Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Elemental analysis of infant airborne particulate exposures

Abstract

Air pollution is hypothesized to have negative impacts on infant pulmonary health because of infants’ increased rates of respiration and ongoing lung development. The severity and type of impact may differ depending on elemental concentrations. We conducted a study of 21 infants <6 months old whose parents carried a small personal particulate monitoring device (RTI MicroPEM) and GPS unit with the infant for 7 days in January and February 2015. The study area was Utah County, UT, USA. Real-time particulate exposure levels, as well as optical density and elemental analysis of the particulate matter (PM), were compared with levels from an outdoor stationary monitor. Infants spent an average of 87.4% of their time indoors. PM levels varied widely by infant and time of day (average=19.07 μg/m3, range=0.63–170.25 μg/m3). Infant particulate exposures were not well approximated by the outdoor monitor. Infants had lower exposures to Sb, Mn, Pb, W and Fe than the outdoor monitor and higher exposures to Cd, Ni and Na. Differences were most pronounced for Na. Brown carbon was only detected by personal monitors and not by the outdoor monitor. Further research is needed to understand the potential implications of indoor elemental exposures on early respiratory development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 6
Figure 5

Similar content being viewed by others

References

  1. Schwartz J, Dockery DW, Neas LM . Is daily mortality associated specifically with fine particles? J Air Waste Manag Assoc 1996; 46: 927–939.

    Article  CAS  Google Scholar 

  2. Ostro B, Broadwin R, Green S, Feng W-Y, Lipsett M . Fine particulate air pollution and mortality in nine California counties: results from CALFINE. Environ Health Perspect 2006; 114: 29–33.

    Article  Google Scholar 

  3. Pope CA, III, Dockery DW . Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc 2006; 56: 709–742.

    Article  CAS  Google Scholar 

  4. Laden F, Schwartz J, Speizer FE, Dockery DW . Reduction in fine particulate air pollution and mortality: extended follow-up of the Harvard Six Cities study. Am J Respir Crit Care Med 2006; 173: 667–672.

    Article  CAS  Google Scholar 

  5. Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME et al. An association between air pollution and mortality in six US cities. N Engl J Med 1993; 329: 1753–1759.

    Article  CAS  Google Scholar 

  6. Pope CA, III, Thun MJ, Namboodiri MM, Dockery DW, Evans JS, Speizer FE et al. Particulate air pollution as a predictor of mortality in a prospective study of US adults. Am J Respir Crit Care Med 1995; 151: 669–674.

    Article  Google Scholar 

  7. Koenig JQ, Larson TV, Hanley QS, Rebolledo V, Dumler K, Checkoway H et al. Pulmonary function changes in children associated with fine particulate matter. Environ Res 1993; 63: 26–38.

    Article  CAS  Google Scholar 

  8. Gauderman WJ, Avol E, Gilliland F, Vora H, Thomas D, Berhane K et al. The effect of air pollution on lung development from 10 to 18 years of age. N Engl J Med 2004; 351: 1057–1067.

    Article  CAS  Google Scholar 

  9. Braun-Fahrlaender C, Vuille J, Sennhauser F, Neu U, Künzle T, Grize L et al. Respiratory health and long-term exposure to air pollutants in Swiss schoolchildren. SCARPOL Team. Swiss Study on childhood allergy and respiratory symptoms with respect to air pollution, climate and pollen. Am J Respir Crit Care Med 1997; 155: 1042–1049.

    Article  Google Scholar 

  10. Bobak M, Leon DA . The effect of air pollution on infant mortality appears specific for respiratory causes in the postneonatal period. Epidemiology 1999; 10: 666–670.

    Article  CAS  Google Scholar 

  11. Woodruff TJ, Grillo J, Schoendorf KC . The relationship between selected causes of postneonatal infant mortality and particulate air pollution in the United States. Environ Health Perspect 1997; 105: 608.

    Article  CAS  Google Scholar 

  12. Ha EH, Lee JT, Kim H, Hong YC, Lee BE, Park HS et al. Infant susceptibility of mortality to air pollution in Seoul, South Korea. Pediatrics 2003; 111: 284–290.

    Article  Google Scholar 

  13. Woodruff TJ, Darrow LA, Parker JD . Air pollution and postneonatal infant mortality in the United States, 1999-2002. Environ Health Perspect 2008; 116: 110–115.

