# APPLICATION OF PERSONAL COMPUTER TO AN ANALYSIS OF SMALL DE NOVO CHROMOSOMAL INSERTION: A CASE OF DE NOVO 3q2 TRISOMY WITH ins $(8 ; 3)$ 

Kenji Naritomi, Yoshinori Izumikawa, Noriko Kinjo, Chuken Miyagi, and Kiyotake Hirayama<br>Department of Pediatrics, University of the Ryukyus School of Medicine, Uehara, Nishihara, Okinawa 903-01, Japan


#### Abstract

Summary To identify the origin of a small inserted segment in a de novo $8 \mathrm{p}+$ chromosome, an originally programmed computerized database for chromosomal aberration syndromes was utilized. The system selected 3 q 2 trisomy and 10 q 2 trisomy as candidates. As a result of a careful comparison of several high-resolution banding patterns among chromosomes 3,10 and the inserted segment, her karyotype was disignated as: $46, \mathrm{XX},-8,+\operatorname{der}(8)$, inv $\operatorname{ins}(8 ; 3)(\mathrm{p} 21.1 ; q 26.32 \mathrm{q} 24)$ de novo. A small segment from 3q24 to 3q26.32 was trisomic, and invertedly inserted into the short arm of chromosome 8 . This computerized database was considered to be useful for analyses of the small de novo inserted chromosomal segment.


Key Words 3q2 trisomy, personal computer, diagnosis, chromosomal aberration syndrome

## INTRODUCTION

It is often difficult to identify the origin of a small de novo extra chromosomal segment inserted into a chromosome, even if several banding and high-resolution banding techniques were used to analyse. We tried to analyse the origin of a small inserted segment in a de novo $8 \mathrm{p}+$ chromosome using computerized database for chromosomal aberration syndromes, originally programmed by one of us (K.N.).

[^0]
## MATERIALS AND METHODS

Personal computer database for chromosomal aberration syndromes (PC-DCAS). The system was written by Basic language, and programmed to drive by "MENU" screen. One can select "Data entry" or "Syndrome reference" on the MENU. To obtain rapid access time, the database was programmed to be composed of 500 wells, to which sequential coded numbers were given (001-500). Coded number of each well was compared to each of clinical findings. If a finding was positive in a syndrome, a flag " 1 " was given to the corresponding well with the same coded number of a syndrome. Namely, clinical findings were input by a present or absent manner. Thus, the frequency was not reflected in the database. Practically, total 245 clinical findings were selected and coded numbers were given to each (Table 1). These findings were summarized in each 93 chromosomal aberration syndromes (de Grouchy and Turleau, 1984) (Table 2). The data were directly input into hard disk ( $40-\mathrm{MB}$ ) of IBM Japan- 5560 personal computer (operated by MS-DOS) to obtain rapid access time.

The reference system was programmed to be able to refer one finding or a combination of maximum ten findings, and maximum ten candidate syndromes, which matched all of referred findings, to be shown on CRT within a few seconds ("AND" system). Experiences suggested that selecting a combination of three or four findings was reasonable for analysing a small de novo extra chromosomal rearrangement. The system can also be driven by a floppy disk, though it needs a bit more time to access.

Patient. The propositus, a 1-year-old girl, is the second child born to healthy, unrelated parents, when the mother was 23 and the father was 30 years of age. The mother gained 15 kg in weight during the pregnancy. Baby girl was delivered spontaneously at 41 weeks. Her weight was $3,180 \mathrm{~g}$, length 49.0 cm , and head circumference 35.5 cm . Apgar score was 9 . A cleft palate was noted soon after birth as well as cleft lip of left side, which went to surgery at 4 months of age.

