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Abstract The etiology of systemic lupus erythematosus
(SLE) is very complex, and genetic factors appear
to play a significant role in susceptibility to SLE,
in determining the disease expression, and in the
autoantibody profiles of individuals with SLE. DNA
methyltransferase-1 (DNMTI) is a major enzyme that
determines genomic methylation patterns and both
maintains methyltransferase and exhibits de novo DNA
methylation activity in vivo. In order to clarify the
association of DNMT1 polymorphisms with SLE, we
scrutinized the genetic polymorphisms in exons and their
boundaries of DNMTI, including the —1,500 bp pro-
moter region, by direct sequencing in 24 Korean indi-
viduals. Twenty-nine sequence variants were identified:
two in 5UTR, six in exons, and 21 in introns. Eight of
these polymorphisms were selected for a larger-scale
genotyping (n=0680) by considering their allele fre-
quencies, haplotype-tagging status, and linkage dis-
equilibrium coefficiencies (LDs) among polymorphisms.
The associations between DNMT1 polymorphisms and
the clinical profiles of SLE were analyzed. No significant
associations with the risk of SLE were detected. How-
ever, further analyses of association with autoantibody
production among SLE patients revealed that one
nonsynonymous SNP, +14463G>C (V120L) in exon
4, was weakly associated with an increased risk of anti-
La antibody production (P=0.04), although the signif-
icance could not be retained after correction of multiple
tests. The DNM T variations and haplotypes clarified in
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Introduction

Systemic lupus erythematosus (SLE) is characterized by
the accelerated apoptosis of peripheral lymphocytes and
the impaired clearance of apoptotic cells. The combina-
tion of these defects results in the release of increased
amounts of nucleosomes with abnormally methylated and
GC-rich DNA and consequently an autologous stimula-
tion that could bypass tolerance to systemic autoimmune
diseases (Huck et al. 1999). The etiology of SLE is very
complex, involving both environmental and genetic fac-
tors and probably also a synergistic relationship between
these factors. Genetic factors are likely to play a signifi-
cant role in susceptibility to SLE, in determining the dis-
ease expression, and in the autoantibody profiles of
individuals with SLE (Wakeland et al. 2001). It was
recently shown that autoantibodies are associated with
SLE showing various clinical manifestations. The
appearance of autoantibodies in patients with SLE tends
to follow the progressive accumulation of specific
autoantibodies before the onset of SLE (Arbuckle et al.
2003; Jacob and Viard 1992; Richardson et al. 1990).
DNA methyltransferase-1 (DNMT1, MIM 126375),
located on chromosome 19p13.3—p13.2 with total size
~62 Kb, is a major enzyme that determines genomic
methylation patterns and is the best-understood enzyme
among three families of DNA (cytosine-5) meth-
yltransferases: DNMTI1, DNMT2, DNMT3a, and
DNMT3b. The enzyme encoded by DNMTI functions
primarily in the maintenance of methyltransferase,
which transfers methyl groups to cytosine in hemime-
thylated CpG sites after DNA replication, and it also



has a role in gene silencing (Bestor 1992; Okano et al.
1998). DNA methylation plays important roles in the
modulation chromatin structure, transcriptional regu-
lation, and genomic stability, and has also been shown
to be essential for mammalian development (Jones and
Takai 2001; Lei et al. 1996; Li et al. 1992). DNMT1 is a
major enzyme that determines genomic methylation
patterns, functions, maintains methyltransferase, and
has a role in gene silencing (Bestor 1992; Okano et al.
1998). DNMT1 also targets replication foci by binding
to proliferating cell nuclear antigens and possesses de
novo DNA methylation activity in vivo (Chuang et al.
1997; Robertson 2001). Mutations in coding regions of
the DNMT1 gene have been analyzed in subjects with
cancerous and noncancerous tissues. Two mutations
were reported in a colorectal cancer: (1) a one-base
deletion in exon 23, resulting in the deletion of the whole
catalytic domain, and (2) a point mutation in exon 35,
resulted in an amino acid substitution (Tyr to Cys) in the
catalytic domain. Inactivation of DNMTI1 due to two
mutations might be a rare event during human carci-
nogenesis although mutational inactivation of DNMTI
potentially causes a genome-wide alteration of the DNA
methylation status (Kanai et al. 2003).

Despite the functional importance of the DNMT]1
gene, polymorphisms of DNMTI have not been fully
examined. In an effort to discover polymorphism(s) in
genes whose variant(s) might be implicated in clinical
manifestations of SLE, we scrutinized the genetic poly-
morphisms in DNMTI by direct sequencing. Here we
present 29 genetic variants found in DNMTI, among
which eight were genotyped on a larger scale (n=680),
and the results of association analyses with phenotypes
of SLE in the Korean population.