    Article  Google Scholar 

  14. Woodruff TJ, Parker JD, Schoendorf KC . Fine particulate matter (PM 2.5) air pollution and selected causes of postneonatal infant mortality in California. Environ Health Perspect 2006; 114: 786–790.

    Article  CAS  Google Scholar 

  15. Loomis D, Castillejos M, Gold DR, McDonnell W, Borja-Aburto VH . Air pollution and infant mortality in Mexico City. Epidemiology 1999; 10: 118–123.

    Article  CAS  Google Scholar 

  16. Karr C, Lumley T, Schreuder A, Davis R, Larson T, Ritz B et al. Effects of subchronic and chronic exposure to ambient air pollutants on infant bronchiolitis. Am J Epidemiol 2007; 165: 553–560.

    Article  Google Scholar 

  17. Wilson WE, Suh HH . Fine particles and coarse particles: concentration relationships relevant to epidemiologic studies. J Air Waste Manag Assoc 1997; 47: 1238–1249.

    Article  CAS  Google Scholar 

  18. Sly PD, Flack F . Susceptibility of children to environmental pollutants. Ann N Y Acad Sci 2008; 1140: 163–183.

    Article  CAS  Google Scholar 

  19. Selevan SG, Kimmel CA, Mendola P . Identifying critical windows of exposure for children's health. Environ Health Perspect 2000; 108 (Suppl 3): 451.

    Article  Google Scholar 

  20. Bateson TF, Schwartz J . Children's response to air pollutants. J Toxicol Environ Health Pt A 2007; 71: 238–243.

    Article  Google Scholar 

  21. Bell ML, Ebisu K, Leaderer BP, Gent JF, Lee HJ, Koutrakis P et al. Associations of PM2. 5 Constituents and sources with hospital admissions: analysis of four counties in Connecticut and Massachusetts (USA) for persons&gt; or=65 years of age. Environ Health Perspect 2014; 122: 138.

    Article  Google Scholar 

  22. Ostro B, Feng W-Y, Broadwin R, Green S, Lipsett M . The effects of components of fine particulate air pollution on mortality in California: results from CALFINE. Environ Health Perspect 2007; 115: 13–19.

    Article  CAS  Google Scholar 

  23. Peng RD, Bell ML, Geyh AS, McDermott A, Zeger SL, Samet JM et al. Emergency admissions for cardiovascular and respiratory diseases and the chemical composition of fine particle air pollution. Environ Health Perspect 2009; 117: 957.

    Article  CAS  Google Scholar 

  24. Ito K, Mathes R, Ross Z, Nádas A, Thurston G, Matte T . Fine particulate matter constituents associated with cardiovascular hospitalizations and mortality in New York City. Environ Health Perspect 2011; 119: 467.

    Article  CAS  Google Scholar 

  25. Bell ML, Ebisu K . Environmental inequality in exposures to airborne particulate matter components in the United States. Environ Health Perspect 2012; 120: 1699–1704.

    Article  CAS  Google Scholar 

  26. Bell ML, Belanger K, Ebisu K, Gent JF, Lee HJ, Koutrakis P et al. Prenatal exposure to fine particulate matter and birth weight: variations by particulate constituents and sources. Epidemiology (Cambridge, MA) 2010; 21: 884.

    Article  Google Scholar 

  27. Ebisu K, Bell ML . Airborne PM2.5 chemical components and low birth weight in the Northeastern and Mid-Atlantic regions of the United States. Environ Health Perspect 2012; 120: 1746.

    Article  CAS  Google Scholar 

  28. Ostro B, Roth L, Malig B, Marty M . The effects of fine particle components on respiratory hospital admissions in children. Environ Health Perspect 2009; 117: 475–480.

    Article  CAS  Google Scholar 

  29. Wangchuk T, Mazaheri M, Clifford S, Dudzinska MR, He C, Buonanno G et al. Children's personal exposure to air pollution in rural villages in Bhutan. Environ Res 2015; 140: 691–698.

    Article  CAS  Google Scholar 

  30. Mazaheri M, Clifford S, Jayaratne R, Megat Mokhtar MA, Fuoco F, Buonanno G et al. School children’s personal exposure to ultrafine particles in the urban environment. Environ Sci Technol 2013; 48: 113–120.

