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Exploring the statistical uncertainty in acceptable exposure
limit values for hexavalent chromium exposure
Göran Kauermann1, Heiko Becher2 and Verena Maier1

Exposure limit values give the exposure level at which an accepted (or acceptable) number of additional work related diseases are
expected. The values are derived from dose–response curves and carry a large amount of uncertainty. In this paper we aim to
quantify some of this uncertainty with statistical means. We explore the limit value issued by the European Chemical Agency (ECHA)
for occupational exposure to hexavalent chromium, CR(VI). We investigate how the dose–response model and statistical estimation
variability influences the data-based fixation of exposure limit values. We also look at the effect of measurement variation on the
exposure level itself, where simulation techniques allow to quantify the uncertainty in statistical terms. We demonstrate that
statistical uncertainty needs to be taken into account when fixing exposure limit values based on data.
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INTRODUCTION
In 2013 the European Chemical Agency (ECHA) proposed thresh-
old limit values for exposure concentration of hexavalent
chromium, CR(VI), at workplaces in Europe which serve as a
(non-legally binding).1 The values given are based on an assumed
dose–response relationship and an accepted excess lifetime lung
cancer mortality risk. Assuming 4 additional lung cancer cases
among 1000 workers as lifetime risk (40 years of exposure) the
exposure limit value is fixed at the concentration of 1 μg/m3,
which would translate into 52 lung cancer cases compared to 48
for a non-exposed population. Though it is stated in the ECHA
document “that the excess risk in the low exposure range might
be an overestimate”, no acknowledgement of statistical uncer-
tainty is considered. The subsequent paper focuses on this aspect
and aims to demonstrate how to quantify the statistical
uncertainty of data-based fixations of exposure limit values.
The ECHA guidelines are derived from a larger meta-analysis

carried out by Seidler et al.,2 see also Pesch et al.3 These authors
reviewed several epidemiological studies investigating the expo-
sure risk relationship for occupational CR(VI) exposure and lung
cancer. Two cohort studies are playing a central role in the
analyses as they account for smoking status among the workers.
The first, the so-called Baltimore cohort study, was first analysed
by Gibb et al.4 with follow ups by Park et al.,1,5 and recently by
Haney et al.6 The second cohort study, the so-called Painesville
study was presented by Crump et al.7 and Luippold et al.8 We here
refer to both studies and analyse the published summarised data
with respect to quantifying the uncertainty of derived exposure
limit values.
The specification of exposure limit values relies on a model for

the dose–response relation. Apparently, the choice of the dose–
response relationship may have crucial effects on any data-based
specification of exposure limit values. The exposure limit values
issued in the ECHA guidelines were derived by linear interpolation

of standard mortality rates (SMR) as proposed in Seidler et al.2 by
fitting standardised mortality ratios against observed exposure
using weighted linear regression.
We give details in the paper. An alternative modelling approach

is based on Poisson regression models, which in statistical terms
are more natural for modelling count data.9 This approach has
been pursued for example by Park et al.1 and Becher and
Wahrendorf10 to provide an overview of the different modelling
approaches to study and analyse dose–response data.
Apparently, the linear model for SMR and the log-linear dose–

response Poisson model might give different dose–response
relations and consequently lead to different specifications of the
exposure limit values. Often, like in occupational CR(VI) exposure,
data are obtained from cohort studies where methods for
exposure measurement may vary considerably. Only in rare cases,
for example for dioxin, measurements are possible in biological
samples. In radiation epidemiology, dosimeter data allow a precise
estimation of the individual radiation dose. Usually, however,
exposure estimates are a combination from air concentration
measurements combined with individual workplace descriptions.
In such cases it seems therefore nearly impossible to apply
statistical model selection routines to choose the best model for
the unknown dose–response curve. In other words, there remains
a large amount of uncertainty, which is not immediately
quantifiable in statistical error bands. This uncertainty is, however,
often ignored when fixing exposure limit values. In this paper we
aim to explore the effect of different model specifications on the
estimation of threshold limit values. We will show that a linear
dose–response relation for the SMRs is not implausible (for
occupational CR(VI) exposure) and resembles the dose–response
model fitted using a Poisson approach.
Besides the chosen model itself the fitted parameters of the

model are subject to statistical estimation uncertainty which
induce estimation variability on the exposure limit value.
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Following traditional statistical reasoning this implies that any
data-based specification of a limit value requires the indication of
confidence bands. Such confidence quantification is not given in
the ECHA document but will be explored in our paper. Theoretical
derivations are thereby clumsy so that we propose to quantify the
confidence level of the exposure limit value by bootstrapping.11