At 13 months of age, when she was referred to us, failure to thrive and developmental retardation were obvious. Her length was 73.5 cm ( -0.6 S.D.), weight $6,650 \mathrm{~g}$ ( -5.7 S.D.), head circumference $46.5 \mathrm{~cm}(+0.9$ S.D.). Her craniofacial dysmorphism included brachycephaly, wide protruding forehead, epicanthal folds, synophrys, protruding glabella, strabismus, long eyelashes, flat and wide nasal bridge, cleft palate, cleft lip, large mouth with downturned corners, micrognathia, low-set ears and prominent anthelices. Short neck, diastasis recti abdomini, small pelvis, hypoplastic labia minora were noted in the trunk. The extremities showed proximal implantation of the thumbs, clinodactyly and hypoplastic nails of 5th fingers, dorsiflexed great toes and severe hypotonia. The dermal ridges were hypoplastic and supernumerary flexion creases were seen in the palms (Fig. 1). The brain CT scan showed cavum septi pellucidi. Combined hearing defect was de-

Table 1-I. Code numbers of clinical findings input in personal computer database for chromosomal aberration syndromes (PC-DCAS).

| 001 | mean birth weight: $>2500 \mathrm{~g}$ | 063 | long eyelashes |
| :---: | :---: | :---: | :---: |
| 002 | mean birth weight: $2500-3000 \mathrm{~g}$ | 064 | large glabella |
| 003 | mean birth weight: normal | 065 | protruding glabella |
| 004 | small birth length ( 46 cm ) | 066 | Brushfield's spots |
| 005 | hypotonia | 067 | small eyes |
| 006 | hypertonia | 068 | large eyes |
| 007 | severe hypotrophy | 069 | squinty eyes |
| 008 | corpulent infants | 070 | Doe's eyes |
| 009 | short stature | 071 | ainor ocular anomalies |
| 010 | high stature | 072 | severe micro- or anophthalmia |
| 011 | dolichomorphism | 073 | retinoblastoma |
| 012 | peculiar cry | 074 | aniridia |
| 013 | laryngeal hypotonia | 075 | protruding nose bridge |
| 014 | recurrent infections | 076 | flat nose bridge |
| 015 | survival in adulthood | 077 | wide nose bridge |
| 016 | subnormal growth | 078 | aplastic nose bones (boxer nose) |
| 017 | short life expectancy | 079 | Greek profile |
| 018 | overgrowth | 080 | short nose |
| 019 | seizure | 081 | long nose |
| 020 | pleasant personality | 082 | bulbous nose |
| 021 | aggressivity | 083 | beaked nose |
| 022 | obesity | 084 | broad nose |
| 023 | microcephaly | 085 | pointed nose |
| 024 | macrocephaly | 086 | upward nares (anteverted nostrils) |
| 025 | dolichocephaly | 087 | downward nares |
| 026 | brachycephaly | 088 | long upper lip |
| 027 | trigonocephaly | 089 | short upper lip |
| 028 | turricephaly | 090 | thin upper lip |
| 029 | craniosynostosis | 091 | thin lips |
| 030 | wide sutures/fontanels | 092 | everted lower lip |
| 031 | prominent metopic suture | 093 | chewing lower lip |
| 032 | high forehead, frontal bossing | 094 | thick lips |
| 033 | receded forehead | 095 | deep philtrum |
| 034 | low forehead | 096 | flat philtrum |
| 035 | narrow forehead | 097 | unilateral grin |
| 036 | temporal indentation/ | 098 | cleft lip |
|  | frontal \& parietal bossing | 099 | cleft palate |
| 037 | abnormal hairline on forehead | 100 | high arched palate |
| 038 | protuberant occiput | 101 | long philtrum |
| 039 | round and flat face | 102 | short philtrum |
| 040 | oval face | 103 | small mouth |
| 041 | long face | 104 | wide mouth |
| 042 | triangular face | 105 | down-turned mouth |
| 043 | depressed midface | 106 | oval-shape mouth |
| 044 | elfin face | 107 | turtle beak-shape mouth |
| 045 | small face | 108 | carplike mouth |
| 046 | high cheekbones | 109 | pursed mouth |
| 047 | round cheeks (heavy cheeks) | 110 | macroglossia |
| 048 | upward slant of palpebral fis. | 111 | glossoptosis |
| 049 | downward slant of palpebral fis. | 112 | rabbit teeth |
| 050 | narrow palpebral fissures | 113 | dental anomalies |
| 051 | large palpebral fissures | 114 | micrognathia |
| 052 | almondlike fissures | 115 | protruding chin |
| 053 | blephalophimosis | 116 | large mandible |
| 054 | hypertelorism | 117 | effaced angles of the mandible |
| 055 | hypotelorism | 118 | pointed chin |
| 056 | epicanthus | 119 | prominent maxilla |
| 057 | exophthalmos | 120 | oral anomalies |
| 058 | deep set eyes | 121 | low-set ears |
| 059 | ptosis | 122 | posteriorly rotated ears |
| 060 | arched eyebrows | 123 | small ears |
| 061 | synophris | 124 | lange ears |
| 062 | abnormal eyebrows | 125 | detached ears |

