNPs (e.g., 2,000) based on sample
ORs in the first screening, one or more succeeding stages
of screening are obviously required. However, for the
succeeding stage experiments, the number of typings
that can be performed is limited by the available re-
sources, such as research funds, project period, and
amount of DNA. The objective of the present study is to
find the best design for the second and later stages of the
whole-genome association study under the given fixed
amount of total SNP typings. In this particular whole-
genome association study, we assume a total of
3,008,000 typings (2,000 SNPs · 1,504 people, com-
prising 752 cases and 752 controls) for each disease.

Satagopan et al. (2002) compared the one-stage de-
sign with the two-stage design and showed that if the
total number of typings is fixed, the probability for
identifying disease-associated SNPs was maximized by
a two-stage design. They concluded that 75% of the
total cost should be used in the first stage to select the

top 10% of SNPs as candidates for the second-stage
screening, in which the remaining budget should be
spent to select SNPs with a large value of test statistics
to maximize the detection rate. However, their conclu-
sion does not give a direct answer to our specific
questions for the following reasons: first, Satagopan
et al. (2002) compared one- versus two-stage designs for
the first-time association study. They assumed a fixed
number of candidate SNPs to be analyzed but varying
numbers of subjects for the two designs. However, we
need to choose one or two additional stages following
the finished first stage of the genome screen (i.e., total
two stages versus three stages, respectively). Because
our ‘‘candidate’’ SNPs are selected from the first-stage
experiment on the 100,000 SNPs, we can assign differ-
ent numbers of SNPs to the two designs. On the other
hand, unlike Satagopan et al. (2002), the total number
of the subjects is fixed in our case (752 cases and 752
controls) because the subjects ascertained are the most
important asset in our analysis. Second, their model
assumes test statistics to be approximated to a normal
distribution. The most conceivable statistic for such an
approximation in a case-control study is a chi-square
statistic, as mentioned in their paper, but we would
like to evaluate possible designs without restricting
the test statistics to the chi-square; for instance, other
options include direct comparison of a sample OR and
its P value, or P value calculated by Fisher’s exact test.
Third, they used power PK, or probability to detect all
of the true markers, to judge the performance of the
different designs. By contrast, we introduced hit rate
(Rh), which we believe to be more practical in the
search for the genes implicated in polygenic complex
traits.

In this study, to choose the optimal design for a
whole-genome association study, a Monte Carlo simu-
lation was undertaken to compare two- versus three-
stage designs, which share a common 100,000 genome
screen as their first stage. Of the five target diseases in
the project, we examined gastric cancer as a represen-
tative in this study.

Materials and methods

Two-screening designs

Two- and three-stage whole-genome association studies
are defined as follows in this study (Table 1).

Two-stage design (A)

A-1 (first stage) In 940 patients (188 gastric cancer
cases and 752 people with four other diseases combined
as ‘‘controls’’), 100,000 SNPs per person were typed to
determine a sample OR for each SNP to select a can-
didate SNP (n1 SNP) in descending order of magnitude
of sample ORs.
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A-2 (second stage) A separate panel of 752 gastric
cancer cases and 752 controls (individuals without gas-
tric cancer) were chosen, and n1 SNPs per person were
genotyped and sample ORs were calculated. SNPs with
a sample OR above a cutoff value, c, are selected as
disease-associated SNPs.

Three-stage design (B)

B-1 (first stage) The experiment was conducted in the
same manner as the two-stage design to select candidate
SNPs with high sample ORs (n2 SNPs).

B-2 (second stage) The second panel of 376 gastric
cancer cases and 376 nongastric cancer controls were
chosen, and the sample OR for the n2 SNPs was calcu-
lated to further narrow down the number of candidate
SNPs to n3.

B-3 (third stage) In the third panel of 376 cases and
376 controls, the n3 SNPs were genotyped, and the
sample OR was calculated by combining data collected
in steps B-3 and B-2 to identify the gastric-cancer-
associated SNPs with sample ORs above the cutoff
value, c.

