Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Dust metal loadings and the risk of childhood acute lymphoblastic leukemia

Abstract

We evaluated the relationship between the risk of childhood acute lymphoblastic leukemia (ALL) and the levels of metals in carpet dust. A dust sample was collected from the homes of 142 ALL cases and 187 controls participating in the California Childhood Leukemia Study using a high volume small surface sampler (2001–2006). Samples were analyzed using microwave-assisted acid digestion in combination with inductively coupled plasma mass spectrometry for arsenic, cadmium, chromium, copper, lead, nickel, tin, tungsten, and zinc. Eight metals were detected in at least 85% of the case and control homes; tungsten was detected in <15% of homes. Relationships between dust metal loadings (μg metal per m2 carpet) and ALL risk were modeled using multivariable logistic regression, adjusting for the child's age, sex, and race/ethnicity and confounders, including household annual income. A doubling of dust metal loadings was not associated with significant changes in ALL risk (odds ratio (95% confidence interval): arsenic: 0.96 (0.86, 1.07), cadmium: 0.92 (0.81, 1.05), chromium: 1.01 (0.90, 1.14), copper: 0.97 (0.91, 1.03), lead: 1.01 (0.93, 1.10), nickel: 0.95 (0.82, 1.09), tin: 0.96 (0.86, 1.08), and zinc: 0.94 (0.84, 1.05)). Our findings do not support the hypothesis that metals in carpet dust are risk factors for childhood ALL.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ross JA, Spector LG . Cancers in children. In: Fraumeni JF, Schottenfeld D (eds). Cancer Epidemiology and Prevention. vol. 3. Oxford University Press: New York, NY, USA. 2006, pp. 1251–1268.

    Google Scholar 

  2. Buffler PA, Kwan ML, Reynolds P, Urayama KY . Environmental and genetic risk factors for childhood leukemia: appraising the evidence. Cancer Invest 2005; 23: 60–75.

    Article  CAS  PubMed  Google Scholar 

  3. Turner MC, Wigle DT, Krewski D . Residential pesticides and childhood leukemia: a systematic review and meta-analysis. Environ Health Perspect 2010; 118: 33–41.

    Article  CAS  PubMed  Google Scholar 

  4. Van Maele-Fabry G, Lantin AC, Hoet P, Lison D . Residential exposure to pesticides and childhood leukaemia: a systematic review and meta-analysis. Environ Int 2011; 37: 280–291.

    Article  CAS  PubMed  Google Scholar 

  5. Chang JS . Parental smoking and childhood leukemia. Methods Mol Biol 2009; 472: 103–137.

    Article  PubMed  Google Scholar 

  6. Liu R, Zhang L, McHale CM, Hammond SK . Paternal smoking and risk of childhood acute lymphoblastic leukemia: systematic review and meta-analysis. J Oncol 2011; 2011: 854584.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Boothe VL, Boehmer TK, Wendel AM, Yip FY . Residential traffic exposure and childhood leukemia: a systematic review and meta-analysis. Am J Prev Med 2014; 46: 413–422.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Colt JS, Blair A . Parental occupational exposures and risk of childhood cancer. Environ Health Perspect 1998; 106: 909–925.

    PubMed  PubMed Central  Google Scholar 

  9. IARC Inorganic and Organic Lead Compounds World Health Organization: Lyon, France. 2006.

  10. IARC Nickel and Nickel Compounds World Health Organization: Lyon, France. 2012.

  11. IARC Chromium (VI) Compounds World Health Organization: Lyon, France. 2012.

  12. IARC Arsenic and Arsenic Compounds World Health Organization: Lyon, France. 2012.

  13. IARC Cadmium and Cadmium Compounds World Health Organization: Lyon, France. 2012.

  14. Buckley JD, Robison LL, Swotinsky R, Garabrant DH, LeBeau M, Manchester P et al. Occupational exposures of parents of children with acute nonlymphocytic leukemia: a report from the Childrens Cancer Study Group. Cancer Res 1989; 49: 4030–4037.

    CAS  PubMed  Google Scholar 

  15. Miligi L, Benvenuti A, Mattioli S, Salvan A, Tozzi GA, Ranucci A et al. Risk of childhood leukaemia and non-Hodgkin's lymphoma after parental occupational exposure to solvents and other agents: the SETIL Study. Occup Environ Med 2013; 70: 648–655.