Table 1-II. Code numbers of clinical findings input in personal computer database for chromosomal aberration syndromes (PC-DCAS).

| 126 | faun-like ears | 187 | brachydactyly |
| :---: | :---: | :---: | :---: |
| 127 | flat helix | 188 | brachymesophalangia |
| 128 | folded helix | 189 | brachymetacarpia |
| 129 | protruding anthelix | 190 | camptodactyly |
| 130 | aplastic anthelix | 191 | long fingers |
| 131 | aplastic or adherent lobe | 192 | arachnodactylia |
| 132 | protruding tragus | 193 | elongated second phalange |
| 133 | protruding antitragus | 194 | tapered fingers |
| 134 | preauricular dimples, fistula, tag | 195 | overlapping fingers |
| 135 | deafness | 196 | thumb anomalies |
| 136 | short neck with redundant skin | 197 | proximally implanted thumbs |
| 137 | long, thin neck | 198 | anomalies of the radial axis |
| 138 | flat nape | 199 | pointed fingertips |
| 139 | pterygium colli | 200 | flexion contracture (fingers) |
| 140 | low hairline | 201 | malposition of fingers \& toes |
| 141 | short sternum | 202 | abnoral fingers |
| 142 | large thorax | 203 | hypoplastic nails |
| 143 | long thorax | 204 | dysplastic nails |
| 144 | wide thorax | 205 | club feet |
| 145 | pectus excavatum | 206 | rocker-botton feet |
| 146 | funnel chest | 207 | dorsiflexion of big toe |
| 147 | gynecomastia | 208 | abnomal toes |
| 148 | wide-spaced nipples | 209 | palmature |
| 149 | supernumerary nipples | 210 | deep furrows |
| 150 | low-set nipples, abnormal nipples | 211 | 1 ymphoedema |
| 151 | supernumerary ribs/rib anomaly | 212 | hemangioma |
| 152 | scoliosis | 213 | marbelized skin |
| 153 | narrow pelvis | 214 | nevi |
| 154 | decreased acetabular angles | 215 | dimples |
| 155 | hernias | 216 | ulceration of the scalp |
| 156 | diastasis recti | 217 | dry skin and scarce, thin hair |
| 157 | retentio testis, 隹cropenis | 218 | thick subcutaneous tissue |
| 158 | testicular atrophy | 219 | hirsutism |
| 159 | macroorchidism | 220 | abnormal palmar creases |
| 160 | hypospadias |  | (simian crease etc.) |
| 161 | hyperplasia of labia minora | 221 | immature ridges |
| 162 | hypoplasia of labia minora | 222 | hypermature ridges |
| 163 | streak gonads | 223 | distal axial triradius |
| 164 | abnormal uterus | 224 | excess of arches |
| 165 | anal atresia and perianal malformation | 225 | excess of whorls |
| 166 | primary amenorrhea | 226 | excess of ulnar loops |
| 167 | absence of puberty | 227 | supernumerary flexion creases |
| 168 | ambiguous genitalia | 228 | absence of triradij $b$ and $c$ |
| 1.69 | hypogonadism | 229 | deep plantar crease |
| 170 | slender limbs | 230 | $t^{\prime}$ |
| 171 | stocky limbs | 231 | $t^{\prime \prime}$ |
| 172 | hyperflexed limbs | 232 | cardiac malformation |
| 173 | pleading posture | 233 | renal and urinary tract |
| 174 | froglike position |  | malformation |
| 175 | cubitus valgus | 234 | digestive malformation |
| 176 | radioulnar synostosis | 235 | cerebral malformation |
| 177 | absent knee cap | 236 | corpus callosum agenesis |
| 178 | genu valgum | 237 | severe ocular anomalies |
| 179 | ligamental hyperlaxity | 238 | osteoarticular, minor malformation |
| 180 | collar bone agenesis | 239 | osteoarticular, severe malformation |
| 181 | long hands | 240 | similar to Aarskog syndrome |
| 182 | short stubby hands | 241 | similar to de Lange syndrome |
| 183 | long palms | 242 | similar to Pierre Robin Syndrome |
| 184 | syndactyly | 243 | thymus aplasia |
| 185 | hexadactyly or polydactyly | 244 | vertebral anomalies |
| 186 | clinodactyly | 245 | similar to Treacher-Collins syndrome |