We therefore simulate (synthetical) dose–response data based on
the fitted model and refit the model to the simulated data. Based
on the simulated and refitted model we derive a (bootstrapped)
exposure limit value. This simulation step is carried out multiple
times, which provides random variation of the fitted exposure
limit values that mimicks the original estimation variability.
Uncertainty of the fixation of threshold limit values is driven by

the model choice as well as statistical estimation uncertainty, as
motivated above. A third source of uncertainty are the data
themselves. As indicated above, the measurement and quantifica-
tion of the exposure level is difficult and subject to measurement
errors. Often, exposure information is only available from grouped
data. In such cases, measures are therefore usually given in
intervals, where for fitting of the dose–response curve an
appropriate exposure mean within the interval is used. That is,
the measurement error, which is reflected by grouping the
exposures to intervals, is ignored and for simplification only a
single exposure level is used for each interval group. To assess the
effect of such grouping on the fixation of the threshold limit value
we again pursue a simulation based approach. We simulate
(synthetical) grouped dose–response data by varying the dose
level within each interval. To do so we assume that the exposure
follows a log-normal distribution. We make use of this property
and let the exposure randomly vary within each interval according
to the log-normal assumption. From the random variation of the
exposure we simulate dose–response data and refit the model
leading to simulated exposure limit values. The induced and
increased variation mirrors the variability occurring exclusively
through uncertainty of dose level measurements. We emphasise,
that uncertainty in exposure is very difficult to quantify and hence
our investigation remains at a superficial level here. To explore
uncertainty of exposure in a more realistic manner data on
individual and temporal level are required. Such data are rarely
available so that deeper investigation remains an open
research task.
The three determined sources of uncertainty, that is, (i) the

model choice, (ii) estimation variability and (iii) measurement error
of exposure level lead to the critical conclusion that any threshold
limit value given without reflecting these sources of uncertainty is
open for discussion. In this report we therefore shed some light on
this and explore the impact of the emphasised three sources of
uncertainty. For the modelling exercise we will promote Poisson
based models. Apparently, the dose–response relation is the
central element in each model. There are different methods to
derive a dose–response relation. The most flexible one is to
remain unspecific and just demand that the dose–response
relation is smooth, meaning it is continuous and differentiable.
This leads to non-parametric models where the dose–response
relation is a smooth function to be fitted from the data. This can
be carried out using smoothing techniques, as discussed in Hastie
and Tibshirani12 and Fahrmeir et al.13 The idea here is that the
dose–response relation is considered to be a smooth but
otherwise unspecified function which is fitted from the data
using for example, a spline based approach. Another approach is
to find an appropriate parametric dose–response function using
established algorithms such as fractional polynomials.14 We fit
such a smooth model to both, the published (and grouped)
Baltimore as well as the Painesville cohort data, and explore
competing parametric models with respect to goodness-of-fit. It
appears that both, a log-linear dose–response Poisson model as
well as a linear SMR model perform well and mirror the structure
of the dose–response relation. As the second step in our

investigation we take statistical estimation variability into account
in order to assess the uncertainty of exposure limit values derived
from the model. As last step we aim to explore how the
uncertainty of exposure measurement induce an excess variability
on derived exposure limit values.
The paper is structured as follows. Section 2 discusses

modelling issues for dose–response curves. Section 3 explores
the statistical uncertainty in the estimation of threshold limit
values. Section 4 aims to explore how variation in the exposure
influences the results. Finally, Section 5 concludes the paper.