Materials and methods
Subjects

A total of 350 Korean SLE patients who fulfilled 1997
American College of Rheumatology (ACR) criteria of
SLE (Hochberg 1997) were consecutively enrolled be-
tween September 1998 and February 2002 from the
Hospital for Rheumatic Diseases, Hanyang University,
Seoul, Korea. The following clinical and laboratory data
were obtained: gender, age, ages at first symptom onset
and clinical diagnosis, ACR diagnosis, and SLICC/ACR
(Systemic Lupus International Collaborating Clinics/
American College of Rheumatology) damage index
(Gladman et al. 1996). As a control group, we included
330 healthy ethnically matched subjects in our exami-
nation of the genetic association of polymorphisms with
susceptibility to SLE and related phenotypes. Testing for
antinuclear antibodies (Abs) was carried out by indirect
immunofluorescence using IT-1 cells; anti-dsSDNA Abs
by Crithidia luciliae assay; anti-Sm, anti-SSA (Ro), anti-
SSB (La), and anti-RNP (ribonuclear protein) Abs by
double immunodiffusion.
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Sequencing analysis of the DNMT1 gene

We sequenced exons and their boundaries of the
DNMTI1 gene, including the promoter region
(~ 1.5 kb), to discover genetic variants in 24 Korean
DNA samples using a DNA analyzer (ABI PRISM
3700, Applied Biosystems, Foster City, CA, USA).
Forty-one primer sets of DNMT1 for the amplification
and sequencing analysis were designed based on Gen-
Bank sequences (Ref. Genome seq. for DNMTI,
NT 011295.10 released in Feb 2004). Information
regarding the primers used is available on our Web
site (http://www.snp-genetics.com/user/news_content.asp?
board_idx=178). Sequence variants were verified by
chromatograms.

Genotyping with fluorescence polarization detection

For genotyping of polymorphic sites, amplifying primers
and probes were designed for TagMan (Livak 1999).
Information regarding the primers is available on our
Web site (http://www.snp-genetics.com/user/news_con-
tent.asp?board_ idx = 178).

Statistics

We examined Lewontin’s D’ (|D’]) and the linkage dis-
equilibrium coefficient * between all pairs of biallelic
loci (Hedrick and Kumar 2001; Hedrick 1987). Haplo-
types of each individual were inferred using the algo-
rithm developed by Stephens et al. (2001) (PHASE),
which uses a Bayesian approach incorporating a priori
expectations of haplotypic structure based on popula-
tion genetics and coalescent theory. Genetic effects of
inferred haplotypes were analyzed in the same way as
polymorphisms. The genotype distributions of DNMT1
polymorphisms and haplotypes between the SLE and
normal subjects and among SLE patients were analyzed
with logistic regression models whilst controlling for age
(continuous variable), gender (male = 0, female = 1),
and/or disease duration (continuous variable) as cova-
riates. The common alleles were used as the reference
genotype to the heterozygote and homozygote of the
minor allele. Probability values of codominant, domi-
nant, and recessive models are also given.

Results and discussion

To discover polymorphism(s) in DNMT1, we performed
direct DNA sequencing in 24 unrelated Korean indi-
viduals. We identified 29 sequence variants: two in 5
UTR, 21 in introns, and six in exons (3 nonsynonymous
and 3 synonymous) (Fig. 1a). The two mutations in
exons 23 and 35 that had been reported in colorectal
cancer patients (Japanese) (Kanai et al. 2003) were not
detected in this study. Pair-wise comparisons among
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A. Map of DNA methyltransferase 1 (DNMTI) on chromosome 19p13.3-p13.2
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Fig. 1 Gene maps and haplotypes of DNMTI. Coding exons are
marked by black blocks and 5" and 3 UTRs by white blocks. The
first base of the translational start site is denoted as nucleotide + 1.
Asterisks indicate polymorphisms genotyped in a larger population
(n=680). The frequencies of polymorphisms not subjected to
larger-scale genotyping were based on sequence data (n=24). a
Polymorphisms identified in DNMTI on chromosome 19p13.3—
pl3.2 (Ref. Genome Seq. NT_011295.10). b Haplotypes of
DNMTI. Only those with frequencies 20.05 are shown. Others
(1) contain rare haplotypes: AGCCGAAC, GGCCGGAC, AG-
CGGAGT, AGCCGGGT, AGTGGGGT, and AGCGGGGC.
¢ Linkage disequilibrium coefficients (|D’| and %) among DNMTI
polymorphisms

