NOTE

Genome-based analysis of type-I polyketide synthase and nonribosomal peptide synthetase gene clusters in a novel strain taxonomically close to the genus *Salinispora*

Hisayuki Komaki¹, Tomohiko Tamura¹, Natsuko Ichikawa², Akio Oguchi², Moriyuki Hamada¹, Ken-ichiro Suzuki¹ and Nobuyuki Fujita²

The Journal of Antibiotics (2015) 68, 767–770; doi:10.1038/ja.2015.69; published online 1 July 2015

Members of the genus *Salinispora* are obligate marine actinomycetes of the family *Micromonosporaceae*, and require sodium-enriched medium for growth.¹ This genus has attracted attention from researchers seeking novel secondary metabolites, because it represents promising sources of such molecules.^{2,3} However, it is difficult to isolate novel strains within or closely related to the genus *Salinispora*; only three species, *Salinispora arenicola, Salinispora pacifica* and *Salinispora tropica*, have been discovered during the past decade.

In our survey of actinomycetal inhabitants of mangrove forests, we isolated a novel strain, designated NBRC 107566, from the rhizosphere of a mangrove growing on Iriomote Island, Okinawa, Japan. The 16S rRNA gene of the strain showed high sequence similarities to those of *S. arenicola* CNH-643^T (98.28%), *Micromonospora pattaloongensis* TJ2- 2^{T} (98.08%), *S. pacifica* CNR-114^T (98.07%) and *S. tropica* CNB-440^T (98.07%). Thus, to assess the potential of NBRC 107566 as a secondary metabolite producer, we performed whole-genome shotgun sequencing and examined type-I polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) gene clusters, which are involved in the major secondary metabolite-synthetic pathways in actinomycetes. The taxonomic study of this strain will be reported elsewhere.

The whole-genome sequence was determined by a shotgun sequencing strategy with paired-end sequencing using MiSeq (Illumina, San Diego, CA, USA; 652 Mb, 97-fold coverage). These reads were assembled using Newbler v2.6 (Roche, Basel, Switzerland) and subsequently finished using GenoFinisher,⁴ which enabled a final assembly of 182 scaffold sequences of >500 bp each. The sequences have been deposited at DDBJ under accession numbers BBQH01000001–BBQH01000182. The total size of the assembly was 6704 564 bp, with a G+C content of 72.4%. Coding sequences were predicted by Prodigal v2.6 (http://prodigal.ornl.gov/downloads.php),⁵ and domains related to PKS and NRPS were searched using the

SMART and PFAM domain databases. PKS and NRPS gene clusters, and their domain organizations, were identified according to a previously reported procedure. 6

Complete gene cluster sequences were obtained for two type-I PKS (pks2 and pks3) and five NRPS (nrps1 to nrps5) gene clusters. We believe that one PKS gene cluster (pks1) was split into 16 scaffolds/contigs in the draft genome sequence. Genes encoding PKSs and NRPSs in these clusters are listed in Table 1. Although the pks1 gene cluster could not be completely sequenced, this cluster likely contains at least 12 modules because of the presence of 12 ketosynthase domains and 12 acyl carrier protein domains. Hence, the products will be large compounds containing a polyketide chain comprising at least C24. We hypothesized that the pks2 gene cluster will synthesize an enediyne-type polyketide, because its PKS (open reading frame (Orf) 5-114) showed high sequence similarities to iterative type-I PKSs for enediyne core synthesis, termed enediyne PKS (PksE),7 and the domain organization was the same as those of Salinispora, such as Sare_0551 and Strop_2697, for enediyne compounds.² The *pks3* gene cluster was likely novel because the PKS genes showed low sequence identities to the closest homologs. The domain organization was likely ketosynthase-acyltransferaseketoreductase-dehydratase, which is specific to PksE, although the module split into three Orfs. Hence, the products may be enediyne compounds too. According to each module number and adenylation domain substrate predicted by antiSMASH,8 we guessed that gene clusters nrps1 to nrps5 synthesize hexapeptidic compounds containing three valine molecules; small compounds derived from single amino-acid molecules; tripeptidic compounds comprising glycine, lysine and serine molecules; compounds derived from cysteine; and tetrapeptidic compounds containing a dihydroxybenzoate and two cysteine molecules, respectively.

