Furan-iminium cation cyclization (FIC) in a total synthesis of manzamine alkaloids

Kazuyuki Tokumaru¹, Toshiyuki Ohfusa¹, Shigeru Arai^{1,2} and Atsushi Nishida^{1,2}

The Journal of Antibiotics (2016) 69, 340-343; doi:10.1038/ja.2016.24; published online 9 March 2016

Furans are highly electron-rich aromatic compounds and this structure is often found in natural products and medicines. Furans are also useful as a four-carbon unit with oxygen functionalities, and are used in organic syntheses as a building block.^{1,2} In 2003, we reported the first total synthesis of nakadomarin A (1),³ a manzamine alkaloid containing a furan ring. In this synthesis, we first reported that a new type of furan-iminium cation cyclization (FIC)^{4,5} through intermediate [A] was highly effective for constructing the central core of nakadomarin A (Figure 1). In the structure of intermediate [A], the 3-position of the furan ring was directly bound to a spiro-ring system, and cyclization occurred at the 2-position of the furan ring to give the tetracyclic core of nakadomarin A.

Since then, we have been studying a new version of FIC in which a furan ring is connected to the spiro-ring system at the 2-position with a two-carbon tether, shown as [**B**]. This intermediate also cyclized to give spiro-tetracyclic products **4** efficiently with complete regio- and stereoselectivity.⁶ The ABC tricyclic core of ircinal A (**3**), including a tetra-substituted stereogenic center, could be constructed by this procedure. Based on model studies, we started a total synthesis of manzamine A (**2**),^{7–14} which shows potent biological activities, such as anticancer, antibacterial and antimalarial activities, and related alkaloids such as ircinal A, a key synthetic and biogenetic precursor for manzamine A.

Based on this strategy, a new synthetic route is shown in Scheme 1. Among the five rings in the structure of ircinal A, both 13- and 8-membered unsaturated rings should be constructed by ring closing metathesis (RCM) at a later stage in the synthesis. The disconnection of ring B gives the iminium cation intermediate **7**, which should be simplified to the known spirolactam intermediate **8**.

The Horner–Wadsworth–Emmons reaction of spirolactam $\mathbf{8}$, which was prepared according to a procedure described in supporting information, gave unsaturated ester in 80% yield (Scheme 2), which was stereoselectively reduced to saturated ester $\mathbf{9a}$ by hydrogenation catalyzed by PtO₂ in aqueous MeOH, along with $\mathbf{9b}$, which was obtained by partial ester exchange to methyl ester. A mixture of $\mathbf{9a}$ and $\mathbf{9b}$ was converted to their Weinreb amide without purification. The diastereomer ratio was determined

to be 14:1 by ¹H NMR. The Weinreb amide was then converted to furylketone **10** by reaction with 2-furyl lithium, and compound **10** was purified by crystallization to remove the minor diastereomeric isomer. The aldol reaction of **10** with formaldehyde in the presence of DBU gave hydroxymethylated **11** in a diastereomer ratio of 10:1.

Conditions for Scheme 2: a $Ph_3P = CHCO_2Et$, toluene, reflux, 12 h (80%), **b** H_2 , cat. PtO₂, MeOH– H_2O (5:1), rt, 24 h, **c** HNMe(OMe), *i*PrMgCl, tetrahydrofurane (THF), -20 °C, 2 h. **d** 2-furyl lithium, THF, -78 °C, 2 h (84%, 3 steps). **e** HCHO, DBU (74%). **f** NaBH₄, MeOH, 0 °C, 1 h. **g** *t*-butyldimethylsilyl trifluoromethanesulfonate (TBSOTf), 2,6-lutidine, CH₂Cl₂, -78 °C, 2 h. **h** Li, NH₃, -40 °C, 4.5 h. **i** benezenesulfonyl chloride (BsCl), NaHCO₃, AcOEt–H₂O, rt, 3 h (61%, 4 steps). **j** tetrabutylammoniumu fluoride (TBAF), THF, rt, 12 h. **k** Ac₂O, pyridine, rt, 5.5 h. **l** *p*-TsOH, *i*PrOH–CH₂Cl₂, rt, 12 h, (88%, 3 steps). **m** MsCl, pyridine, rt, 2.5 h. **n** *o*-NO₂PhSeCN, NaBH₄, DMF, rt, 12 h. **o** 30% H₂O₂ aq, THF, rt, 2.5 h, (64%, 3 steps). **p** Boc₂O, Et₃N, cat. dimethylaminopyridine (DMAP), THF, rt, 4.5 h, (98%). **q** LiBH₄, THF, rt, 2.5 h. **r** Ac₂O, pyridine, rt, 4 h. **s** *p*-TsOH, acetone–H₂O, rt, 48 h. **t** IBX, dimethylsulfoxide (DMSO), 50 °C, 6 h (4 steps, 70%).

