BRIEF REPORT - POLYMORPHISM REPORT

Atsushi Ogawa · Shigenori Yamamoto Masaki Takayanagi · Toshiaki Kogo · Masaki Kanazawa Yoichi Kohno

An Ile/Val polymorphism at codon 1464 of the ATP7A gene

Received: July 23, 1999 / Accepted: August 17, 1999

Abstract An isoleucine/valine polymorphism was observed at codon 1464 of the *ATP7A* gene, which is thought to encode a copper transporting adenosine triphosphatase (ATPase). The frequency of Val1464 was estimated to be 5.7% in the Japanese population. This polymorphism may be useful in genetic studies of Menkes disease.

Key words Menkes disease $\cdot ATP7A \cdot MNK$ gene \cdot Polymorphism \cdot Copper

Introduction

The *ATP7A* gene (previously designated as the "*MNK*" gene) encodes a protein predicted to be a P-type cationtransporting adenosine triphosphatase (ATPase) (Vulpe et al. 1993; Chelly et al. 1993; Mercer et al. 1993) based its similarity to a bacterial form of copper-transporting ATPase, and the presence of a putative metal-binding motif at the N-terminus (Vulpe et al. 1993). Recently, we reported mutations in the *ATP7A* gene in three unrelated Japanese patients with classical Menkes disease (Ogawa et al. 1999). During screening for possible disease-causing mutations by sequencing of reverse transcription-polymerase chain reaction (RT-PCR) products, we identified a polymorphism in the *ATP7A* gene. Here we describe the isoleucine/valine (Ile/Val) polymorphism in the *ATP7A* gene in the Japanese population.

M. Takayanagi

T. Kogo · M. Kanazawa

Methods

Primers for the polymerase chain reaction (PCR)

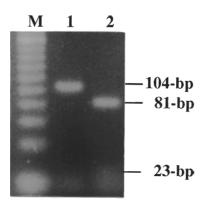
Forward: 5'-TGTTGGAATAGATGATACCTCAAG-3' Reverse: 5'-GTTTATCAGACAGTAGTGAGTGTA-3'

As the polymorphism did not cause modification of a restriction site in the *ATP7A* gene, an additional base substitution was artificially introduced into the region around the site. Using the reverse oligonucleotide primer, *an Rsa* I site was introduced into the Val1464 allele (**G**TA<u>C</u>; where the substitution in the reverse primer sequence is underlined and the polymorphic nucleotide position, A4535G, is shown in bold type), but not into the Ile1464 allele.

PCR conditions

To detect the Ile/Val polymorphism, PCR was carried out in a total volume of 50μ l, containing 200 ng of genomic DNA, 200 μ M dNTPs, 1μ M of each primer, and 1.0 U polymerase from the Expand High Fidelity PCR system (Boehringer Mannheim, Mannheim, Germany). Cycle conditions were 95°C for 3min, then 35 cycles of 95°C for 30s, 52°C for 30s, and 72°C for 1min, with a final extension step of 5min. PCR products were digested with *Rsa* I and subjected to electrophoresis on 3% NuSieve 3:1 agarose gels (FMC BioProducts, Rockland, ME, USA).

Informed consent for this study was obtained from the parents of all the individuals tested.


Polymorphism and allele frequency

Rsa *I polymorphism*. Digestion with restriction endonuclease *Rsa* I produced a 104-bp fragment from the Ile1464 allele PCR product, which lacked the artificial *Rsa* I site, and 81- and 23-bp fragments from the Val allele PCR product, which contained the recognition site (Fig. 1).

A. Ogawa (⊠) · S. Yamamoto · T. Kogo · M. Kanazawa · Y. Kohno Department of Pediatrics, Chiba University School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba-shi, Chiba 260-8670, Japan Tel. +81-43-226-2144; Fax +81-43-226-2145 e-mail: aogawa@pediat3.m.chiba-u.ac.jp

Division of Metabolism, Chiba Children's Hospital, Chiba, Japan

Division of Pediatrics, National Sanatorium Shimoshizu Hospital, Chiba, Japan

Allele frequency. Six Val1464 alleles were detected in 104 X-chromosomes of unrelated male Japanese individuals. The observed frequency of the Val1464 allele was 5.7%.

Chromosomal localization. The human *ATP7A* gene has been mapped to Xq13.3 (Verga et al. 1991; Tümer et al. 1992).

References

- Chelly J, Tümer Z, Tønnesen T, Petterson A, Ishikawa-Brush Y, Tommerup N, Horn N, Monaco AP (1993) Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nature Genet 3:14–19
- Mercer JFB, Livingston J, Hall B, Paynter JA, Begy C, Chandrasekharappa S, Lockhart P, Grimes A, Bhave M, Siemieniak D, Glover TW (1993) Isolation of a partial candidate gene for Menkes disease by positional cloning. Nature Genet 3:20–25
- Ogawa A, Yamamoto S, Takayanagi M, Kogo T, Kanazawa M, Kohno Y (1999) Identification of three novel mutations in the *MNK* gene in three unrelated Japanese patients with classical Menkes disease. J Hum Genet 44:206–209
- Tümer Z, Tommerup N, Tønnesen T, Kreuder J, Craig IW, Horn N (1992) Mapping of the Menkes locus to Xq13.3 distal to the X-inactivation center by an intrachromosomal insertion of the segment Xq13.3–q21.2. Hum Genet 88:668–672
- Verga V, Hall BK, Wang S, Johnson S, Higgins JV, Glover TW (1991) Localization of the translocation breakpoint in a female with Menkes syndrome to Xq13.2–q13.3 proximal to PGK-1. Am J Hum Genet 48:1133–1138
- Vulpe C, Levinson B, Whitney S, Packman S, Gitschier J (1993) Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nature Genet 3:7–13