¹Biological Resource Center, National Institute of Technology and Evaluation, Chiba, Japan and ²Biological Resource Center, National Institute of Technology and Evaluation, Tokyo, Japan

Correspondence: Dr H Komaki, Biological Resource Center, National Institute of Technology and Evaluation, 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan. E-mail: komaki-hisayuki@nite.go.jp

Received 27 February 2015; revised 3 April 2015; accepted 17 May 2015; published online 1 July 2015

768

Table 1 PKSs and NRPSs of type-I PKS and NRPS gene clusters in Micromonosporaceae strain NBRC 107566

				BLAST search		
Gene cluster	Orf	Size (aa)	Domain organization	Closest homolog (accession no.), origin	%ª	Predicted product
pks1	16-70 ^b	>1708	ACP-KS/AT/DH/KR	Hypothetical protein (WP_026242989), Streptomyces	64/74	Large polyketide
	319-1 ^b	>541	ACP-KS	Erythronolide synthase (EWM17454), Kutzneria sp. 744	67/77	
	101-1 ^b	>958	DH/KR/ACP	Hypothetical protein, partial (WP_030874026), Streptomyces sp. NRRL F-2747	49/62	
	101-2 ^b	>322	KS	Hypothetical protein, partial (WP_030870332), Streptomyces sp. NRRL F-2747	77/86	
	105-1 ^b	>1190	DH/KR/ACP-KS	Type I PKS (BAO66542), Streptomyces sp. MJ635-86F5	59/70	
	111-1 ^b	>980	DH/KR/ACP-KS	Hypothetical protein (WP_018680914), Actinokineospora enzanensis	55/64	
	318-1 ^b	>544	ACP-KS	Hypothetical protein (WP_026242989), Streptomyces	77/86	
	366-1 ^b	>118	ACP-KS	PKS, partial (WP_030844246), Streptomyces hygroscopicus	56/68	
	119-1 ^b	>822	KS/AT/DH	Erythronolide synthase (EWM17449), Kutzneria sp. 744	58/70	
	116-1 ^b	>856	KR/ACP-KS	PKS, partial (WP_030843675), Streptomyces hygroscopicus	57/67	
	85-3 ^b	>908	DH/KR/ACP	Modular PKS, partial (AGI61661), Micromonospora sp. CMS I2-32	43/52	
	85-2	1568	KS/AT/KR/ACP	Hypothetical protein (WP_018521997), Streptomyces	61/72	
	85-1 ^b	>348	KS	Hypothetical protein, partial (WP_030874000), Streptomyces sp. NRRL F-2747	78/88	
	82-1 ^b	>2722	DH/KR/ACP-KS/AT/DH/ KR/ACP	Hypothetical protein (WP_026242989), Streptomyces	63/72	
	82-2 ^b	>515	KS	Hypothetical protein, partial (WP_031087535), Streptomyces sp. NRRL S-1831	68/79	
	355-1 ^b	>288	KS	Hypothetical protein, partial (WP_030248090), Streptomyces sp. NRRL S-350	69/77	
pks2	5-114	1929	KS/AT/KR/DH	Erythronolide synthase (WP_028678638), Salinispora arenicola	69/78	Enediyne
pks3	18-76	307	AT	Hypothetical protein, partial (WP_031052262), Streptomyces ochraceiscleroticus	35/50	Enediyne
	18-78	664	KS	Hypothetical protein IL38_10790 (KGI81430), Actinopolyspora erythraea	38/53	
	18-79	799	KR/DH	Hypothetical protein IL38_23040 (KGI79490), Actinopolyspora erythraea	34/47	
nrps1	16-6 ^c	618	A(val)/T	Hypothetical protein (WP_032713311), Salinispora arenicola	62/74	Val-containing hexapeptide
	16-15	2182	CoL/T-C/A/T-C	Hypothetical protein (WP_028191616), Salinispora arenicola	57/66	
	16-16	1010	A/T-C	Hypothetical protein (WP_028191617), Salinispora arenicola	59/68	
	16-17	92	Т	Hypothetical protein (WP_028191618), Salinispora arenicola	60/74	
	16-18	2123	C/A/T-C/T-C	Hypothetical protein (WP_028191619), Salinispora arenicola	54/66	
	16-22	523	A(val)	Hypothetical protein, partial (WP_030883900), Streptomyces sp. NRRL F-5053	61/70	
	16-25 ^c	667	A(val)/T	Hypothetical protein, partial (WP_030921967), Streptosporangium amethystogenes	69/78	
	16-27	544	T-C	Hypothetical protein (WP_028191619), Salinispora arenicola	64/75	
nrps2	8-63	1369	C/A/T-TE	Amino acid adenylation domain protein (ACU75141), <i>Catenulispora acidiphila</i> DSM 44928	70/78	Unknown
nrps3	8-101	4664	C/A(gly)/T-C/A(lys)/T-C/T- C/A(ser)/T-TE	Amino acid adenylation enzyme/thioester reductase family protein (EXG82720), <i>Cryptosporangium arvum</i> DSM 44712	68/77	Gly-Lys-Ser
nrps4	42-35	112	Т	Hypothetical protein (WP_030303910), Streptomyces sp. NRRL F-6131	56/70	Cys-containing molecule
	42-34	452	С	Hypothetical protein Z951_28640 (EXU64848), Streptomyces sp. PRh5	40/55	
	42-32 ^c	825	C/A(cys)	Hypothetical protein, partial (WP_030606521), Streptomyces sclerotialus	49/62	
	42-30	543	T-C	Hypothetical protein (WP_028191619), Salinispora arenicola	62/73	
nrps5	8-2	534	A(dhb)	AMP-dependent synthetase and ligase (ACY95967), Thermomonospora curvata DSM 43183	56/68	DHB and Cys-containing tetrapeptide
	8-5	1558	T-C/A(cys)/T	Peptide synthetase (WP_031074647), Streptomyces sp. NRRL WC-3742	50/59	
	8-9	1827	C/A(cys)/MT/T	Pyochelin synthetase (WP_031074637), Streptomyces sp. NRRL WC-3742	61/71	
	8-10	1167	A/T-Red	Oxidoreductase (WP_033090657), Nocardia seriolae	50/64	

