Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Potential for exposure to engineered nanoparticles from nanotechnology-based consumer spray products

Abstract

The potential for human exposure to engineered nanoparticles due to the use of nanotechnology-based consumer sprays (categorized as such by the Nanotechnology Consumer Products Inventory) is examined along with analogous products, which are not specified as nanotechnology-based (regular products). Photon correlation spectroscopy was used to obtain particle size distributions in the initial liquid products. Transmission electron microscopy was used to determine particle size, shape, and agglomeration of the particles. Realistic application of the spray products near the human breathing zone characterized airborne particles that are released during use of the sprays. Aerosolization of sprays with standard nebulizers was used to determine their potential for inhalation exposure. Electron microscopy detected the presence of nanoparticles in some nanotechnology-based sprays as well as in several regular products, whereas the photon correlation spectroscopy indicated the presence of particles <100 nm in all investigated products. During the use of most nanotechnology-based and regular sprays, particles ranging from 13 nm to 20 μm were released, indicating that they could he inhaled and consequently deposited in all regions of the respiratory system. The results indicate that exposures to nanoparticles as well as micrometer-sized particles can be encountered owing to the use of nanotechnology-based sprays as well as regular spray products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Abismaïl B., Canselier J.P., Wilhelm A.M., Delmas H., and Gourdon C. Emulsification by ultrasound: drop size distribution and stability. Ultrason Sonochem 1999: 6 (1 and 2): 75–83.

    Article  PubMed  Google Scholar 

  • Allen T. Powder Sampling and Particle Size Determination, 1 illustrated edn. Elsevier, Amsterdam, the Netherlands, 2003.

    Google Scholar 

  • Bermudez E., Mangum J.B., Wong B.A., Asgharian B., Hext P.M., and Warheit D.B., et al. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci 2004: 77: 347–357.

    Article  CAS  PubMed  Google Scholar 

  • Bodycomb J. Questions and Answers for Driving the Brookhaven 90Plus. Brookhaven Instruments Corporation, Holtsville, NY, 2009.

    Google Scholar 

  • Bradford A., Handy R.D., Readman J.W., Atfield A., and Mühling M. Impact of silver nanoparticle contamination on the genetic diversity of natural bacterial assemblages in estuarine sediments. Environ Sci Technol 2009: 43 (12): 4530–4536.

    Article  CAS  PubMed  Google Scholar 

  • Brookhaven Instruments Corporation. Instruction Manual for 90Plus/BI-MAS Multi Angle Particle Sizing Option Operation Manual. Brookhaven Instruments Corporation, Holtsville, NY, 1995.

  • Bruce J., and Berne R.P. Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics, 2 unabridged, illustrated edn Courier Dover Publications, Mineola, NY, 2000.

    Google Scholar 

  • Carlo S.D., El-Bez C., Alvarez-Rua C., Borge J., and Dubochet J. Cryo-negative staining reduces electron-beam sensitivity of vitrified biological particles. J Struct Biol 2002: 138: 216–226.

    Article  PubMed  CAS  Google Scholar 

  • Drobne D. Nanotoxicology for safe and sustainable nanotechnology. Arhiv Higijenu Rada Toksikologiju 2007: 58 (4): 471–478.

    Article  CAS  Google Scholar 

  • Egerton R.F., Li P., and Malac M. Radiation damage in the TEM and SEM. Micron 2004: 35 (6): 399–409.

    Article  CAS  PubMed  Google Scholar 

  • Elder A., Gelein R., Silva V., Feikert T., Opanashuk L., and Carter J., et al. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect 2006: 114 (8): 1172–1178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frater L., Stokes E., Lee R., and Oriola T. An Overview of the Framework of Current Regulation affecting the Development and Marketing of Nanomaterials. Cardiff University, Cardiff, 2006 p 192.

    Google Scholar 

  • Geiser M., Rothen-Rutishauser B., Kapp N., Schürch S., Kreyling W., and Schulz H., et al. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 2005: 113 (11): 1555–1560.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grassian V.H., Adamcakova-Dodd A., Pettibone J.M., O’Shaughnessy P.T., and Thorne P.S. Inflammatory response of mice to manufactured titanium dioxide nanoparticles: comparison of size effects through different exposure routes. Nanotoxicology 2007a: 1 (3): 211–226.

    Article  CAS  Google Scholar 

  • Grassian V.H., O’Shaughnessy P.T., Adamcakova-Dodd A., Pettibone J.M., and Thorne P.S. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect 2007b: 115 (3): 397–402.

    Article  CAS  PubMed  Google Scholar 

  • Hagendorfer H., Lorenz C., Kaegi R., Sinnet B., Gehrig R., and Goetz N.V., et al. Size-fractionated characterization and quantification of nanoparticle release rates from a consumer spray product containing engineered nanoparticles. J Nanoparticle Res 2009: 12 (7): 2481–2494.

    Article  CAS  Google Scholar 

  • Han H-S., Whitbey E.R., Plate D.B., and Albertson D.P. Combining TSI Scanning Mobility Particle Sizer and Aerodynamic Particle Sizer for Wide Range Particle Size Distribution Measurement. European Aerosol Conference, Ghent, Belgium, 2005.