DATA ANALYSIS OF PAINESVILLE AND BALTIMORE STUDY
Painesville Cohort
Statistical model. We first consider the Painesville cohort study
and (re-)analyse (the data provided in 7 p. 1157), see also Table 1.
We make use of Poisson based regression and compare this with
linear models for the SMR. The primary focus is thereby to asses
the implications on the resulting threshold limit value, that is, the
cut point of the fitted dose–response curve with a specified excess
risk. Let Yi denote the observed cases of lung cancer in exposure
intervals i= 1, ..., I. We assume that Yi is Poisson distributed with
intensity depending on the mean exposure level denoted by xi.
Apparently, the lung cancer rate depends on confounding
quantities, such as smoking status, age, gender, and so on. These
are incorporated in the data by providing expected numbers of
lung cancer cases for a reference population, that is, for a non-
exposed cohort. Let ei denote these expected numbers of cases
which are also provided by Crump et al.7 and which are based on
the mortality in the underlying population. These quantities now
allow to specify the Poisson model to

Yi � Poissonðyi ¼ exp β0 þ s xið Þ þ log eið Þf g
|{z}

¼λi

Þ ð1Þ

where s(xi) gives the dose–response relation with s(0) = 0 to
guarantee identifiability of the effects. Here β0 denotes the cohort
effect, that is, the workforce in the data cohort may have an
increased (or decreased, also called healthy worker effect)
overall risk.
The term log(ei) is denoted as offset in statistical terminology. It

guarantees that, setting β0≡0, the expected value of the Poisson
variable in Park et al.1 equals exp(log(ei)) = ei when taking zero
exposure with x=0. To account for potential overdispersion we use
a quasi-Poisson fit, that is, we allow for excess variability in the data
such that Var(Yi) =φ · λi where φ is the overdispersion parameter
fitted from the data.15

Table 1. Data from Painesville and Baltimore cohort study.1,2,7

Cohort Mean exposure Person-years Observed Expected

Painesville 0.01 3112.00 0 2.09
0.12 1546.00 3 2.19
0.23 1031.00 3 2.19
0.39 1130.00 5 2.13
0.56 1257.00 0 2.20
0.82 1431.00 4 2.22
1.27 1493.00 12 2.23
2.09 1291.00 3 2.18
3.37 1248.00 10 2.18
7.55 904.00 11 2.12

Baltimore 0.04 51.35 72 47.93
0.07 7837.00 14 7.64
0.17 6859.00 12 6.09
0.42 3841.00 12 5.13
1.59 950.00 12 1.90
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Function s(x) can now be estimated by replacing s(x) by some
parametric form. Before doing so we pursue however a more
general approach and fit s(x) non-parametrically with splines,
where the amount of smoothness and non-linearity is chosen data
driven. We use standard software (R, see Wood16) to fit the models
leading to the fitted dose–response curve shown in Figure 1 (solid
line). The fit was generalised with the mgcv package described in
detail in Wood16 using a cubic regression spline basis with six
quantile-based knots. The smoothing parameter is chosen by
cross-validation. The shaded area gives the confidence interval
based on a quasi-Poisson assumption. The fitted function is
adjusted in the plot to refer to the dose–response relationship on
the population level, that is we shift the fitted function such that s
(xi) describes the exposure effect. The fitted smooth dose–
response curve has a non-linear convex shape. This shape
suggests to replace the non-parametric dose–response model
(1) through a log-linear dose–response relation. This means we
replace the smooth curve s(x) in Park et al.1 by the log-linear shape

yi ¼ exp β0 þ log 1þ xið Þβþ log eið Þf g ð2Þ

where β is the slope parameter. The fitted curve is also shown in
Figure 1 as dotted purple line with fitted coefficient β̂= 0.78. We
label model (2) subsequently as log-linear dose–response model.
Apparently the shape of the fitted log-linear dose–response curve
has a similar shape to the spline based fit. This is also seen from
Table 2 where we show the deviance and the Akaike information
criterion (AIC) for model (1), model (2) and for two commonly used
alternatives resulting by replacing the dose–response relation s(x)
in1 by xβ and

ffiffiffi

x
p

β, respectively. Taking the AIC as criterion for
model selection we select the log-linear dose–response model.
However, there is no clear evidence for superiority of one of the