Framework of simulation experiment

In the present study, a Monte Carlo simulation
(Metropolis et al. 1953) experiment was used to compare
the performance of the two designs described above. At
each SNP, the association between its genotypes and
disease status was tested by a 2·2 contingency table
(Table 2). Here we assume an either dominant or
recessive model, and for an SNP with allele A and allele
a, the genotype AA combined with genotype Aa was
compared with the genotype aa. An OR was defined as:

w ¼ n11 � n22

n12 � n21
: ð1Þ

When each cell in Table 2 was large, log w approxi-
mately had a normal distribution with true log w (mean)

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n11
þ 1

n12
þ 1

n21
þ 1

n22

q

(standard deviation) (Agresti

1990). The population OR for the gastric-cancer-asso-
ciated SNPs was w (w>1.0), while the population OR
for SNPs unrelated to the disease was 1.0.

The number of the true SNPs (SNPs truly associated
with the disease) was designated np, which is given as a
simulation parameter. The sample log ORs of those np
SNPs was generated separately from that of the non-
disease-associated SNPs, the number of which is
100,000-np. We regarded SNPs experimentally positive
when their sample ORs were above a cutoff value, an-
other simulation parameter. The number of the experi-
mentally positive SNPs was then designated N, which
contains Np disease-associated (true-positive) SNPs out
of the original np SNPs. The number of false-positive
SNPs (non-disease-associated SNPs) was therefore
N�Np. While N and Np represent random variables
controlled by experimental errors, np is a constant as-
signed as a simulation parameter.

As performance indicators for each design, two
indicators defined by formulas 2 and 3, Rh (hit rate) and
Rd (detection rate) were used. Hereinafter, these indi-
cators will be expressed as percentages.

Rh ¼
Np

N
ð2Þ

Rd ¼
Np

np
ð3Þ

Rh is a proportion of true disease-associated SNPs
among positive SNPs (positive predictive value) while Rd

is the proportion of positively detected SNPs among true
disease-associated SNPs (sensitivity). Ideally, both val-
ues should approach 100%, but since these two
parameters are opposing in nature, an optimal balance
between them must be assessed.

Algorithm of simulation experiment

The algorithm of the two-stage design, whole-genome
association study is as follows:

A-1 (first stage)

1. We generated log ORs randomly for the np ‘‘true’’
markers (i.e., SNPs truly associated with the disease)
in the first stage according to a normal distribution
with mean log w and standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
94þ 1

94þ 1
376þ 1

376

q

:Here, np, the number of such true

SNPs, was set at 100 based on inference from the
literature. The population OR, w, was variably set
from 1.3 to 1.9 with an increment of 0.2. The stan-
dard deviation was chosen as the minimum possible

Table 1 Number of SNPs and subjects (number of cases, controls)
analyzed in this whole-genome association study

Stage of
experiment

Two-stage
design

Three-stage
design

Initial stage 100,000 SNPs
(188, 752)

100,000 SNPs
(188, 752)

Second stage 2,000 SNPs
(752, 752)

n2 SNPs
(376, 376)

Third stage n3 SNPs
(376, 376)

Table 2 Number of genotypes for cases and controls

Genotype Case Control

AA and Aa n11 n12
aa n21 n22
Total n.1 n.2
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value, which corresponds to a disease-associated
genotype frequency of 50% (see below in Design
parameters).

2. We generated log ORs randomly for the (100,000-np)
non-disease-associated SNPs according to a normal
distribution with mean 0 and standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
94þ 1

94þ 1
376þ 1

376

q

:

3. The log ORs generated above were combined and
sorted in descending order of the values and then
were selected up to the n1th SNPs. Here, n1 was fixed
at 2,000.

A-2 (second stage)

4. We generated log ORs randomly for the np’ true
markers in the second stage according to a normal
distribution with mean log w and standard devia-

tion
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
376þ 1

376þ 1
376þ 1

376

q

: Here, np’ is the number

of SNPs that are truly associated with the disease
and were chosen in the first-stage screening (the
starting number of the true SNPs was np).
The number of the subjects analyzed in the second
stage was 752 cases and 752 controls, who are
individuals different from those analyzed in the first
stage.

5. We generated log ORs randomly for the n1�np’ non-
disease-associated SNPs according to a normal dis-
tribution, with mean 0 and standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
376þ 1

376þ 1
376þ 1

376

q

:

6. The log ORs generated in (4) and (5) for the second-
stage typing were combined and sorted in descending
order. The SNPs were considered disease-associated
when their ORs exceeded the cutoff value (c). The
value of ‘‘c’’ was variably set from 1.0 to 2.5, with an
incremental of 0.1.