    Google Scholar 

  • Han T., O’Neil D.L., and Ortiz C.A. A generic-tee-plenum mixing system for application to single point aerosol sampling in stacks and ducts. Health Phys 2007: 92 (1): 40–49.

    Article  CAS  PubMed  Google Scholar 

  • Hand J.L., and Kreidenweis S.M. A new method for retrieving particle refractive index and effective density from aerosol size distribution data. Aerosol Sci Technol 2002: 36: 1012–1026.

    Article  CAS  Google Scholar 

  • Hansen S.F., Michelson E.S., Kamper A., Borling P., Stuer-Lauridsen F., and Baun A. Categorization framework to aid exposure assessment of nanomaterials in consumer products. Ecotoxicology 2008: 17: 438–447.

    Article  CAS  PubMed  Google Scholar 

  • Hinds W.C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2 illustrated edn. Wiley, the University of Michigan, New York, 1999.

    Google Scholar 

  • Hobbs L.W. Electron-beam sensitivity in inorganic specimens. Ultramicroscopy 1987: 23 (3 and 4): 339–344.

    Article  CAS  Google Scholar 

  • Keenan C.R., Goth-Goldstein R., Lucas D., and Sedlak D.L. Oxidative Stress Induced by Zero-Valent Iron Nanoparticles and Fe(II) in Human Bronchial Epithelial Cells. Environ Sci Technol 2009: 43 (12): 4555–4560.

    Article  CAS  PubMed  Google Scholar 

  • Khlystov A., Stanier C., and Pandis S.N. An Algorithm for Combining Electrical Mobility and Aerodynamic Size Distributions Data when Measuring Ambient Aerosol. Aerosol Sci Technol 2004: 38 (S1): 229–238.

    Article  CAS  Google Scholar 

  • Kim Y.D., Morr C.V., and Schenz T.W. Microencapsulation Properties of Gum Arabic and Several Food Proteins: Liquid Orange Oil Emulsion Particles. J Agric Food Chem 1996: 44 (5): 1308–1313.

    Article  CAS  Google Scholar 

  • Leapman R.D., and Sun S. Cryo-electron energy loss spectroscopy: observations on vitrified hydrated specimens and radiation damage. Ultramicroscopy 1995: 59: 71–79.

    Article  CAS  PubMed  Google Scholar 

  • Lioy P.J., Han T.W., Nazarenko Y., Lioy M.J., and Mainelis G. Nanotechnology and Exposure Science—What Is Needed To Fill the Research and Data Gaps for Consumer Products. Nanotechnol Expos Assessment (Special issue) 2010: 16 (4): 376–385.

    Google Scholar 

  • Lioy P.J., Weisel C.P., Millette J., Vallero S.E.D., Offenberg J., and Buckley B., et al. Characterization of the dust/smoke aerosol that settled east of the World Trade Center (WTC) in lower Manhattan after the collapse of the WTC September 11, 2001. Environ Health Perspect 2002: 110: 703–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lioy P.J. Exposure Science: A View of the Past and Major Milestones for the Future. Environ Health Perspect 2010b: 118: 1081–1090.

    Article  PubMed  PubMed Central  Google Scholar 

  • Matyi R.J., Schwartz L.H., and Butt J.B. Particle Size, Particle Size Distribution, and Related Measurements of Supported Metal Catalysts. Catalysis Reviews 1987: 29 (1): 41–99.

    Article  Google Scholar 

  • Maynard A.D., Aitken R.J., Butz T., Colvin C., Donaldson K., and Oberdörster G., et al. Safe Handling of Nanotechnology. Nature 2006: 444: 267–269.

    Article  CAS  PubMed  Google Scholar 

  • Maynard A.D. Nanotechnology: The Next Big Thing, or Much Ado about Nothing. Ann Occup Hyg 2007: 51 (1): 1–12.

    CAS  PubMed  Google Scholar 

  • Maynard A.D., and Aitken R.J. Assessing exposure to airborne nanomaterials: current abilities and future requirements. Nanotoxicology 2007: 1 (1): 26–41.

    Article  CAS  Google Scholar 

  • Michelson E.S. Globalization at the nano frontier: the future of nanotechnology policy in the United States, China, and India. Technol Soc 2008: 30: 405–410.

    Article  Google Scholar 

  • National Science and Technology Council. The National Nanotechnology Initiative Strategic Plan (NNISP). Executive Office of the President, National Science and Technology Council, Washington, DC, 2011.

  • Oberdörster G., Maynard A., Donaldson K., Castranova V., Fitzpatrick J., and Ausman K., et al. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle Fibre Toxicol 2005a: 2 (8): 1–35.

    Google Scholar 

  • Oberdörster G., Oberdörster E., and Oberdörster J. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environ Health Perspect 2005b: 113 (7): 823–839.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oberdörster G., Sharp Z., Atudorei V., Elder A., Gelein R., and Kreyling W., et al. Translocation of Inhaled Ultrafine Particles to the Brain. Inhal Toxicol 2004: 16 (6 and 7): 437–445.