Table 2. List of syndromes input in personal computer database for chromosomal aberration syndromes (PC-DCAS).

| No. | Syndrome | No. | Syndrome | No. | Syndrome |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 01 | $1 \mathrm{q} 32 \rightarrow$ qter trisomy | 33 | 9p trisomy | 64 | 16p trisomy |
| 02 | 1 q 23 or $5 \rightarrow$ qter trisomy | 34 | 9p tetrasomy | 65 | 16q trisomy |
| 03 | $1 \mathrm{q} 25 \rightarrow \mathrm{q} 32$ trisomy | 35 | 9 p 2 monosomy | 66 | 16 q monosomy |
| 04 | 1 q 4 monosomy | 36 | $\mathrm{r}(9)$ |  |  |
| 05 | $\mathrm{r}(1)$ | 37 | 9q3 trisomy | 67 | 17q2 trisomy |
|  |  | 38 | 9 trisomy |  |  |
| 06 | 2p2 trisomy | 39 | 10q2 trisomy | 68 | 18 trisomy |
| 07 | 2 q 3 trisomy | 40 | 10p trisomy | 69 | 18 q 2 trisomy |
|  |  | 41 | 10p monosomy | 70 | $18 \mathrm{p} \& \mathrm{q}$ trisomy |
| 08 | 3q2 trisomy | 42 | 10q2 monosomy | 71 | 18p monosomy |
| 09 | 3p2 monosomy | 43 | $r(10)$ | 72 | 18q2 monosomy |
| 10 | 3p2 trisomy |  |  | 73 | r (18) |
| 11 | 3p monosomy | 44 | 11q2 trisomy |  |  |
| 12 |  | 45 | trisomy by $\mathrm{t}(11 ; 22)$ | 74 | 19q trisomy |
|  | 4 p monosomy | 46 | 11q2 monosomy |  |  |
| 13 | 4 p trisomy | 47 | 11p13 monosomy | 75 | 20p trisomy |
|  | 4q2 \& 3 trisomy | 48 | 11p trisomy |  |  |
| 15 | 4 q 3 monosomy |  |  | 76 | 21 trisomy |
|  |  | 49 | 12p trisomy | 77 | r(21) |
|  | 5p monosomy | 50 | 12p monosomy | 78 | 21q1 monosomy |
| 17 | 5p trisomy | 51 | 12q2 trisomy |  |  |
| 18 | $5 q 3$ trisomy |  |  | 79 | The cat-eye syndrome |
|  |  | 52 | 13 trisomy | 80 | r(22) |
|  | 6p2 trisomy | 53 | 13q2\&3 trisomy |  |  |
|  | 6q2 trisomy |  | 13q1 trisomy | 81 |  |
| 21 | r(6) | 55 | 13q3 monosomy or r(13) | 82 | Noonan syndrome |
|  |  | 56 | 13q monosomy \& | 83 | 47,XXX |
| 22 | 7 q 3 trisomy |  | retinoblastoma | 84 | 48,XXXX |
| 23 | 7q2 trisomy |  |  | 85 | 49,XXXXX |
| 24 | 7q3 monosomy | 57 | 14q1 trisomy | 86 | Klinefelter syndrome |
| 25 | 7q2 monosomy | 58 | 14 trisomy | 87 | $46, \mathrm{XX}$ male |
| 26 | 7q1 monosomy | 59 | r(14) | 88 | 47,XYY |
| 27 | 7p2 trisomy |  |  | 89 | 48,XXYY |
| 28 | 7p2 monosomy | 60 | 15q1 trisomy | 90 | 49,XXXXY |
|  |  | 61 | 15q2 trisomy | 91 | $\mathrm{fra}(\mathrm{X})(\mathrm{q} 27$ or 28$)$ |
|  | 8 trisomy | 62 | 15q1 monosomy \& | 92 | Triploidy |
|  | 8q2 trisomy |  | Prader-Willi syndrome | 93 | Tetraploidy |
|  | 8 p trisomy |  | r(15) |  |  |
| 32 | 8p2 monosomy |  |  |  |  |