    Article  Google Scholar 

  31. Buonanno G, Marks GB, Morawska L . Health effects of daily airborne particle dose in children: direct association between personal dose and respiratory health effects. Environ Pollution 2013; 180: 246–250.

    Article  CAS  Google Scholar 

  32. Buonanno G, Marini S, Morawska L, Fuoco F . Individual dose and exposure of Italian children to ultrafine particles. Sci Total Environ 2012; 438: 271–277.

    Article  CAS  Google Scholar 

  33. Farrow A, Taylor H, Golding J . Time spent in the home by different family members. Environ Technol 1997; 18: 605–613.

    Article  CAS  Google Scholar 

  34. Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P et al. The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Anal Environ Epidemiol 2001; 11: 231–252.

    Article  CAS  Google Scholar 

  35. Rodes CE, Lawless PA, Thornburg JW, Williams RW, Croghan CW . DEARS particulate matter relationships for personal, indoor, outdoor, and central site settings for a general population. Atmos Environ 2010; 44: 1386–1399.

    Article  CAS  Google Scholar 

  36. Wheeler AJ, Xu X, Kulka R, You H, Wallace L, Mallach G et al. Windsor, Ontario exposure assessment study: design and methods validation of personal, indoor, and outdoor air pollution monitoring. J Air Waste Manag Assoc 2011; 61: 324.

    Article  CAS  Google Scholar 

  37. Janssen NAH, Hoek G, Brunekreef B, Harssema H, Mensink I, Zuidhof A . Personal sampling of particles in adults: relation among personal, indoor, and outdoor air concentrations. Am J Epidemiol 1998; 147: 537–547.

    Article  CAS  Google Scholar 

  38. Wallace LA, Wheeler AJ, Kearney J, Van Ryswyk K, You H, Kulka RH et al. Validation of continuous particle monitors for personal, indoor, and outdoor exposures. J Expo Sci Environ Epidemiol 2011; 21: 49–64.

    Article  CAS  Google Scholar 

  39. Hamilton BM, JA Osterman, MJK Curtin, MA Mathews, TJ Births : Final data for 2014. National Vital Statistics Reports. National Center for Health Statistics: Hyattsville, MD, USA. 2015, p 64.

    Google Scholar 

  40. Waldron PF . Principles and instrumentation for calibrating air sampling equipment. In: DiNardi SR (ed). The Occupational Environment—It's Evaluation and Control. AIHA Press: Fairfax, VA, USA, 1997, pp 155–175.

    Google Scholar 

  41. Lawless PA, Rodes CE, Ensor DS . Multiwavelength absorbance of filter deposits for determination of environmental tobacco smoke and black carbon. Atmos Environ 2004; 38: 3373–3383.

    Article  CAS  Google Scholar 

  42. Yan B, Kennedy D, Miller RL, Cowin JP, Jung K-h, Perzanowski M et al. Validating a nondestructive optical method for apportioning colored particulate matter into black carbon and additional components. Atmos Environ 2011; 45: 7478–7486.

    Article  CAS  Google Scholar 

  43. Croghan C, Egeghy P . Methods of dealing with values below the limit of detection using SAS. Southeastern SAS User Group: St Petersburg, FL, USA 2003, pp 22–24.

  44. Meng QY, Turpin BJ, Korn L, Weisel CP, Morandi M, Colome S et al. Influence of ambient (outdoor) sources on residential indoor and personal PM2.5 concentrations: analyses of RIOPA data. J Expo Anal Environ Epidemiol 2005; 15: 17–28.

    Article  CAS  Google Scholar 

  45. Ozkaynak H, Xue J, Spengler J, Wallace L, Pellizzari E, Jenkins P . Personal exposure to airborne particles and metals: results from the particle team study in Riverside, California. J Expo Anal Environ Epidemiol 1995; 6: 57–78.

    Google Scholar 

  46. Van Ryswyk K, Wheeler AJ, Wallace L, Kearney J, You H, Kulka R et al. Impact of microenvironments and personal activities on personal PM2. 5 exposures among asthmatic children. J Expo Sci Environ Epidemiol 2014; 24: 260–268.

    Article  CAS  Google Scholar 

  47. Sain AE, Dietrich AM . Emission of inhalable dissolved drinking water constituents by ultrasonic humidifiers. Environ Eng Sci 2015; 32: 1027–1035.