models which is not surprising given the limitation in the data. We
will subsequently work with the log-linear dose–response relation.
Besides the Poisson model it is possible to model the SMR

directly. Like in Crump et al.7 we look at the weighted linear model

Yi

ei
¼ β0 þ xiβx - εi ð3Þ

where the variance of residuals εi is proportional to the reciprocal
of the person-years in each group given in the data. Apparently on
a population level it is reasonable to set β0 equal 1 but for the data
we again allow for a cohort effect and omit the constraint for
fitting, comparable to Seidler et al.2 We label model (3)
subsequently as linear SMR model which can be rewritten to

log ðYiÞ ¼ log β0 þ xβx þ εið Þ þ log ðeiÞ
and therewith resembles the log-linear Poisson model (2). We
include the fit of the model on the log-scale in Figure 1 as dashed
blue line and provide parameter estimates in Table 3. We see that
both parametric fits are comparable and within the confidence
region of the general non-parametric model. A comparison based
on the AIC is avoid as we compare two different stochastic models
and any comparison of relative differences in the AIC values do
not make sense. We conclude therefore that the data support the
use of both, the log-linear dose–response model in combination
with a Poisson model as well as the linear model applied to the
SMR. We will come back to the question of model evaluation in
section Combined Analysis of Painesville and Baltimore Cohort.

Exposure limit value. The exposure limit value is the dose under
which an acceptable excess risk (ER) occurs. To calculate this dose
we need some basic assumptions. Since the above dose–response
models provide an estimate on the relative scale under a specific
dose metric, we need (i) 9 baseline absolute risk estimates, (ii) the
acceptable excess risk value and (iii) a justification for the dose
metric. Regarding (i), the baseline lifetime probability to die from
the targetdisease (lung cancer) is taken as 48/1000. For (ii) an
excess risk of 4/1000 was defined as target. Regarding (iii), the
cumulative dose has been used in previous risk assessments. We
therefore assume that this metric is biologically relevant yielding
the unit of exposure as μg/m3 × years. From (i) and (ii) we obtain
the corresponding relative risk (RR) as (48+4)/48 = 1.083, which is
shown on the log-scale in Figure 1. The threshold limit value is
therefore the cumulative dose xmg

m3 × years, which yields a RR of
1.083. The cumulative doses as resulting from the models are
given in the right column in Table 4, for example 0.22
μg/m3 × years with model (1). This dose accumulates after 40
years of workplace exposure with a concentration of 5.50 μg/m3

which is the threshold concentration for this model. For the other
models we obtain different threshold values as given in the left
column in Table 4. Apparently, the different models lead to quite
different limit values, which mirrors the uncertainty of the model
when fitting dose–response data. Nonetheless, the log-linear
Poisson model (2) and the linear SMR model (3) yield to similar
threshold limit values. Note that no estimation variability is given
in Table 4 which will be delivered later in the paper.

Figure 1. Painesville study: fitted dose–response curves with
different models. Grey area indicates confidence bands based on
the non-parametric model.

Table 2. Painesville study: different Poisson models and their
goodness-of-fit measures.

s(x) Deviance AIC

Smooth 29.51 56.14
Log(1 + x) 23.07 55.54
xp 26.87 59.34
√x 23.15 55.62

Abbreviation: AIC, Akaike information criterion. Minimal value is set in bold.

Table 3. Painesville study: parameter estimates in different models.

Estimate S.e.

Log-linear Poisson (model (2)) 0.78 0.30
Linear SMR (model (3)) 0.68 0.27

Abbreviation: SMR, standard mortality rate.
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Combined analysis of painesville and baltimore cohort
We extend the previous analysis by looking at the Baltimore and
the Painesville cohort data jointly. We merge the two data sources
and fit the above models to the combined data set. We also
include an additive cohort variable as covariate, which however
shows no statistically significant effect. We fit the same models as
above, i.e. the spline based model (1), the log-linear dose–
response Poisson model (2) and the weighted linear SMR model
(3). The combined data lead to the fits shown in Figure 2. The
fitted coefficients are shown in Table 5 and in Table 6 we list the
AIC values for the models using the Poisson approach.
A combination of the data have been analysed before in Seidler