7. We calculated the hit rate Rh and detection rate Rd,
as defined above.

8. Steps (1)–(7) were repeated 10,000 times.

The algorithm of the three-stage design is essentially
identical to the two-stage design except for parameters
such as standard deviation and the number of SNPs
analyzed at each stage; standard deviation of log w used
in the simulation for the second and third stages in the

three-stage design is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
188þ 1

188þ 1
188þ 1

188

q

:

Design parameters

The two designs in this whole-genome association study
include constants that should be set as simulation
parameters: c, n1, n2, and n3. The value of ‘‘c’’ is identical
for both designs and is set from 1.0 to 2.5, with an
incremental pitch of 0.1.

In this whole-genome association study, the first-
stage screening was already finished, and n1 (the number
of SNPs analyzed in the second stage of the two-stage

design of the whole-genome association study) was fixed
at 2,000. In the case of the three-stage design, the total
752 cases and 752 controls need to be divided into sec-
ond- and third-stage typings. Because our typing system
requires sample numbers to be equal to or a multiple of
188, we initially compared the following combinations
of case or control number for the second stage/third
stage: 188/564, 376/376, and 564/188. We chose the 376/
376 combination because it gave the best Rh and Rd for
the SNPs for w (population OR) ‡1.5 (Table 3). It fol-
lows, then. that n2 and n3 were determined so that their
sum equaled 4,000 (n2>n3) to keep the total typing cost
the same between the two- and three-stage designs. In
the three-stage design, n2, was set variably from 2,500 to
3,500, with an incremental pitch of 500, and n3 was
automatically set for each n2. Table 1 shows the rela-
tionship between the number of subjects and the number
of SNPs for the two designs. The number of simulations
was set at 10,000.

A possible effect of genotype frequencies on the
simulation was first evaluated by changing the disease-
associated genotype frequencies in the range of 10–50%.
Because the two- and three-stage designs showed
essentially the same relative pattern at each genotype
frequency (Table 5), here we show the result of the
simulation with the minimum standard deviation of a
sample log OR, as described above in Algorithm of
simulation experiment; the difference between the two
designs should best be illustrated with the minimum
standard deviation, which corresponds to the assump-
tion of 50% disease-associated genotype frequencies.

Results and discussion

Comparison of the two designs

Table 4 shows Rh and Rd (%) when the cutoff value, c, is
set at 1.6. Taking into account the number of simula-
tions, digits after the second decimal point are considered
irrelevant. From the perspective of comparing the two
experimental designs, the column with w=1.7 is the most

Table 3 Hit rates Rh (upper figures) and detection rates Rd (lower
figures) for various combinations of the number of subjects in the
three-stage designa

Number of cases
(= number of controls)

w (population OR)

Second stage/third stage 1.3 1.5 1.7 1.9

188/564 69.67 97.78 99.19 99.45
1.65 21.10 61.39 87.01

376/376 50.01 99.92 99.98 99.98
0.69 17.07 62.89 91.85

564/188 62.35 99.22 99.74 99.82
1.06 17.29 58.47 89.28

aRh and Rd were calculated for varying numbers of n3, ranging
from 500 to 2,000 with an incremental pitch of 500, and n3=500
showed the best Rh and Rd, which are shown in this table
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important, since Rd was about 60%. Under the three-
stage design, when n2 is set at 2,000, Rh andRd are almost
identical to those of the two-stage design (n1=2,000).
When n2 is increased, Rd is also elevated in the three-
stage design, but the gain in Rd is modest—only about
3.8% higher than that of the two-stage design.

Table 4 also shows the Rh and Rd at the second (mid)
stage of the three-stage design. Comparing Rh of the
second stage with that of the final third stage, it is noted
that the third stage is necessary to suppress false positives
in the three-stage design. On the other hand, when the
population OR (w) is less than 1.5, Rd was actually more
decreased in the third stage than in the second stage.