The ketone carbonyl group in **11** was removed by stepwise reduction to methylene to increase the electron density of the furan group. Thus, **11** was converted to the secondary alcohol **12**, which was protected as a silyl ether. Silyl ether **13** was further reduced by lithium–ammonia to give **14** after reprotection of the secondary amine by a benzenesulfonyl group. After conversion of the silyl ether to acetate **15**, a tetrahydropyranyl (THP) group was removed and the primary alcohol **16** was converted to phenylselenoether **18** via mesylate **17**.¹⁵ Oxidative elimination followed by Boc protection gave **19**. Reduction of lactam carbonyl in **19** to *N*-Boc aminal followed by acetylation of the primary alcohol gave a cyclization precursor **20**. A crucial FIC of **20** proceeded slowly to give hemiacetal **21**, which was oxidized to lactone **22** by 2-iodoxybenzoic acid (IBX). No diastereomeric isomer was observed under this cyclization.

Conditions for Scheme 3: a NaBH₄, cat. NiCl₂, MeOH, rt, 1 min. **b** trifluoroacetic acid (TFA), CH₂Cl₂, 0 °C to rt. **c** 5-hexenoyl chloride,

¹Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan and ²Molecular Chirality Research Center, Chiba University, Chiba, Japan Correspondence: Professor A Nishida, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan. E-mail: anishida@faculty.chiba-u.ac.jp

Received 16 December 2015; revised 30 January 2016; accepted 2 February 2016; published online 9 March 2016

Figure 1 Furan-iminium cation cyclization (FIC) in the synthesis of manzamine alkaloids.

Scheme 1 Retrosynthetic analysis of ircinal A. A full color version of this figure is available at The Journal of Antibiotics journal online.

DMAP, Et₃N, CH₂Cl₂, (83%, 3 steps). **d** Grubbs' second (10 mol%), CH₂Cl₂, reflux, 3.5 h, (90%). **e** KCN, MeOH–CH₂Cl₂, rt, 24 h. **f** Dess– Martin periodinane, CH₂Cl₂, 0 °C, 3.5 h, (91%, 2 steps). **g** TMSBr, Et₃N, CH₂Cl₂, rt, **h** Pd(OAc)₂, CH₃CN, rt. **i** HC(OMe)₃, *p*-TsOH– H₂O, MeOH, rt, (78%, 3 steps). **j** diisobutylaluminum hydride (DIBAL), CH₂Cl₂, -78 °C, 1.5 h. **k** Ph₃PCH₃Br, potassium hexamethyldisilazane (KHMDS), THF, 0 °C to rt, 12 h, (65%, 2 steps). **l** Na, naphthalene, 1,2-dimethoxyethane (DME), -65 °C, 30 min. **m** 5-hexenoyl chloride, DMAP, Et₃N, CH₂Cl₂, (88%, 2 steps). **n** Grubbs' first (20 mol%), CH₂Cl₂ (degassed), reflux, 24 h. **o** 1 *N* HCl, AcOEt, rt, 5 min, (63%, 2 steps). **p** DIBAL, CH₂Cl₂, -78 °C to rt. **q** Dess–Martin periodinane, CH₂Cl₂, 0 °C to rt (21%, 2 steps).

Chemoselective reduction of conjugated olefin in **22** (Scheme 3),¹⁶ followed by removal of a Boc group and acylation with 5-hexenoyl

chloride, gave diene 23, a precursor for 8-membered ring formation. RCM using Grubbs' second generation catalyst gave cyclized product 24 in 90% yield. Acetate was removed under mild conditions¹⁷ and the resultant primary alcohol was oxidized to aldehyde 25. Saegusa–Ito oxidation¹⁸ of 25 introduced unsaturation into ring B. After the aldehyde was protected by acetal as 26, reduction of lactone to hemiacetal with DIBAL at -78 °C followed by methylenation furnished a butenyl moiety in 27. Benzenesulfonyl protection was removed reductively and a secondary amine in the piperidine ring was acylated to give diene 28, which is a precursor for the formation of a 13-membered ring by a second RCM. The second RCM was catalyzed by Grubbs' first generation catalyst to give the desired *Z*-olefin selectively (29). RCM using Grubbs' second generation catalyst gave a mixture of dimers as a major product. Hydrolysis of acetal in 29 gave

FIC in a total synthesis of manzamine alkaloids K Tokumaru et al

Scheme 2 Furan-iminium cation cyclization (FIC) for synthesis of core skeleton.

Scheme 3 Total synthesis of ircinal A.