Abbreviations: A, adenylation; ACP, acyl carrier protein; AT, acyltransferase; C, condensation; CoL, CoA ligase; DH, dehydratase; dhb/DHB, dihydroxybenzoate; KR, ketoreductase; KS, ketosynthase; MT, methyltransferase; NRPS, nonribosomal peptide synthetase; Orf, open reading frame; PKS, polyketide synthase; Red, reductase; T, thiolation; TE, thioesterase. Orf numbers are shown in combination with scaffold/contig numbers

The closest homolog whose domain organization is identical to that of NBRC 107566 Orf is boldfaced. Predicted substrates of A domains are shown in brackets.

^aldentity/similarity. ^bNot completely sequenced.

^cEncoded on the complementary strand.

Among the eight gene clusters, five (pks1, pks3, nrps3, nrps4 and nrps5) were new and specific to strain NBRC 107566, because each PKS and NRPS showed low sequence similarity and distinct domain organization from its closest homolog. In contrast, homologs of the remaining three gene clusters (pks2, nrps1 and nrps2) were present in other strains (Table 1). PksE genes such as pks2 are present commonly

in the genus Salinispora,3 and also in the closely related genus Micromonospora.9 In the nrps1 gene cluster, six genes showed high sequence similarities (57-64% identities) to those of S. arenicola, which are specific in S. arenicola strain CNX891 and are not present in the other Salinispora strains whose genome sequences are available. However, the products of strain NBRC 107566 and S. arenicola