According to the study by Satagopan et al. (2002), the
two-stage design is more advantageous than the one-
stage design, but our analysis revealed only a marginal
gain in Rd. Since sample ORs for SNPs unrelated to the
disease did not exceed the cutoff value of 1.6, Rh was
almost 100%; only 60% were identified in both designs
(Figs. 1, 2). Moreover, the typing laboratory is burdened
with the additional chore of having to divide the whole
typing job into three stages instead of two, such as an
increase in the complexity of the system and in the dif-
ficulty in finding the optimal combination of multiplex
PCR. Overall, the limited extent of the predicted in-
crease in Rd does not warrant the adoption of the more
complicated three-stage design in the whole-genome
association study in the Millennium Genome Project of
Japan, which favors the simple two-stage scheme.

Although an accurate estimation of the number of
disease-associated SNPs may not be possible, Sing
et al. (1996) suggested that about 100 SNPs or about
30 genes determine susceptibility to coronary artery
disease. Wright et al. (1999), Pharoah et al. (2002) and
Ponder (2001) also documented the involvement of
similar numbers of disease-associated genes in other
common diseases. Setting the number of disease-asso-

Table 4 Hit rates Rh (upper figures) and detection rates Rd (lower figures) in percent

Design Number of SNPs w (population OR)

1.3 1.5 1.7 1.9

Two-stage
design

Second stage n1=2,000 39.79 99.93 99.98 99.99
0.51 14.88 59.07 89.95

Three-stage
design

Second (mid)
stage

n2=2,000, n3=2,000 41.80 88.38 95.73 97.15
1.81 18.36 54.14 83.18

n2=2,500, n3=1,500 39.15 86.48 94.90 96.54
2.04 19.59 55.65 84.05

n2=3,000, n3=1,000 36.86 84.73 93.94 95.86
2.22 20.54 56.75 84.55

n2=3,500, n3=500 35.31 83.22 93.08 95.18
2.38 21.21 57.61 84.91

Third (final)
stage

n2=2,000, n3=2,000 41.22 99.95 99.99 99.99
0.53 14.86 59.16 89.92

n2=2,500, n3=1,500 44.72 99.94 99.98 99.99
0.59 15.75 60.76 90.79

n2=3,000, n3=1,000 47.51 99.92 99.98 99.99
0.64 16.48 61.97 91.41

n2=3,500, n3=500 50.01 99.92 99.98 99.98
0.69 17.07 62.89 91.85

Fig. 1 Hit rate Rh and detection rate Rd against cutoff value c for
the two-stage design. Broken line Rh, solid line Rd

Fig. 2 Hit rate Rh and detection rate Rd against cutoff value c for
the three-stage design. Broken line Rh, solid line Rd

673



ciated SNPs at 100 was thus not completely without
grounds. However, even when the number of disease-
associated SNPs, np, is set at 10, 30, 50, or 70, sim-
ulations showed results similar to those using an np of
100 (data not shown). It should be pointed out,
however, that the present study is based on simula-
tion, and that it is also necessary to seek theoretically
optimal conditions.

To assess the effect of genotype frequencies, the
simulation was repeated with the genotype frequency
varying from 10 to 50%. Although the frequencies

influenced power significantly, the comparison between
the two- and three-stage designs showed essentially the
same relative pattern (Table 5), confirming that our final
conclusion is not significantly affected by the difference
in genotype frequency.

Selection of cutoff value

In Table 4, the cutoff value was fixed at 1.6. Figures 1
(the two-stage design) and 2 (the three-stage design,

Table 5 Hit rates Rh (upper rows) and detection rates Rd (lower rows) in percent for different genotype frequencies (10–50%)

Genotype
frequency (%)

Design Number of SNPs w (population OR)

1.3 1.5 1.7 1.9

10 Two-stage design n1=2,000 10.83 57.14 84.53 92.71
1.01 8.79 30.86 59.62

Three-stage design n2=2,000, n3=2,000 11.48 58.34 85.66 92.93
1.04 8.85 31.02 59.61

n2=2,500, n3=1,500 10.87 55.18 83.73 91.68
1.21 9.67 33.14 62.05

n2=3,000, n3=1,000 10.35 53.09 82.04 90.64
1.33 10.37 34.62 63.78

n2=3,500, n3=500 9.88 52.37 81.22 90.20
1.32 10.47 34.46 63.53

20 Two-stage design n1=2,000 40.23 89.74 95.33 96.37
0.85 11.07 38.61 65.40

Three-stage design n2=2,000, n3=2,000 38.30 90.11 95.52 96.37
0.86 11.27 38.62 65.52