    Article  PubMed  CAS  Google Scholar 

  • Pant V., Deshpande C.G., and Kamra A.K. The concentration and number size distribution measurements of the Marine Boundary Layer aerosols over the Indian Ocean. Atmos Res 2009: 92 (4): 381–393.

    Article  Google Scholar 

  • Paull J., and Lyons K. Nanotechnology: the next challenge for organics. J Organic Syst 2008: 3 (1): 3–22.

    Google Scholar 

  • Qu G., Bai Y., Zhang Y., Jia Q., Zhang W., and Yan B. The effect of multiwalled carbon nanotube agglomeration on their accumulation in and damage to organs in mice. Carbon 2009: 47 (8): 2060–2069.

    Article  CAS  Google Scholar 

  • Schmid A., Goel S., Wang W., Beiu V., Carrara S., and Riediker M. Chances and risks of nanomaterials for health and environment. In: Akan O., Bellavista P., Cao J., Dressler F., Ferrari D., Gerla M., et al. (Eds.). Nano-Net. Springer, Berlin, Heidelberg, 2009 Vol. 20, pp. 128–133.

    Chapter  Google Scholar 

  • Segal S.H. Environmental Regulation of Nanotechnology: Avoiding Big Mistakes for Small Machines. Nanotechnol Law Business 2004: 1 (3): 290–304.

    Google Scholar 

  • Shimada M., Wang W-N., Okuyama K., Myojo T., Oyabu T., and Morimoto Y., et al. Development and Evaluation of an Aerosol Generation and Supplying System for Inhalation Experiments of Manufactured Nanoparticles. Environ Sci Technol 2009: 43 (14): 5529–5534.

    Article  CAS  PubMed  Google Scholar 

  • Shrader-Frechette K. Nanotoxicology and Ethical Conditions for Informed Consent. Nanoethics 2007: 1: 47–56.

    Article  Google Scholar 

  • Som C., Berges M., Chaudhry Q., Dusinska M., Fernandes T., and Olsen S., et al. The importance of life cycle concepts for the development of safe nanoproducts. Toxicology 2010: 269: 160–169.

    Article  CAS  PubMed  Google Scholar 

  • Thomas T., and Bahadori T., et al. Moving toward exposure and risk evaluation of nanomaterials: challenges and future directions. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2009: 1 (4): 426–433.

    Article  CAS  PubMed  Google Scholar 

  • Turgis J-D., and Coqueret X. Electron beam sensitivity of butyl acrylate copolymers: effects of composition on reactivity. Macromol Chem Phys 1999: 200: 652–660.

    Article  CAS  Google Scholar 

  • Van Calster G. Regulating Nanotechnology in the European Union. Nanotechnol Law Business 2006: 3 (3): 359–374.

    Google Scholar 

  • Wang J., Zhou G., Chen C., Yu H., Wang T., and Ma Y., et al. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 2007: 168 (2): 176–185.

    Article  CAS  PubMed  Google Scholar 

  • Warheit D.B., Borm P.J.A., Hennes C., and Lademann J. Testing Strategies to Establish the Safety of Nanomaterials: Conclusions of an ECETOC Workshop. Inhal Toxicol 2007a: 19: 631–643.

    Article  CAS  PubMed  Google Scholar 

  • Warheit D.B., Webb T.R., Reed K.L., Frerichs S., and Sayes C.M. Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties. Toxicol Lett 2007b: 230 (1): 90–104.

    Article  CAS  Google Scholar 

  • Wick P., Manser P., Limbach L.K., Dettlaff-Weglikowska U., Krumeich F., and Roth S., et al. The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 2007: 168 (2): 121–131.

    Article  CAS  PubMed  Google Scholar 

  • Wirnitzer U., Herbold B., Voetz M., and Ragot J. Studies on the in vitro genotoxicity of baytubes®, agglomerates of engineered multi-walled carbon-nanotubes (MWCNT). Toxicol Lett 2009: 186 (3): 160–165.

    Article  CAS  PubMed  Google Scholar 

  • Woodrow Wilson International Center for Scholars. The Project on Emerging Nanotechnologies. http://www.nanotechproject.org/(accessed 10, June 2010a).

  • Woodrow Wilson International Center for Scholars. Nanotechnology Consumer Products Inventory. http://www.nanotechproject.org/inventories/consumer/(accessed 10, June 2010b).

Download references

Acknowledgements

This research was supported in part by the NIEHS sponsored UMDNJ Center for Environmental Exposures and Disease, Grant No.: NIEHS P30ES005022. We thank Dr. Satya Seshadri for help in building the experimental system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gediminas Mainelis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazarenko, Y., Han, T., Lioy, P. et al. Potential for exposure to engineered nanoparticles from nanotechnology-based consumer spray products. J Expo Sci Environ Epidemiol 21, 515–528 (2011). https://doi.org/10.1038/jes.2011.10

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2011.10

Keywords

This article is cited by

Search

Quick links