Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Community-level spatial heterogeneity of chemical constituent levels of fine particulates and implications for epidemiological research

Abstract

Studies of the health impacts of airborne particulates’ chemical constituents typically assume spatial homogeneity and estimate exposure from ambient monitors. However, factors such as local sources may cause spatially heterogeneous pollution levels. This work examines the degree to which constituent levels vary within communities and whether exposure misclassification is introduced by spatial homogeneity assumptions. Analysis considered PM2.5 elemental carbon (EC), organic carbon matter, ammonium, sulfate, nitrate, silicon, and sodium ion (Na+) for the United States, 1999–2007. Pearson correlations and coefficients of divergence were calculated and compared to distances among monitors. Linear modeling related correlations to distance between monitors, long-term constituent levels, and population density. Spatial heterogeneity was present for all constituents, yet lower for ammonium, sulfate, and nitrate. Lower correlations were associated with higher distance between monitors, especially for nitrate and sulfate, and with lower long-term levels, especially for sulfate and Na+. Analysis of colocated monitors revealed measurement error for all constituents, especially EC and Na+. Exposure misclassification may be introduced into epidemiological studies of PM2.5 constituents due to spatial variability, and is affected by constituent type and level. When assessing health effects of PM constituents, new methods are needed for estimating exposure and accounting for exposure error induced by spatial variability.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Athanassiadis G.A., and Rao S.T. Spatial and temporal variations in the trace elemental data over the northeastern United States. Environ Poll 2003: 123: 439–339.

    Article  CAS  Google Scholar 

  • Baxter L.K., Wright R.J., Paciorek C.J., Laden F., Suh H.H., and Levy J.I. Effects of exposure measurement error in the analysis of health effects from traffic-related air pollution. J Expo Sci Environ Epidemiol 2010: 20: 101–111.

    Article  CAS  Google Scholar 

  • Belanger K., Gent J.F., Triche E.W., Bracken M.B., and Leaderer B.P. Association of indoor nitrogen dioxide exposure with respiratory symptoms in children with asthma. Am J Respir Crit Care Med 2006: 173: 297–303.

    Article  CAS  Google Scholar 

  • Bell M.L., Dominici F., Ebisu K., Zeger S.L., and Samet J.M. Spatial and temporal variation in PM2.5 chemical composition in the United States for health effects studies. Environ Health Perspect 2007: 115: 989–995.

    Article  CAS  Google Scholar 

  • Bell M.L., Ebisu K., Peng R.D., Samet J.M., and Dominici F. Hospital admissions and chemical composition of fine particle air pollution. Am J Respir Crit Care Med 2009: 179: 1115–1120.

    Article  CAS  Google Scholar 

  • Bell M.L. The use of ambient air quality modeling to estimate individual and population exposure for human health research: a case study of ozone in the Northern Georgia region of the United States. Environ Int 2006: 32: 586–593.

    Article  CAS  Google Scholar 

  • Blanchard C.L., Carr E.L., Collins J.F., Smith T.B., Lehrman D.E., and Michaels H.M. Spatial representativeness and scales of transport during the 1995 integrated monitoring study in California's San Joaquin Valley. Atmos Environ 1999: 33: 4775–4786.

    Article  CAS  Google Scholar 

  • Brauer M., Lencar C., Tamburic L., Koehoorn M., Demers P., and Karr C. A cohort study of traffic-related air pollution impacts on birth outcomes. Environ Health Perspect 2008: 116: 680–686.

    Article  Google Scholar 

  • Burton R.M., Suh H.H., and Koutrakis P. Spatial variations in particulate concentrations within metropolitan Philadelphia. Environ Sci Technol 1996: 30: 440–407.

    Article  Google Scholar 

  • Caffo B., Peng R.D., Dominici F., Louis T.A., and Zeger S. Parallel Bayesian MCMC imputation for multiple distributed lag models: a case study in environmental epidemiology In: Brooks, Gelman, Jones, and Meng (eds). The Handbook of Markov Chain Monte Carlo (in press).

  • Carroll R.J., Ruppert D., Stefanski L.A., and Crainiceanu C.M. Measurement Error in Nonlinear Models: A Modern Perspective, 2nd edn. Chapman & Hall/CRC: New York, 2006.

    Book  Google Scholar 

  • Chow J.C., Doraiswamy P., Watson J.G., Chen L.W.A., Ho S.S.H., and Sodeman D.A. Advances in integrated and continuous measurements for particle mass and chemical composition. J Air Waste Manag Assoc 2008: 58: 141–163.

    Article  CAS  Google Scholar 

  • de Hartog J.J., Lanki T., Timonen K.L., Hoek G., Janssen N.A., Ibald-Mulli A., Peters A., Heinrich J., Tarkiainen T.H., van Grieken R., van Wijnen J.H., Brunekreef B., and Pekkanen J. Associations between PM2.5 and heart rate variability are modified by particle composition and beta-blocker use in patients with coronary heart disease. Environ Health Perspect 2009: 117: 105–111.