    Article  PubMed  Google Scholar 

  16. Crosby WH . Lead-contaminated health food. Association with lead poisoning and leukemia. JAMA 1977; 237: 2627–2629.

    Article  CAS  PubMed  Google Scholar 

  17. Krugner-Higby LA, Gendron A, Laughlin NK, Luck M, Scheffler J, Phillips B . Chronic myelocytic leukemia in a juvenile rhesus macaque (Macaca mulatta). Contemp Top Lab Anim Sci 2001; 40: 44–48.

    CAS  PubMed  Google Scholar 

  18. Shu XO, Gao YT, Brinton LA, Linet MS, Tu JT, Zheng W et al. A population-based case-control study of childhood leukemia in Shanghai. Cancer 1988; 62: 635–644.

    Article  CAS  PubMed  Google Scholar 

  19. McKinney PA, Fear NT, Stockton D UK Childhood Cancer Study Investigators. Parental occupation at periconception: findings from the United Kingdom Childhood Cancer Study. Occup Environ Med 2003; 60: 901–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wulff M, Hogberg U, Sandstrom A . Cancer incidence for children born in a smelting community. Acta Oncol 1996; 35: 179–183.

    Article  CAS  PubMed  Google Scholar 

  21. Rubin CS, Holmes AK, Belson MG, Jones RL, Flanders WD, Kieszak SM et al. Investigating childhood leukemia in Churchill County, Nevada. Environ Health Perspect 2007; 115: 151–157.

    Article  CAS  PubMed  Google Scholar 

  22. Sheppard PR, Speakman RJ, Ridenour G, Witten ML . Temporal variability of tungsten and cobalt in Fallon, Nevada. Environ Health Perspect 2007; 115: 715–719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Costas K, Knorr RS, Condon SK . A case-control study of childhood leukemia in Woburn, Massachusetts: the relationship between leukemia incidence and exposure to public drinking water. Sci Total Environ 2002; 300: 23–35.

    Article  CAS  PubMed  Google Scholar 

  24. Infante-Rivard C, Olson E, Jacques L, Ayotte P . Drinking water contaminants and childhood leukemia. Epidemiology 2001; 12: 13–19.

    Article  CAS  PubMed  Google Scholar 

  25. ATSDR Toxilogical Profile for Lead. United States Department of Health and Human Services: Atlanta, GA, USA, 2007.

  26. Lanphear BP, Matte TD, Rogers J, Clickner RP, Dietz B, Bornschein RL et al. The contribution of lead-contaminated house dust and residential soil to children's blood lead levels. A pooled analysis of 12 epidemiologic studies. Environ Res 1998; 79: 51–68.

    Article  CAS  PubMed  Google Scholar 

  27. Hartwell TD, Handy RW, Harris BS, Williams SR, Gehlbach SH . Heavy metal exposure in populations living around zinc and copper smelters. Arch Environ Health 1983; 38: 284–295.

    Article  CAS  PubMed  Google Scholar 

  28. Hogervorst J, Plusquin M, Vangronsveld J, Nawrot T, Cuypers A, Van Hecke E et al. House dust as possible route of environmental exposure to cadmium and lead in the adult general population. Environ Res 2007; 103: 30–37.

    Article  CAS  PubMed  Google Scholar 

  29. Callan AC, Hinwood AL, Ramalingam M, Boyce M, Heyworth J, McCafferty P et al. Maternal exposure to metals-Concentrations and predictors of exposure. Environ Res 2013; 126: 111–117.

    Article  CAS  PubMed  Google Scholar 

  30. Stern AH, Fagliano JA, Savrin JE, Freeman NC, Lioy PJ . The association of chromium in household dust with urinary chromium in residences adjacent to chromate production waste sites. Environ Health Perspect 1998; 106: 833–839.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Creason JP, Hinners TA, Bumgarner JE, Pinkerton C . Trace elements in hair, as related to exposure in metropolitan New York. Clin Chem 1975; 21: 603–612.