et al.2 who conducted a meta-analysis of studies reporting on
occupational CR(VI) exposure. They included the Painesville and
Baltimore cohort studies data using a linear SMR model. They
proposed a combined estimation by taking the simple average of

the fitted coefficients βx for the Painesville data ( = 0.68, see Crump
et al.7) and the Baltimore data ( = 2.82, see also Park et al.1) leading
to β̂x;combined ¼ 1:75 ¼ ð0:68þ2:82Þ

2 . We include this value in Figure 2.
The value 1.75 has had an impact since it was incorporated in the
ECHA document as underlying dose–response effect. We imme-
diately see form Figure 2 that the setting does not look
appropriate. Note that the value 1.75 is a merge out of two
separate estimates but not an estimate of merged data. It is
therefore not surprising that the dose–response curve for
β̂x;combined ¼ 1:75 lies away from the three other curves which
are estimates using the merged data to fit the models while the
log-linear dose–response model (2) as well as the weighted SMR
model (3) again show a comparable fit. This is even better seen
from the data itself. We plot the residuals of the model by taking
Pearson residuals for the Poisson model. These are shown in
Figure 3. While the smooth model, the log-linear dose–response
Poisson model and the linear SMR mirror an unstructured
behaviour of the residuals the dose–response relation with to
β̂x;combined ¼ 1:75 performs not appropriately. The corresponding
limit values, i.e. the intersection of the model with the excess risk
levels referring to 4 additional lung cancer cases on 1000
individuals, are given in Table 7. Again no estimation variability
is considered as this will be discussed in the next section.
Finally, note that the ECHA released 1 μg/m3 as annual limit

value. We observe that all fitted models lead to an exposure limit
estimate, which lies above the ECHA value. To draw reliable
inference we need to take estimation variability into account
which we do in the next section.

Table 4. Painesville study: annual exposure limit values in mug.

Annual threshold
value in μg/m3

Cumulative dose after 40
years of exposure in

mg/m3 x years

Smooth dose–
response (model (1))

5.50 0.22

Log-linear Poisson
(model (2))

2.71 0.11

Linear SMR (model (3)) 3.05 0.12

Abbreviation: SMR, standard mortality rate. m3 yielding an excess risk of 4.
Additional lung cancer cases among 1000 individuals assuming 40 years of
exposure.

Figure 2. Painesville and Baltimore study: fitted dose–response
curves with different models. Grey area indicates confidence bands
based on the non-parametric model.

Table 5. Painesville and Baltimore study: parameter estimates in
different models for combined data.

Estimate s.e.

Log-linear Poisson (model (2)) 0.63 0.17
Linear SMR (model (3)) 0.63 0.24
Seidler et al.2 1.75

Abbreviation: SMR, standard mortality rate.

Table 6. Painesville and Baltimore study: different Poisson models and
their goodness-of-fit measures.

s(x) Deviance AIC

Smooth 29.51 87.51
Log(1 + x) 31.59 87.51
xp 31.59 94.57
√x 31.65 87.73

Abbreviation: AIC, Akaike information criterion. Minimal value is set in bold.

Figure 3. Painesville and Baltimore study: Pearson residual plot for
combined data.

Statistical uncertainty in acceptable exposure limit values
Kauermann et al

72

Journal of Exposure Science and Environmental Epidemiology (2018), 69 – 75



We conclude that visualising the data with non-parametric,
smooth models allows to get more insight into the shape of the
dose–response relationship. This shows that the proposal of
Seidler et al.2 with a slope parameter set to 1.75 as simple average
of the separately fitted slopes in the two cohort studies has some
weakness and does not appropriately mirror the dose–response
relation in the combined data. Moreover we recognise that the
log-linear Poisson model and the linear SMR model yield
comparable results. We have therewith discussed one of the
three questions proposed in the introduction. We have shown
how different models can fit the data and investigated the
amount of information in the data with respect to the dose–
response relationship. It remains to investigate and quantify the
amount of estimation variability for the fitted threshold limit value,
which is carried out in the next section.