    Article  CAS  Google Scholar 

  • DeGaetano A.T., and Doherty O.M. Temporal, spatial and meteorological variations in hourly PM2.5 concentration extremes in New York City. Atmos Environ 2004: 38: 1547–1558.

    Article  CAS  Google Scholar 

  • Dominici F., Peng R.D., Bell M.L., Pham L., McDermott A., Zeger S.L., and Samet J.M. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. J Am Med Assoc 2006: 295: 1127–1134.

    Article  CAS  Google Scholar 

  • Flanagan J.B., Jayanty R.K.M., Rickman E.E., and Peterson M.R. PM2.5 speciation trends network: evaluation of whole-system uncertainties using data from sites with collocated samplers. J Air Waste Manag Assoc 2006: 56: 492–499.

    Article  Google Scholar 

  • Franklin M., Koutrakis P., and Schwartz J. The role of particle composition on the association between PM2.5 and mortality. Epidemiology 2008: 19: 680–689.

    Article  Google Scholar 

  • Graney J.R., Landis M.S., and Norris G.A. Concentrations and solubility of metals from indoor and personal exposure PM2.5 samples. Atmos Environ 2004: 38: 237–247.

    Article  CAS  Google Scholar 

  • Grivas G., Chaloulakou A., and Kassomenos P. An overview of the PM10 pollution problem, in the metropolitan area of Athens, Greece. Assessment of controlling factors and potential impacts of long range transport. Sci Total Environ 2008: 389: 168–177.

    Article  Google Scholar 

  • Grivas G., Chaloulakou A., Samara C., and Spyrellis N. Spatial and temporal variation of PM10 mass concentrations within the greater area of Athens, Greece. Water Air Soil Poll 2004: 158: 357–371.

    Article  CAS  Google Scholar 

  • Gryparis A., Paciorek C.J., Zeka A., Schwartz J., and Coull B.A. Measurement error caused by spatial misalignment in environmental epidemiology. Biostatistics 2009: 10: 258–274.

    Article  Google Scholar 

  • Hogrefe C., Lynn B., Goldberg R., Rosenzweig C., Zalewsky E., Hao W., Doraiswamy P., Civerolo K., Ku J.Y., Sistla G., and Kinney P.L. A combined model-observation approach to estimate historic gridded fields of PM2.5 mass and species concentrations. Atmos Environ 2009: 43: 2561–2570.

    Article  CAS  Google Scholar 

  • Holford T.R., Ebisu K., McKay L.A., Gent J.F., Triche E.W., Bracken M.B., and Leaderer B.P. Integrated exposure modeling: a model using GIS and GLM. Stat Med 2010: 29: 116–129.

    PubMed  PubMed Central  Google Scholar 

  • Hyslop N.P., and White W.H. An empirical approach to estimating detection limits using collocated data. Environ Sci Tech 2008: 42: 5235–5240.

    Article  CAS  Google Scholar 

  • Ito K., De Leon S., Thurston G.D., Nádas A., and Lippmann M. Monitor-to-monitor temporal correlation of air pollution in the contiguous US. J Exp Anal Environ Epidemiol 2005: 15: 172–184.

    Article  CAS  Google Scholar 

  • Ito K., Kinney P.L., and Thurston G.D. Variations in PM-10 concentrations within two metropolitan areas and their implications for health effects analyses. Inhal Toxicol 1995: 7: 735–745.

    Article  CAS  Google Scholar 

  • Ito K., Thurston G.D., Nádas A., and Lippmann M. Monitor-to-monitor temporal correlation of air pollution and weather variables in the North-Central US. J Exp Anal Environ Epidemiol 2001: 11: 21–32.

    Article  CAS  Google Scholar 

  • Ito K., Xue N., and Thurston G. Spatial variation of PM2.5 chemical species and source-apportioned mass concentrations in New York City. Atmos Environ 2004: 38: 5269–5282.

    Article  CAS  Google Scholar 

  • Karr C.J., Rudra C.B., Miller K.A., Gould T.R., Larson T., Sathyanarayana S., and Koenig J.Q. Infant exposure to fine particulate matter and traffic and risk of hospitalization for RSV bronchiolitis in a region with lower ambient air pollution. Environ Res 2009: 109: 321–327.

    Article  CAS  Google Scholar 

  • Kim B.M., Teffera S., and Zeldin M.D. Characterization of PM2.5 and PM10 in the south coast Air Basin of Southern California: Part 1 — spatial variations. J Air Waste Manag Assoc 2000: 50: 2034–2044.