Fig. 1. The propositus at 13 months of age.
tected as well as chronic otitis media. Her developmental quotient was 42 at 13 months.

Cytogenetics. A conventional G-banded analysis of the propositus revealed $46, \mathrm{XX}, 8 \mathrm{p}+$ karyotype, in which a small extra segment was inserted. The karyotypes of the parents were normal. Prometaphase cells of peripheral lymphocytes from the propositus were obtained by ethidium bromide and BrdU treatment, and used for GTG-, QFQ- and RBG-banding analyses.

## RESULTS

In her clinical findings, cleft lip, short nose, low nasal bridge and epicanthal folds were selected to refer after several trials. PC-DCAS selected 1 q 4 monosomy, 3 q 2 trisomy, 4 q 3 monosomy, 7 p 2 monosomy and 10 q 2 trisomy as candidates. Because monosomies were considered to be excluded in the $8 p+$ segment, several banding patterns of chromosomes 3 and 10 were compared carefully to the inserted extra segment. As a result, a small segment from 3 q 24 to 3 q 26.32 seemed to be trisomic and invertedly inserted into 8p (Fig. 2). Her karyotype was designated as: 46, $\mathrm{XX},-8,+\operatorname{der}(8)$,inv $\operatorname{ins}(8 ; 3)(\mathrm{p} 21.2 ; \mathrm{q} 26.32 \mathrm{q} 24)$ de novo. Plasma somatostatin value, $23 \mathrm{pg} / \mathrm{ml}$ (RIA), was considered to be within normal limits of infants (Koshimizu et al., 1985).


Fig. 2. Partial karyotypes of chromosomes 3 and 8. a: GTG-(850-band stage), b: RBG-(550-band stage), c: QFQ-bandings. d: Idiograms of chromosomes 3 and 8 indicating inverted insertion of a segment from 3 q 24 to 3 q 26.32 into 8 p 21.2 .

## DISCUSSION

The computer databases for malformation syndromes are now available, e.g., POSSUM (Pictures of Standard Syndromes and Undiagnosed Malformations; Danks and Bankier, 1985), London Dysmorphology Database (Winter et al., 1984; Winter and Baraitser, 1987). BDIS (Computerized Birth Defects Information System; Center for Birth Defects Information Services, Inc., 1986) and so on. Among them, London Dysmorphology Database has known to be supplemented chromosomal syndromes (Brandl and Grimm, 1987). However, this database is expensive and, most importantly, it cannot be driven in most of personal computers popular in Japan because of a difference in operating system.

As a practical problem, it is easy to identify the origin of abnormal chromosomes or segments, when the abnormality is derived from parental balanced trans-
location or pericentric inversion. In the case of microdeletion, it is relatively easy to analyse by using high-resolution techniques. However, when the abnormal de novo extra segment is small and inserted into a chromosome or a free minute marker, it is considerably difficult or almost impossible to identify its origin, even if several banding techniques were used in prometaphase cells. Those procedures are not economic. Thus, we considered to try to programme a computerized database originally, which can be driven in MS-DOS operated personal computers most popular in Japan.