ESTIMATION VARIABILITY OF THRESHOLD LIMIT VALUE
Painesville Cohort
Our intention is now to assess the estimation variability of the
exposure limit value. In principle this could be done by calculating
the exposure limit not only for the fitted curves shown in Figure 1
but taking the estimation variability of the estimates into account
using asymptotic normality arguments. We propose a different,
though comparable, idea here by assessing the variability
following the bootstrap principle. The idea of bootstrapping11 is
to refit the model from simulated data and use the random
variation of the refitted parameter estimates to derive bootstrap
based confidence intervals. We pick up this idea using a so-called
parametric bootstrap, that is we simulate from the fitted models.
Conceptually this would be possible for all parametric models, but
simulating from the weighted linear SMR model is problematic,
since a simple normal error distribution is assumed and
monotonicity is not guaranteed at all. We therefore only use the
log-linear dose–response Poisson model to simulate from. We will
first constrain the investigation to the Painesville study and
simulate from the fitted log-linear Poisson model (2). To be
specific, we take both, the categorised exposure levels as well as
the expected number of cases published in Crump et al.7 We insert
these values in model (2) and simulate (bootstrap) observed cases
using the estimated parameter values. To account for over-
dispersion we do not draw from a Poisson model directly but draw
the observed cases from a negative- binomial model, such that
the mean structure follows the fitted model (2) but the variance is
inflated by the fitted overdispersion parameter. The simulated
cohort data are then refitted with the log-linear Poisson model (2)
as well as the linear SMR model (3). Each simulation is repeated
1000 times. For the sake of simplicity we leave the smooth model
aside for the remainder of this paper.
Figure 4 shows exemplary the simulated relative risk curves

refitted with the log-linear Poisson model (upper plot), as well
with the linear SMR model approach. The black solid lines refer to
the estimated dose–response model fitted in the previous chapter.

With the main interest in the absolute risk, we include the
absolute excess risk of 4 additional lung cancer cases per 1000
individuals as black horizontal line. Obviously, both models suffer
from rather strong estimation variation leading to quite different
resulting exposure limit values. To have a closer look on that, we
look at the exposure for each bootstrap simulation, that is we
calculate the cut point of the dose–response curve with the excess
risk of 4 additional cases among 1000 workers. This value is again
given as average annual exposure concentration assuming 40
years of exposure, like above.
The bootstrap principle allows to quantify the variation seen in

Figure 4 as estimation variability which allows to derive confidence
intervals for the exposure limit value. This leads for the log-linear
Poisson and the linear SMR to a 95% confidence intervals given in
Table 8. We recognise that there is a substantial amount of
uncertainty which should be taken into account. In fact we can
argue that with a confidence of 97.5% the dose exposure limit such
that the absolute excess risk is below 4 deaths among 1000 workers
is greater or equal 1.42 μg/m3 following the log-linear Poisson
model. This is based upon the Painesville cohort data only.

Combined Analysis of Painesville and Baltimore Cohort
As in the previous section we extend the analysis to the combined
data set. Like before, we simulate data from the fitted log-linear
Poisson model and refit these with the log-linear model (2) and
the linear SMR model (3). The fitted dose–response curve is used
to calculate the exposure limit value which leads to the
bootstrapped values with confidence intervals provided in
Table 9. We conclude that the left hand side of the confidence
interval is slightly increased while the right hand side is decreased
in the combined data. Again, a large amount of estimation
uncertainty is visible.

VARIATION OF EXPOSURE LEVELS
The final step in our investigation is to look at the exposure
measurements itself. We therefore vary the exposure level within

Table 7. Painesville and Baltimore study: annual exposure limit values
in μg/m3 yielding an excess risk of 4 additional lung cancer cases
among 1000 individuals assuming 40 years of exposure for combined
data.

Annual threshold
value in μg/m3

Smooth dose–response (model (1)) 4.85 4.85
Log-linear Poisson (model (2)) 3.12 3.12
Linear SMR (model (3)) 3.29 3.29
Seidler et al.2 1.19 1.19

Figure 4. Painesville study: simulated relative risk curves on
log-scale (grey) and risk curve of original data (black).