The Journal of Antibiotics

aldehyde **30**. All three carbonyl groups in **30** were reduced to give ircinol A (**31**), which was oxidized to ircinal A (**3**). As the conversion of ircinal A to manzamine A (**2**) has been reported previously, the present findings represent a formal total synthesis of manzamine A.¹⁹

A highlight of this synthesis is the use of a highly efficient FIC for the formation of a 6-membered ring with stereoselective construction of a tetra-substituted carbon center. The furan ring in **20** was completely incorporated into the structure of ircinal A.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

This work was supported by Suzuken Memorial Foundation (to SA) and KAKENHI (2139002) to AN.

- Tanis, S. P. et al. Furan-terminated N-acyliminium ion initiated cyclizations in alkaloid synthesis. J. Org. Chem. 63, 6914–6928 (1998).
- 2 Martin, S. F. Evolution of the vinylogous mannich reaction as a key construction for alkaloid synthesis. Acc. Chem. Res. 35, 895–904 (2002).
- 3 Nagata, T., Nakagawa, M. & Nishida, A. The first total synthesis of nakadomarin A. J. Am. Chem. Soc. 125, 7484–7485 (2003).
- 4 Speckamp, W. N. & Hiemstra, H. Intramolecular reactions of N-acyliminium intermediates. *Tetrahedron* 41, 4367–4416 (1985).
- 5 Maryanoff, B. E., Zhang, H.-C., Cohen, J. H., Turchi, I. J. & Maryanoff, C. A. Cyclization of N-acyliminium Ions. Chem. Rev. 104, 1431–1628 (2004).

- 6 Tokumaru, K., Arai, S. & Nishida, A. Stereoselective furan-iminium cation cyclization in
- the construction of the core structure of manzamine A. Org. Lett. 8, 27–30 (2006).
 Sakai, R. & Higa, T. Manzamine A, a novel antitumor alkaloid from a sponge. J. Am. Chem. Soc. 108, 6404–6405 (1986).
- 8 Hu, J.-F., Hamann, M. T., Hill, R. & Kelly, M. in *The Alkaloids: Chemistry and Biology*, Vol. 60 (ed. Cordell G. A.) 207–285 (Elsevier, New York, NY, USA, 2003).
- 9 Nishida, A., Nagata, T. & Nakagawa, M. in Strategies for the Synthesis of Manzamine Alkaloids, Marine Natural Products, Topics In Heterocyclic Chemistry, Vol. 5 (ed. Gupta, R. R.) 255–280 (Springer-Verlag, Berlin, Heidelberg, 2006).
- 10 Winkler, J. D. & Axten, J. M. The first total syntheses of ircinol A, ircinal A and manzamines A and D. J. Am. Chem. Soc. 120, 6425–6426 (1998).
- 11 Martin, S. F., Humphrey, J. M., Ali, A. & Hillier, M. C. Enantioselective total syntheses of ircinal A and related manzamine alkaloids. *J. Am. Chem. Soc.* **121**, 866–867 (1999).
- 12 Humphrey, J. M. et al. Enantioselective total syntheses of manzamine A and related alkaloids. J. Am. Chem. Soc. 124, 8584–8592 (2002).
- 13 Toma, T., Kita, Y. & Fukuyama, T. Total synthesis of (+)-manzamine A. J. Am. Chem. Soc. 132, 10233–10235 (2010).
- 14 Jakubec, P., Hawkins, A., Felzmann, W. & Dixon, D. J. Total synthesis of manzamine A and related alkaloids. J. Am. Chem. Soc. 134, 1748217485 (2012).
- 15 Sharpless, K. B. & Young, M. W. Olefin synthesis. Rate enhancement of the elimination of alkyl aryl selenoxides by electron-withdrawing substituents. J. Org. Chem. 40, 947–949 (1975).
- 16 Sato, T., Nanba, K. & Suzuki, S. Reduction of organic compounds with NaBH₄transition metal salt systems. IV. Selective hydrogenation of olefines in unsaturated esters. *Chem. Pharm. Bull.* **19**, 817–820 (1971).
- 17 Mori, K., Tominaga, M., Takigawa, T. & Matsui, M. A mild transesterification method. Synthesis 790–791 (1973).
- 18 lto, Y., Hirao, T. & Saegusa, T. Synthesis of α , β -unsaturated carbonyl compounds by palladium(II)-catalyzed dehydrosilylation of silyl enol ethers. *J. Org. Chem.* **43**, 1011–1013 (1978).
- 19 Kondo, K. *et al.* Ircinals A and B from the Okinawan marine sponge *Ircinia* sp.: plausible biogenetic precursors of manzamine alkaloids. *J. Org. Chem.* **57**, 2480–2483 (1992).