The main purpose of our personal computer system is not to diagnose directly from the clinical findings, but to assist an analysis of the small de novo extra segment by focusing into a few chromosomes, especially in an analysis by high-resolution techniques. Thus, this system seems to be most useful for cytogeneticists to analyse such de novo rearrangements. When a patient has not a typical phenotype of a syndrome, or when the syndrome has not been experienced by a cytogeneticist, this system also seems to be useful.

As the data, 245 clinical findings of chromosomal aberration syndromes in the textbook described by de Grouchy and Turleau (1984) were summarized. The frequency of these findings could not be reflected in the system. Namely, frequent as well as occasional findings were evenly input by a present or absent manner. Because the description of physical findings of the syndromes in the literature has been impressive and authoritative, it is clever to select only distinct findings for reference to PC-DCAS. In the present case, a combination of four distinct findings were referred, and five syndromes were selected as candidates for cytogenetic analyses. A careful comparison of G-, R- and Q-banding patterns identified the inverted insertion of a small 3 q segment into 8 p .

Trisomy for 3 q 2 region has been well documented in about 40 reports. The main features include abnormal configurations of the head, brain malformations and/or seizures, hypertrichosis, hypertelorism, ocular anomalies, nose with abnormal bridge and anteverted nostrils, long philtrum, maxillary prognathism, downturned corners of the mouth, high-arched palate or cleft palate, micrognathia, malformed auricles, short and/or webbed neck, chest deformities, clinodactyly and congenital heart malformations (Steinbach et al., 1981). Most of these findings were observed in the present case.

Somatostatin gene locus has known to be assigned to 3 q 28 by in situ hybridization (Zabel et al., 1983). It is reasonable that somatostatin value of the present case was within normal limits of infants, because 3 q 28 was not involved in the trisomic segment.

## REFERENCES

Brandl, J. and Grimm, T. 1987. A chromosome supplement to the London Dysmorphology Database, J. Med. Genet. 24: 497-499.
Computerized Birth Defects Information System. 1986. Center for Birth Defects Information Services, Inc. Pediatrics 78: A103.

Danks, D.M. and Bankier, A. 1985. Pictures of Standard Syndromes and Undiagnosed Malformations, The Murdoch Institute, Victoria, Australia.
de Grouchy, J. and Turleau, C. 1984. Clinical Atlas of Human Chromosomes, 2nd Ed., John Willeys \& Sons, New York.
Koshimizu, T., Ohyama, Y., Yokota, Y. and Ohtsuka, K. 1985. Peripheral plasma concentrations of somatostatin-like immunoreactivity in newborns and infants. J. Clin. Endocrinol. Metab. 61: 78-82.
Steinbach, P., Adkins, W.N., Jr., Caspar, H., Dumars, K.W., Gebaner, J., Gilbert, E.F., Grimm, T., Habedank, M., Hansmann, I., Herrmann, J., Kaveggia, E.G., Langenbeck, U., Meisner, L.F., Najafzadeh, T.M., Opitz, J.M., Palmar, C.G., Peters, H.H., Scholz, W., Tavares, A.S. and Weideking, C. 1981. The dup(3q) syndrome: report of eight cases and review of the literature. Am. J. Med. Genet. 10: 159-177.
Winter, R.M., Baraitser, M. and Douglas, J.M. 1984. A computerized data base for the diagnosis of rare dysmorphic syndromes. J. Med. Genet. 21: 121-123.
Winter, R.M. and Baraitser, M. 1987. The London Dysmorphology Database. J. Med. Genet. 24: 509-511.
Zabel, B.U., Naylor, S.L., Sakaguchi, A.Y., Bell, G.I. and Shows, T.B. 1983. High-resolution chromosomal localization of human genes for amylase, proopiomelanocortin, somatostatin, and a DNA fragment (D3S1) by in situ hybridization. Proc. Natl. Acad. Sci. U.S.A. 80: 69326936.


[^0]:    Received October 24, 1988; revised version received November 26, 1988; Accepted December 10, 1988.