Table 8. Painesville study: 95% confidence intervals for annual
exposure limit values (in μg/m3, assuming 40 years of exposure).

Left Right

Log-linear Poisson 1.24 44.26
Linear SMR 1.79 155.21

Abbreviation: SMR, standard mortality rate.
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each interval in the simulation starting with the Painesville study.
To do so we first need to investigate the exposure distribution
itself. Figure 5 (left plot) shows the density of exposure in the
exposure intervals given in Crump et al.7 calculated by dividing
the person-years measurements in the data by the width of the
exposure intervals. A skew distribution is apparent which strikingly
mirrors a log-normal distribution included in the figure as dashed
line. We also calculate the mean exposure based on the log-
normal model for each of the exposure intervals in the data and
compare this with the mean exposure given in the data. This is
shown in the right hand side plot in Figure 5. A convincing
resemblance is obvious which clearly speaks for log-normally
distributed exposure. This distributional assumption will be used
subsequently.
Instead of taking the mean exposure for each group we

simulate a group specific exposure based on the log-normal

exposure shown in Figure 5. That is for each interval we simulate a
censored log-normal exposure level. With this exposure we
simulate data using the overdispersed log Poisson model, as in
the previous section, and refit the model. Based on the refitted
model we derive the threshold limit value. We restrict our analyses
on the log-linear Poisson model only and repeat each simulation
1000 times. We only look at the lower (left) value of the
confidence interval. We observe excess variation in the lower
threshold limit value when exposure measurement error is taken
into account, which is mirrored in the resulting confidence
intervals shown in Table 10. We observe that a slight excess
variation occurs at the lower end of the confidence interval and
the ECHA value 1 μg/m3 is not included in the confidence interval.
For completeness we also show in Figure 6 the variation of the
estimated slope parameter with and without consideration of
exposure measurement error. Apparently an increased estimation
variability is visible. We also investigated the effect of measure-
ment error for the combined data. This occurs however to be
numerically unstable, so that we do not report the result here.
Instability might occur due to the fact that the exposure
distribution differs in the two studies which is difficult to be
captured in the simulation design.

CONCLUSION
The European Chemical Agency (ECHA) issued the threshold limit
value of 1 μg/m3 as exposure leading to an increased lung cancer
risk of 4/1000. The ECHA document states that “the excess risk in
the low exposure range might be an overestimate. Supported by
statistical means in this paper we can state that with a confidence
of 97.5% and based on the Baltimore and Painesville study the
exposure level of 1 μg/m3 leads to less than 4 additional lung
cancer cases amongst 1000 workers. In this respect we can
support the ECHA document, but base our reasoning on statistical

Table 9. Painesville and Baltimore study: 95% confidence intervals for
annual exposure limit values (in μg/m3 assuming 40 years of exposure)
for combined data.

Left Right

Log-linear Poisson 1.98 10.31
Linear SMR 2.17 32.46

Abbreviation: SMR, standard mortality rate.

Figure 5. Painesville study: density of exposure (black line), that is
person-years in exposure group over the width of exposure
intervals, a log-normal density (dashed green line), Right hand side
figure gives the mean exposure plotted against a log-normal mean
exposure.

Table 10. Left side of 95% confidence intervals for threshold limit
values (in μg/m3 assuming 40 years of exposure) with and without
variation of exposure level.

Log-linear Poisson Left

Variation in exposure level 1.31
No random variation 1.42

Figure 6. Painesville study: variation of the estimates based on the
parametric model (2).

Statistical uncertainty in acceptable exposure limit values
Kauermann et al

74

Journal of Exposure Science and Environmental Epidemiology (2018), 69 – 75



grounds, and hence are more rigorous than the reasoning applied
in the ECHA document itself.2 We emphasise, however, that the
data are sparse and additional uncertainty remains which cannot
be captured with statistical tools. Finally, we emphasise that our
(re-)analysis is based on published grouped data only. A more
refined modelling would be possible with the original
individual data.
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