n2=2,500, n3=1,500 39.19 88.72 94.74 95.68
1.00 12.27 40.71 67.90

n2=3,000, n3=1,000 39.14 87.42 94.01 95.08
1.11 13.08 42.30 69.51

n2=3,500, n3=500 38.59 86.53 93.52 94.72
1.17 13.44 42.60 69.59

30 Two-stage design n1=2,000 47.53 99.07 99.65 99.70
0.69 13.31 48.91 79.64

Three-stage design n2=2,000, n3=2,000 47.73 99.12 99.59 99.67
0.68 13.49 49.24 79.86

n2=2,500, n3=1,500 50.34 98.94 99.50 99.57
0.75 14.44 51.26 81.50

n2=3,000, n3=1,000 53.20 98.82 99.43 99.49
0.85 15.25 52.76 82.69

n2=3,500, n3=500 54.44 98.71 99.38 99.43
0.90 15.79 53.64 83.25

40 Two-stage design n1=2,000 46.63 99.85 99.91 99.95
0.62 14.76 55.85 86.30

Three-stage design n2=2,000, n3=2,000 42.61 99.81 99.92 99.95
0.58 14.76 55.63 86.30

n2=2,500, n3=1,500 45.62 99.78 99.90 99.93
0.63 15.70 57.36 87.50

n2=3,000, n3=1,000 48.55 99.72 99.89 99.92
0.68 16.46 58.73 88.37

n2=3,500, n3=500 50.75 99.70 99.87 99.91
0.72 17.06 59.64 88.90

50 Two-stage design n1=2,000 39.79 99.92 99.98 99.98
0.51 14.88 59.07 89.95

Three-stage design n2=2,000, n3=2,000 41.22 99.94 99.98 99.99
0.53 14.86 59.16 89.91

n2=2,500, n3=1,500 44.72 99.93 99.98 99.98
0.59 15.75 60.75 90.78

n2=3,000, n3=1,000 47.51 99.92 99.98 99.98
0.64 16.48 61.97 91.41

n2=3,500, n3=500 50.01 99.91 99.97 99.98
0.69 17.07 62.88 91.85
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n2=3,500) show changes in Rh and Rd with changing
cutoff values. The choice of c should primarily depend
on the purpose of the genome screen or its role in the
overall gene-hunting scheme; some investigators may
request a higher positive predictive value (Rh) while
sacrificing sensitivity (Rd), yet other researchers may
choose the other way around. One simple way to deal
with the trade-off between Rh and Rd may be to select c
as intersection points of the Rh and Rd curves for each w
value, i.e., (w: c)=(1.3:1.24), (1.5:1.26), (1.7:1.30), and
(1.9:1.38). With these cutoff values, the degree of
improvement in Rd for the three-stage design is about
the same as that mentioned above for c=1.6. However,
it is generally recommended that a cutoff value be set a
little lower than w, and collecting information about
population ORs of the disease-associated SNPs is clearly
important.

Population OR for gastric cancer

Using the real experimental data of about 80,000 SNPs
on gastric cancer from the first stages of the whole-
genome association study, the frequency distribution of
sample ORs was calculated and shown in Fig. 3. About
90% of the SNPs fall within the range of a sample OR
from 0.6 to 1.7, suggesting that disease-associated SNPs
within this range of a population OR would be difficult
to detect by the sample size of the current project. In
other words, the number of subjects needs to be
increased to detect gastric-cancer-associated SNPs with
population ORs smaller than 1.7 in this whole-genome
association study. It was, therefore, reasonable to com-
pare the performance of the screening designs under the

condition in which the population OR, w, and cutoff
value are set to about 1.7 and 1.6, respectively.

It should be noted, however, that our sample ORs
were measured between individuals with gastric cancer
and those with the other four diseases combined
(‘‘control’’) in the present five-disease whole-genome
association study. Thus, the control population for the
first stage is different from that of the second- or third-
stage screening in which the controls were specifically
ascertained as those without gastric cancer. As a con-
sequence, some ambiguity may exist in our assessment of
the population ORs for common gastric cancer.

Issues to be addressed in future studies

In the present simulation, each SNP is assumed to be
distributed independently among the subjects. However,
this is not always the case because significant linkage
disequilibrium (LD) is often noted over pairs of the
SNPs. In the future, correction of the present study may
be necessary, taking into account the LD structure of the
relevant SNPs.
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