Cluster	Туре	NBRC 107566	S. arenicola CNH-205	S. tropica CNB-440	S. pacifica DSM 45543	Actual or predicted product ^a
1	PKS	pks2	Sare_0551	Strop_2697	SALPAC_RS0114200	Enediyne
2	PKS/NRPS	—	Sare_2071-2093	Strop_2647-2655	SALPAC_RS0121725-0121735	Yersiniabactin-like siderophore
3	NRPS	—	Sare_4890-4895	Strop_4416-4420	SALPAC_RS0124550-0124570	Tetrapeptide
4	PKS	—	Sare_3282	Strop_3056	b	Lymphostin
5	PKS/NRPS	—	C	Strop_1022-1024	SALPAC_RS0116580-0116590	Salinisporamide
6	PKS	—	Sare_2029	Strop_0598	—	Enediyne
7	NRPS	—	Sare_0353-0363	—	SALPAC_RS0101640-0101690	Pentapeptide
8	PKS	pks1	—		_	Large polyketide
9	PKS	pks3	—		_	Enediyne
10	NRPS	nrps1	_	_	_	Val-containing hexapeptide
11	NRPS	nrps2	_	_	_	Unknown
12	NRPS	nrps3	_	_	_	Gly-Lys-Ser
13	NRPS	nrps4	_	_	_	Cys-containing molecule
14	NRPS	nrps5	_	_	_	DHB and Cys-containing tetrapeptide
15	PKS	_	Sare_1246-1250	_	_	Rifamycin
16	PKS	_	Sare_2179	_	_	Enediyne
17	PKS	_	Sare_3151-3156	_	_	Macrolide
18	PKS	_	Sare_4951	_	_	Enediyne
19	NRPS	_	Sare_2948-2962	_	_	Tetrapeptide
20	NRPS	_	Sare_4562	_	_	Cyclomarin
21	PKS/NRPS	_	Sare_2407	_	_	PK-NRP hybrid
22	PKS	_	_	Strop_2768-2781	_	Salinilactam
23	NRPS	_	_	Strop_0673-0688	_	Dipeptide
24	NRPS	_	_	Strop_2806	_	Dihydroaeruginoic acid
25	NRPS	_	_	Strop_2820-2821	_	Coelibactin
26	PKS	_	_	_	SALPAC_RS0115200	Unknown
27	NRPS	_	_	_	SALPAC_RS0110150-0110175	Pentapeptide
28	NRPS	_	_	_	SALPAC_RS0111835	Unknown
29	NRPS	_	_	_	SALPAC_RS0122730	Unknown
30	PKS/NRPS	_	_			PK-NRP hybrid
Total		8	13	10	10	-

Abbreviations: DHB, dihydroxybenzoate; NRPS, nonribosomal peptide synthetase; PK-NRP, polyketide-nonribosomal peptide; PKS, polyketide synthese.

Conserved gene clusters are boldfaced. ^aProducts are from Table 1 or Nett *et al.*¹⁰

^bThis cluster is not present in completely genome-sequenced strain DSM 45543, but present in ~30 *S. pacifica* strains.³

"This cluster is not present in most S. arenicola strains including CNH-205, but present in five strains such as CNH941, CNH964, CNP105, CNP103 and CNY280.

CNX891 probably differ because the *nrps1* gene cluster encoded two extra NRPSs in addition to those found in *S. arenicola* CNX891, and some domain organizations between these two strains were different (Supplementary Figure S1). The *nrps2* cluster showed high sequence similarities to a *Catenulispora acidiphila* gene, whose products have not yet been identified, and whose domain organizations were the same, suggesting that the products of the two strains will be similar. A putative acetyl-lysine deacetylase and a lysine biosynthesis enzyme LysX were also encoded upstream of *nrps2* and the *C. acidiphila* gene cluster (data not shown). However, we could not predict the products only by genome information. To identify the products, further studies are needed.

We compared similarities and differences of type-I PKS and NRPS gene clusters among strain NBRC 107566 and three *Salinispora* species (Table 2). Orthologous gene clusters are aligned in the same row of the table. Strain NBRC 107566, *S. arenicola* CNH-205, *S. tropica* CNB-440 and *S. pacifica* DSM 45543 possess 8, 13, 10 and 10 PKS and NRPS gene clusters, respectively, suggesting NBRC 107566 has as many and various gene clusters as *Salinispora* strains. In the genus *Salinispora*, three PKS and NRPS gene clusters (iterative enediyne PKS, yersiniabactin-like siderophore NRPS and tetrapeptide NRPS, shown as clusters 1–3 in Table 2) are well conserved in all the species, and