    Article  CAS  Google Scholar 

  • Kim S.B., Temiyasathit C., Chen V.C.P., Park H.S., Sattler M., and Russell A.G. Characterization of spatially homogeneous regions based on temporal patterns of fine particulate matter in the continental United States. J Air Waste Manag Assoc 2008: 58: 965–975.

    Article  CAS  Google Scholar 

  • Laden F., Neas L.M., Dockery D.W., and Schwartz J. Association of fine particulate matter from different sources with daily mortality in six US cities. Environ Health Perspect 2000: 108: 941–947.

    Article  CAS  Google Scholar 

  • Magari S.R., Schwartz J., Williams P.L., Hauser R., Smith T.J., and Christiani D.C. The association of particulate air metal concentrations with heart rate variability. Environ Health Perspect 2002: 110: 875–880.

    Article  CAS  Google Scholar 

  • Martuzevicius D., Grinshpun S.A., Reponen T., Górny R.L., Shukla R., Lockey J., Hu S., McDonald R., Biswas P., Kliucininkas L., and LeMasters G. Spatial and temporal variations of PM2.5 concentration and composition throughout an urban area with high freeway density — the Greater Cincinnati study. Atmos Environ 2004: 38: 1091–1105.

    Article  CAS  Google Scholar 

  • Martuzevicius D., Luo J., Reponen T., Shuka R., Kelley A.L., St Clair H., and Grinshpun S.A. Evaluation and optimization of an urban PM2.5 monitoring network. J Environ Monitoring 2005: 7: 67–77.

    Article  CAS  Google Scholar 

  • Moreno T., Querol X., Pey J., Minguillón M.C., Pérez N., Alastuey A., Bernabé R.M., Blanco S., Cárdenas B., Eichinger W., Salcido A., and Gibbons W. Spatial and temporal variations in inhalable CuZnPb aerosols within the Mexico City pollution plume. J Environ Monitoring 2008: 10: 370–378.

    Article  CAS  Google Scholar 

  • Nerriere Ė., Guegan H., Bordigoni B., Hautemaniere A., Momas I., Ladner J., Target A., Lameloise P., Delmas V., Personnaz M.B., Koutrakis P., and Zmirou-Navier D. Spatial heterogeneity of personal exposure to airborne metals in French urban areas. Sci Total Environ 2007: 373: 49–56.

    Article  CAS  Google Scholar 

  • Noll J., and Birch M.E. Effects of sampling artifacts on occupational samples of diesel particulate matter. Environ Sci Tech 2008: 42: 5223–5228.

    Article  CAS  Google Scholar 

  • Ostro B., Feng W.Y., Broadwin R., Green S., and Lipsett M. The effects of components of fine particulate air pollution on mortality in California: results from CALFINE. Environ Health Perspect 2007: 115: 13–19.

    Article  CAS  Google Scholar 

  • Peng R.D., Bell M.L., Geyh A.S., McDermott A., Zeger S.L., Samet J.M., and Dominici F. Emergency admissions for cardiovascular and respiratory diseases and the chemical composition of fine particle air pollution. Environ Health Perspect 2009: 117: 957–963.

    Article  CAS  Google Scholar 

  • Peng R.D., and Bell M.L. Spatial misalignment in time series studies of air pollution and health data. Biostatistics (in press).

  • Pinto J.P., Lefohn A.S., and Shadwick D.S. Spatial variability of PM2.5 in urban areas in the United States. J Air Waste Manag Assoc 2004: 54: 440–449.

    Article  CAS  Google Scholar 

  • Pun B., Seigneur C., and Edgerton E. Creation of an Air Pollutant Database for Health Effects Studies: Phase I Report — Collection of PM Speciation and Related Data. Atmospheric and Environmental Research, Inc.: San Ramon, CA report submitted to Health Effects Institute, 2004.

    Google Scholar 

  • Pun B.K., and Seigneur C. Organic aerosol spatial/temporal patterns: perspectives of measurements and model. Environ Sci Tech 2008: 42: 7287–7293.

    Article  CAS  Google Scholar 

  • Röösli M., Theis G., Künzli N., Staehelin J., Mathys P., Oglesby L., Camenzind M., and Braun-Fahrländer C. Temporal and spatial variation of the chemical composition of PM10 at urban and rural sites in the Basel area, Switzerland. Atmos Environ 2001: 35: 3701–3713.

    Article  Google Scholar 

  • Sarnat S.E., Klein M., Sarnat J.A., Flanders W.D., Waller L.A., Mulholland J.A., Russell A.G., and Tolbert P.E. An examination of exposure measurement error from air pollutant spatial variability in time-series studies. J Exp Sci Environ Epidemiol 2010: 20: 135–146.

    Article  CAS  Google Scholar 

  • So K.L., Guo H., and Li Y.S. Long-term variation of PM2.5 levels and composition at rural, urban, and roadside sites in Hong Kong: increasing impact of regional air pollution. Atmos Environ 2007: 41: 9427–9434.