polymorphisms revealed several sets of absolute LDs
(|ID’|=1 and r=1) and complete LDs (|D’|=1 and
r* #1) (Fig. la,c). Eight polymorphisms in DNMTI
were selected for larger-scale genotyping (n=680) by
considering their allele frequencies, haplotype-tagging
status, and LDs. SNPs in exons, with higher frequencies
and higher haplotype-tagging status, were preferred. The
allele frequencies of these eight polymorphisms were
0.182 [+14395A>G (H97R)], 0.064 [+14463G>C
(V120L)], 0.001 (+14690C>T), 0.453 (+34542G > C),
0.393 (+38565G>T), 0.340 (+40328G>A), 0.190
(+42925G>A), and 0.214 (+48331C>T) (Fig. la).

Table 1 Association analysis of

DNMT! polymorphisms and Locus Frequency P

?;sr;sls?‘rtl?f ?lslgllsthert)})&;il;tzgus SLE Normal control Codominant Dominant Recessive

(SLE) in the Korean population

(n=1680) +14395 A>G (H97R) 0.170 0.195 0.16 0.32 0.10
+14463 G>C (VI20L) 0.066 0.062 0.55 0.66 0.42
+14690 C>T 0.001 0.002 0.94 0.94
+34542 G>C 0.457 0.450 0.81 0.70 0.99
+38565 G>T 0.388 0.398 0.73 0.63 0.18
+40328 G>A 0.331 0.349 0.56 0.80 0.41
+42925 G>A 0.181 0.200 0.36 0.38 0.64
+48331 C>T 0.220 0.208 0.67 0.47 0.56

) o htl 0.215 0.205 0.74 0.54 0.57

4P values for logistic analyses ht2 0.169 0.194 0.17 0.33 0.10

of three alternative models ht3 0.174 0.188 0.49 0.53 0.68

(codominant, dominant, and ht4 0.151  0.150 0.79 0.40 0.08

recessive), whilst controlling for 5 0.151 0.142 0.59 0.55 0.87

age and gender as covariates
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Five major haplotypes accounted for over 87% of dis-
tribution (Fig. 1b).

It had been proposed that genetic factors play a
significant role in susceptibility to SLE, in determining
the disease expression, and in the autoantibody pro-
files of individuals with SLE (Wakeland et al. 2001).
Recently, it was demonstrated that the pathogenesis of
autoimmune diseases such as SLE might be related to
DNA methylation and its regulatory enzymes (Okada
et al. 2002; Sekigawa et al. 2003). In order to identify
the association of DNMTI polymorphisms with the
risk of SLE, logistic regression analyses were per-
formed. The summary in Table 1 demonstrated that
no significant associations with the risk of SLE were
detected, e.g., no significant differences of allele fre-
quencies were detected between SLE patients and
normal controls.

A hallmark of autoimmune diseases such as SLE is
the production of highly specific autoantibodies that
recognize evolutionarily conserved molecules. SLE is the
prototypic nonorgan-specific autoimmune disease in
which polyclonal B-cell activation is reflected by a wide
range of autoantibody specificities. Previous studies
have shown the association of autoantibodies and SLE
with various clinical manifestations. Specific autoanti-
bodies accumulate progressively in patients with SLE,
even when the patients remain asymptomatic (Arbuckle
et al. 2003; Jacob and Viard 1992). DNA methylation
and its regulatory enzymes have been suggested to be
involved in pathogenesis of autoimmune diseases such as
SLE (Okada et al. 2002; Sekigawa et al. 2003). The
genetic associations with the production of five au-
toantibodies (anti-dsDNA, anti-Sm, anti-RNP, anti-Ro,
and La Abs) were analyzed with logistic regression
models whilst controlling for age, disease duration, and
gender as covariates. One nonsynonymous SNP,
+14463G > C (VI20L) in exon 4, was weakly associated
with an increased risk of anti-La Ab production among
SLE patients (P=0.04) although the significance could
not be retained after correction of multiple tests (Ta-
ble 2). Without further functional evidences, it would be
hard to confirm the mechanisms of this association.
However, it might be worthwhile to follow up on the
association of amino-acid change from Val to Leu with
the increased risk of anti-La Ab production in larger
cohort studies.

In summary, we identified 29 polymorphisms in the
human DNMT]1 gene. Genetic association analyses with
the risk and clinical profiles of SLE revealed no associ-
ations with the risk of SLE. However, in further analyses
with the production of autoantibodies among SLE pa-
tients, one nonsynonymous SNP, +14463G>C
(VI20L) in exon 4, was weakly associated with an in-
creased risk of anti-La Ab production among SLE
patients although the significance could not be retained
after correction of multiple tests (Table 2).
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