    Article  CAS  Google Scholar 

  48. Highsmith VR, Rodes CE, Hardy RJ . Indoor particle concentrations associated with use of tap water in portable humidifiers. Environ Sci Technol 1988; 22: 1109–1112.

    Article  CAS  Google Scholar 

  49. Rodes C, Smith T, Crouse R, Ramachandran G . Measurements of the size distribution of aerosols produced by ultrasonic humidification. Aerosol Sci Technol 1990; 13: 220–229.

    Article  Google Scholar 

  50. Highsmith VR, Hardy RJ, Costa DL, Germani MS . Physical and chemical characterization of indoor aerosols resulting from the use of tap water in portable home humidifiers. Environ Sci Technol 1992; 26: 673–680.

    Article  CAS  Google Scholar 

  51. Water-Resources. . Water Quality Report 2014. Provo Public Works. 2014.

    Google Scholar 

  52. Daftary AS, Deterding RR . Inhalational lung injury associated with humidifier “white dust”. Pediatrics 2011; 127: e509–e512.

    Article  Google Scholar 

  53. Umezawa M, Sekita K, Suzuki K-I, Kubo-Irie M, Niki R, Ihara T et al. Effect of aerosol particles generated by ultrasonic humidifiers on the lung in mouse. Part Fibre Toxicol 2013; 10: 64.

    Article  Google Scholar 

  54. Cheong H-K, Ha M, Lee J-H . Unrecognized bomb hidden in the babies' room: fatal pulmonary damage related with use of biocide in humidifiers. Environ Health Toxicol 2012; 27: e2012001.

  55. Kim KW, Ahn K, Yang HJ, Lee S, Park JD, Kim WK et al. Humidifier disinfectant-associated children’s interstitial lung disease. Am J Respir Crit Care Med 2014; 189: 48–56.

    PubMed  Google Scholar 

  56. Yang H-J, Kim H-J, Yu J, Lee E, Jung Y-H, Kim H-Y et al. Inhalation toxicity of humidifier disinfectants as a risk factor of children’s interstitial lung disease in Korea: a case-control study. PLoS One 2013; 8: e64430.

    Article  CAS  Google Scholar 

  57. Kampa M, Castanas E . Human health effects of air pollution. Environ Pollut 2008; 151: 362–367.

    Article  CAS  Google Scholar 

  58. Duruibe J, Ogwuegbu M, Egwurugwu J . Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2007; 2: 112–118.

    Google Scholar 

  59. Huang Y-CT, Ghio AJ . Vascular effects of ambient pollutant particles and metals. Curr Vasc Pharmacol 2006; 4: 199–203.

    Article  CAS  Google Scholar 

  60. Barsan ME . NIOSH Pocket Guide to Chemical Hazards. Centers for Disease Control and Prevention: Washington, DC; 2010.

    Google Scholar 

  61. Lukács H, Gelencsér A, Hammer S, Puxbaum H, Pio C, Legrand M et al. Seasonal trends and possible sources of brown carbon based on 2‐year aerosol measurements at six sites in Europe. J Geophys Res Atmos 2007; 112: 1–9.

    Article  Google Scholar 

  62. Wonaschütz A, Hitzenberger R, Bauer H, Pouresmaeil P, Klatzer B, Caseiro A et al. Application of the integrating sphere method to separate the contributions of brown and black carbon in atmospheric aerosols. Environ Sci Technol 2009; 43: 1141–1146.

    Article  Google Scholar 

  63. Jones J, Stick S, Dingle P, Franklin P . Spatial variability of particulates in homes: implications for infant exposure. Sci Total Environ 2007; 376: 317–323.

    Article  CAS  Google Scholar 

  64. Hislop A, Wigglesworth J, Desai R . Alveolar development in the human fetus and infant. Early Hum Dev 1986; 13: 1–11.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Ira and Mary Lou Fulton Gift Fund at Brigham Young University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chantel D Sloan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Journal of Exposure Science and Environmental Epidemiology website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sloan, C., Weber, F., Bradshaw, R. et al. Elemental analysis of infant airborne particulate exposures. J Expo Sci Environ Epidemiol 27, 526–534 (2017). https://doi.org/10.1038/jes.2016.77

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2016.77

Keywords

Search

Quick links