four gene clusters (clusters 4-7) are conserved at least between two species.3,10 In contrast, strain NBRC 107566 did not possess a yersiniabactin-like siderophore NRPS gene cluster, a tetrapeptide NRPS gene cluster or the four gene clusters, but does have an iterative enediyne PKS gene cluster (pks2). According to the report on the ancestry of secondary metabolite gene clusters in the genus Salinispora, the well-conserved gene clusters are derived from the common ancestors, but only the iterative enediyne PKS gene cluster among them is shared with the closely related genus Micromonospora; the remaining clusters are considered to have been acquired by horizontal gene transfer at the beginning of the evolution of this genus or each species.³ Strain NBRC 107566 is phylogenetically related to the Salinispora species, but its taxonomic position is outside of the clade of the genus Salinispora in the phylogenetic tree based on 16S rRNA gene sequences (Tamura et al., unpublished). This strain may have evolved without acquiring these gene clusters, except for pksE (pks2), conserved in the genus Salinispora. Interestingly, no homologs of the five NBRC 107566-specific gene clusters (pks1, pks3, nrps3, nrps4, nrps5) were observed, even in genome-sequenced strains belonging to the related genus Micromonospora (Table 1). To date, only 10 Micromonospora strains have been genome sequenced; therefore, it is not clear whether these five clusters were transmitted vertically or

770

acquired by horizontal gene transfer during evolution of the family *Micromonosporaceae*. This study showed that isolation of phylogenetically novel strains, such as strain NBRC 107566, in this family could aid the search for attractive, novel and diverse secondary metabolites.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

We are grateful to Ms Tomoko Hanamaki and Ms Yuko Kitahashi for assistance with the whole-genome sequencing and annotation of PKS and NRPS genes, respectively.

 Maldonado, L. A. et al. Salinispora arenicola gen. nov., sp. nov., and Salinispora tropica sp. nov., obligate marine actinomycetes belonging to the family Micromonosporaceae. Int. J. Syst. Evol. Microbiol. 55(Pt 5), 1759–1766 (2005).

- 2 Udwary, D. W. *et al.* Genome sequencing reveals complex secondary metabolome in the marine actinomycete *Salinispora tropica. Proc. Natl Acad. Sci. USA* 104, 10376–10381 (2007).
- 3 Ziemert, N., et al. Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora. Proc. Natl. Acad. Sci. USA 111, E1130–E1139 (2014).
- 4 Ohtsubo, Y., Maruyama, F., Mitsui, H., Nagata, Y. & Tsuda, M. Complete genome sequence of *Acidovorax* sp. strain KKS102, a polychlorinated-biphenyl degrader. *J. Bacteriol.* **194**, 6970–6971 (2012).
- 5 Hyatt, D., *et al.* Prodigal: prokaryotic gene recognition and translation initiation site identification. *BMC Bioinformatics* **11**, 119 (2010).
- 6 Komaki, H., Ichikawa, N., Oguchi, A., Hanamaki, T. & Fujita, N. Genome-wide survey of polyketide synthase and nonribosomal peptide synthetase gene clusters in *Streptomyces turgidiscabies* NBRC 16081. *J. Gen. Appl. Microbiol.* **58**, 363–372 (2012).
- 7 Horsman, G. P., Van Lanen, S. G. & Shen, B. Iterative type I polyketide synthases for enediyne core biosynthesis. *Methods Enzymol.* 459, 97–112 (2009).
- 8 Blin, K. et al. antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res. 41, W204–W212 (2013).
- 9 Trujillo, M. E. et al. genome features of the endophytic actinobacterium Micromonospora lupini strain Lupac 08: on the process of adaptation to an endophytic life style? PLoS One 9, e108522 (2014).
- 10 Nett, M., Ikeda, H. & Moore, B. S. Genomic basis for natural product biosynthetic diversity in the actinomycetes. *Nat. Prod. Rep.* 26, 1362–1384 (2009).

Supplementary Information accompanies the paper on The Journal of Antibiotics website (http://www.nature.com/ja)