    Article  CAS  Google Scholar 

  • Suh H.H., Nishioka Y., Allen G.A., Koutrakis P., and Burton R.M. The Metropolitan Acid Aerosol Characterization Study: results from the summer 1994 Washington, DC field study. Environ Health Perspect 1997: 105: 826–824.

    Article  CAS  Google Scholar 

  • Touma J.S., Isakov V., Ching J., and Seigneur C. Air quality modeling of hazardous pollutants: current status and future directions. J Air Waste Manag Assoc 2006: 56: 547–558.

    Article  CAS  Google Scholar 

  • US Census Bureau. Census 2000, Summary File 1. US Census Bureau, Washington, DC, 2000.

  • US Environmental Protection Agency. Quality Assurance Project Plan: PM2.5 Speciation Trends Network Field Sampling. US EPA Office of Air Quality Planning and Standards: Research Triangle Park, NC, 2000.

  • US Environmental Protection Agency. Quality Management Plan for the Fine Particle Speciation Trends Monitoring Program. US EPA Office of Air Quality Planning and Standards: Research Triangle Park, NC, 2001.

  • Vallejo M., Ruiz S., Hermosillo A.G., Borja-Aburto V.H., and Cárdenas M. Ambient fine particles modify heart rate variability in young healthy adults. J Exp Sci Environ Epidemiol 2006: 16: 125–130.

    Article  CAS  Google Scholar 

  • Vecchi R., Valli G., Fermo P., D’Alessandro A., Piazzalunga A., and Bernardoni V. Organic and inorganic sampling artefacts assessment. Atmos Environ 2009: 43: 1713–1720.

    Article  CAS  Google Scholar 

  • Vega E., Ruiz H., Martínez-Villa G., Sosa G., González-Ávalos E., Reyes E., and García J. Fine and coarse particulate matter chemical characterization in a heavily industrialized city in Central Mexico during Winter 2003. J Air Waste Manag Assoc 2007: 57: 620–633.

    Article  CAS  Google Scholar 

  • Venkatachari P., Zhou L., Hopke P.K., Felton D., Rattigan O.V., Schwab J.J., and Demerjian K.L. Spatial and temporal variability of black carbon in New York City. J Geophysical Res D Atmospheres 2006: 111. doi:10.1029/2005JD006314.

    Article  Google Scholar 

  • Von Klot S., Gryparis A., Tonne C., Yanosky J., Coull B.A., Goldberg R.J., Lessard D., Melly S.J., Suh H.H., and Schwartz J. Elemental carbon exposure at residence and survival after acute myocardial infarction. Epidemiology 2009: 20: 547–554.

    Article  Google Scholar 

  • Wade K.S., Mulholland J.A., Marmur A., Russell A.G., Hartsell B., Edgerton E., Klein M., Waller L., Peel J.L., and Tolbert P.E. Effects of instrument precision and spatial variability on the assessment of the temporal variation of ambient air pollution in Atlanta, Georgia. J Air Waste Manag Assoc 2006: 56: 876–888.

    Article  CAS  Google Scholar 

  • Wilson J.G., Kingham S., Pearce J., and Sturman A.P. A review of intraurban variations in particulate air pollution: implications for epidemiological research. Atmos Environ 2005: 39: 6444–6462.

    Article  CAS  Google Scholar 

  • Wilson J.G., Kingham S., and Sturman A.P. Intraurban variations of PM10 air pollution in Christchurch, New Zealand: Implications for epidemiological studies. Sci Total Environ 2006: 367: 559–572.

    Article  CAS  Google Scholar 

  • Wongphatarakul V., Friedlander S.K., and Pinto J.K. A comparative study of PM2.5 ambient aerosol chemical databases. Environ Sci Tech 1998: 32: 3926–3934.

    Article  CAS  Google Scholar 

  • Zeger S.L., Thomas D., Dominici F., Samet J.M., Schwartz J., Dockery D., and Cohen A. Exposure measurement error in time-series studies of air pollution: concepts and consequences. Environ Health Perspect 2000: 108: 419–426.

    Article  CAS  Google Scholar 

  • Zou B., Wilson J.G., Zhan F.B., and Zeng Y. Air pollution exposure assessment methods utilized in epidemiological studies. J Environ Monitoring 2009: 11: 475–490.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the US Environmental Protection Agency (RD-83241701), the Health Effects Institute (4720-RFA04-2/04-16), and the National Institute of Environmental Health Sciences (5R01ES015028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle L Bell.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bell, M., Ebisu, K. & Peng, R. Community-level spatial heterogeneity of chemical constituent levels of fine particulates and implications for epidemiological research. J Expo Sci Environ Epidemiol 21, 372–384 (2011). https://doi.org/10.1038/jes.2010.24

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2010.24

Keywords

This article is cited by

Search

Quick links