    CAS  PubMed  Google Scholar 

  32. Cohen Hubal EA, Sheldon LS, Burke JM, McCurdy TR, Berry MR, Rigas ML et al. Children's exposure assessment: a review of factors influencing Children's exposure, and the data available to characterize and assess that exposure. Environ Health Perspect 2000; 108: 475–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bellinger DC, Bellinger AM . Childhood lead poisoning: the torturous path from science to policy. J Clin Invest 2006; 116: 853–857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rasmussen PE, Levesque C, Chenier M, Gardner HD, Jones-Otazo H, Petrovic S . Canadian House Dust Study: Population-based concentrations, loads and loading rates of arsenic, cadmium, chromium, copper, nickel, lead, and zinc inside urban homes. Sci Total Environ 2013; 443: 520–529.

    Article  CAS  PubMed  Google Scholar 

  35. Gaitens JM, Dixon SL, Jacobs DE, Nagaraja J, Strauss W, Wilson JW et al. Exposure of U.S. children to residential dust lead, 1999-2004: I. Housing and demographic factors. Environ Health Perspect 2009; 117: 461–467.

    Article  CAS  PubMed  Google Scholar 

  36. Egeghy PP, Quackenboss JJ, Catlin S, Ryan PB . Determinants of temporal variability in NHEXAS-Maryland environmental concentrations, exposures, and biomarkers. J Expo Anal Environ Epidemiol 2005; 15: 388–397.

    Article  CAS  PubMed  Google Scholar 

  37. Dixon SL, Wilson JW, Scott Clark C, Galke WA, Succop PA, Chen M . Effectiveness of lead-hazard control interventions on dust lead loadings: findings from the evaluation of the HUD Lead-Based Paint Hazard Control Grant Program. Environ Res 2005; 98: 303–314.

    Article  CAS  PubMed  Google Scholar 

  38. Meyer I, Heinrich J, Lippold U . Factors affecting lead and cadmium levels in house dust in industrial areas of eastern Germany. Sci Total Environ 1999; 234: 25–36.

    Article  CAS  PubMed  Google Scholar 

  39. Sutton PM, Athanasoulis M, Flessel P, Guirguis G, Haan M, Schlag R et al. Lead levels in the household environment of children in three high-risk communities in California. Environ Res 1995; 68: 45–57.

    Article  CAS  PubMed  Google Scholar 

  40. Thorton I, Watt JM, Davies DJA, Hunt A, Cotter-Howells J, Johnson DL . Lead contamination of UK dusts and soils and implications for childhood exposure: an overview of the work of the Environmental Geochemistry Research Group, Imperial College, London, England 1981-1992. Environ Geochem Health 1994; 16: 113–121.

    Article  Google Scholar 

  41. Culbard EB, Thorton I, Watt J, Wheatley M, Moorcroft S, Thompson M . Metal contamination in British Urban dusts and soils. J Environ Qual 1988; 17: 226–234.

    Article  CAS  Google Scholar 

  42. Baker EL, Folland DS, Taylor TA, Frank M, Peterson W, Lovejoy G et al. Lead poisoning in children of lead workers: home contamination with industrial dust. N Engl J Med 1977; 296: 260–261.

    Article  CAS  PubMed  Google Scholar 

  43. Kim N, Fergusson J . Concentrations and sources of cadmium, copper, lead and zinc in house dust in Christchurch, New Zealand. Sci Total Environ 1993; 138: 1–21.

    Article  CAS  PubMed  Google Scholar 

  44. Colt JS, Gunier RB, Metayer C, Nishioka MG, Bell EM, Reynolds P et al. Household vacuum cleaners vs. the high-volume surface sampler for collection of carpet dust samples in epidemiologic studies of children. Environ Health 2008; 7: 6.

    Article  PubMed  PubMed Central  Google Scholar 

  45. ASTM Standard Practice for Collection of Floor Dust for Chemical Analysis, American Society for Testing and Materials: West Conshohocken, PA, USA, 2005.

  46. Lanphear BP, Emond M, Jacobs DE, Weitzman M, Tanner M, Winter NL et al. A side-by-side comparison of dust collection methods for sampling lead-contaminated house dust. Environ Res 1995; 68: 114–123.

    Article  CAS  PubMed  Google Scholar 

  47. Whitehead TP, Brown FR, Metayer C, Park JS, Does M, Dhaliwal J et al. Polychlorinated biphenyls in residential dust: sources of variability. Environ Sci Technol 2014; 48: 157–164.

    Article  CAS  PubMed  Google Scholar 

  48. Whitehead TP, Brown FR, Metayer C, Park JS, Does M, Petreas MX et al. Polybrominated diphenyl ethers in residential dust: sources of variability. Environ Int 2013; 57-58: 11–24.

    Article  CAS  PubMed  Google Scholar 

  49. Whitehead TP, Metayer C, Petreas M, Does M, Buffler PA, Rappaport SM . Polycyclic aromatic hydrocarbons in residential dust: sources of variability. Environ Health Perspect 2013; 121: 543–550.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Reinier K, Hammond SK, Buffler PA, Gunier RB, Lea CS, Quinlan P et al. Development and evaluation of parental occupational exposure questionnaires for a childhood leukemia study. Scand J Work Environ Health 2004; 30: 450–458.

    Article  PubMed  Google Scholar 

  51. Hornung RW, Reed LD . Estimation of average concentration in the presence of non-detectable values. Appl Occup Environ Med 1990; 5: 48–51.

    Google Scholar 

  52. Ward MH, Colt JS, Metayer C, Gunier RB, Lubin J, Crouse V et al. Residential exposure to polychlorinated biphenyls and organochlorine pesticides and risk of childhood leukemia. Environ Health Perspect 2009; 117: 1007–1013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Geneletti S, Richardson S, Best N . Adjusting for selection bias in retrospective, case-control studies. Biostatistics 2009; 10: 17–31.

    Article  PubMed  Google Scholar 

  54. Metayer C, Colt JS, Buffler PA, Reed HD, Selvin S, Crouse V et al. Exposure to herbicides in house dust and risk of childhood acute lymphoblastic leukemia. J Expo Sci Environ Epidemiol 2013; 23: 363–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ward MH, Colt JS, Deziel NC, Whitehead TP, Reynolds P, Gunier RB et al. Residential levels of polybrominated diphenyl ethers and risk of childhood acute lymphoblastic leukemia in california. Environ Health Perspect 2014; 122: 1110–1116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Deziel NC, Rull RP, Colt JS, Reynolds P, Whitehead TP, Gunier RB et al. Polycyclic aromatic hydrocarbons in residential dust and risk of childhood acute lymphoblastic leukemia. Environ Res 2014; 133: 388–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Institute of Environmental Health Sciences (NIEHS, grant numbers R01ES009137 and P42ES0470518); by the Intramural Research Program of the National Cancer Institute (NCI), National Institute of Health (Subcontracts 7590-S-04, 7590-S-01); and by the NCI (Contract N02-CP-11015). We thank the families for their participation. We also thank the clinical investigators at the following collaborating hospitals for the help in recruiting patients: University of California Davis Medical Center (Dr. Jonathan Ducore), University of California San Francisco (Drs. Mignon Loh and Katherine Matthay), Children's Hospital of Central California (Dr. Vonda Crouse), Lucile Packard Children's Hospital (Dr. Gary Dahl), Children's Hospital Oakland (Dr. James Feusner), Kaiser Permanente Oakland (Drs. Daniel Kronish and Stacy Month), Kaiser Permanente Roseville (Drs. Kent Jolly and Vincent Kiley), Kaiser Permanente Santa Clara (Drs. Carolyn Russo, Denah Taggart, and Alan Wong), and Kaiser Permanente San Francisco (Dr. Kenneth Leung). We thank Mr. Adam Abbgy of the Battelle Memorial Institute for his contribution as an analytical chemist. We acknowledge the late Dr. Patricia Buffler, the founding principal investigator of the California Childhood Leukemia Study, and her leadership of the study for nearly 20 years. Finally, we acknowledge the study staff for their effort and dedication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd P Whitehead.

Additional information

Supplementary Information accompanies the paper on the Journal of Exposure Science and Environmental Epidemiology website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whitehead, T., Ward, M., Colt, J. et al. Dust metal loadings and the risk of childhood acute lymphoblastic leukemia. J Expo Sci Environ Epidemiol 25, 593–598 (2015). https://doi.org/10.1038/jes.2015.9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2015.9

Keywords

This article is cited by

Search

Quick links