NOTE

Diketopiperazines, inhibitors of sterol *O*-acyltransferase, produced by a marine-derived *Nocardiopsis* sp. KM2-16

Keisuke Kobayashi¹, Takashi Fukuda¹, Takeshi Terahara², Enjuro Harunari², Chiaki Imada² and Hiroshi Tomoda¹

The Journal of Antibiotics (2015) 68, 638-641; doi:10.1038/ja.2015.38; published online 22 April 2015

Sterol O-acyltransferase (SOAT, also known as acyl-CoA:cholesterol acyltransferase (ACAT), EC 2.4.1.26), an endoplasmic reticulum (ER) membrane protein, catalyzes the synthesis of cholesteryl ester (CE) from free cholesterol and long-chain fatty acyl-CoA. SOAT has been postulated as a target for modulation by a new type of antiatherosclerotic agent. Recent molecular biological studies revealed the existence in mammals of two different SOAT isozymes, SOAT1 and SOAT2.1-4 SOAT1-selective inhibition may cause detrimental effects,5-7 whereas SOAT2-selective inhibition has consistently shown antiatherosclerotic activity.^{8,9} Therefore, it is important to determine the selectivity of inhibitors toward the two SOAT isozymes for development as new antiatherosclerosis agents. Our group has focused on the discovery of SOAT2-selective inhibitors of microbial origin in cell-based assay or an enzyme assay using microsomes prepared from SOAT2-expressing Chinese hamster ovary (CHO) cells. During the course of our screening program, two diketopiperazines, 1 and amauromine¹⁰ (2) (Figure 1), were isolated as SOAT2 inhibitors from the culture broth of actinomycete strain Nocardiopsis sp. KM2-16. Amauromine was originally isolated as a vasodilator from the culture broth of the fungus Amauroascus sp. Yin et al.11 reported that 1 was produced by bioconversion from cyclo-L-tryptophan-L-tryptophan using two recombinant enzymes involved in acetylaszonalenin biosynthesis.¹² Thus, 2 and structurally related acetylaszonalenin were fungal secondary metabolites. In this study, we showed that 1 and 2 were isolated as actinomycete secondary metabolites and that 2 selectively inhibited SOAT2 activity.

The strain KM2-16 was isolated from sea sediments collected off Iriomote Island in Okinawa, Japan in 2012. In a BLAST search, the 16S rRNA sequence of the strain KM2-16 indicated that it could be considered to belong to the actinomycete genus *Nocardiopsis*. The strain was inoculated into a 500-ml Erlenmeyer flask containing 100 ml of production medium (1.0% starch, 0.40% yeast extract, 0.20% peptone, 0.10% CaCO₃, 0.010% KBr, 0.0040% Fe₂(SO₄)₃•nH₂O, 100 ml of natural seawater). Fermentation was carried out at 27 °C for 11 days under shaking conditions (180 r.p.m.). The culture broth (100 ml×3) was extracted with acetone (300 ml). This extract was concentrated and extracted with EtOAc to yield the crude extracts (42 mg), which was purified by HPLC using a PEGASIL ODS column (10×250 mm², Senshu Scientific Co., Tokyo, Japan) under the following conditions: solvent, a 30-min linear gradient from 50 to 85% CH₃CN; flow rate, 3.0 ml min⁻¹; detection, UV at 285 nm. Compounds 1 and 2 were eluted as peaks with retention times of 14 and 29 min, respectively. Each peak was collected and concentrated to yield pure 1 (8.6 mg) and 2 (4.6 mg) as colorless solids. Interestingly, 1 and 2 were produced in the seawater-supplemented medium, whereas almost no production was observed in an analogous medium made with distilled water.

The physico-chemical properties of 1 and 2 are summarized in Table 1. The molecular formulas of 1 and 2 were determined to be C27H28N4O2 and C32H36N4O2 on the basis of HR-ESI-MS measurement, respectively. From ¹H and ¹³C NMR and specific rotation, 2 was identified as amauromine previously reported as a fungal vasodilator.¹⁰ Compound 1 had absorption maxima at 210, 219, 244, 282 and 290 nm in the UV spectrum. The IR absorption maxima of 1 at 3276 and 1664 cm⁻¹ suggested the presence of amino and carbonyl moieties, respectively. Although 1 appeared to be a known compound reported by Yin et al.,11 the structural determination has not been described in detail. The structure of 1 was mainly elucidated by analysis of NMR spectra, including 2D NMR. The ¹³C NMR spectrum (in CDCl₃) showed 27 resolved signals, which were classified into two methyl carbons, two sp^3 methylene carbons, three sp^3 methine carbons, one sp^2 methylene carbon, 10 sp^2 methine carbons and 9 quaternary carbons, including two carbonyl carbons. The connectivity of proton and carbon atoms was established by the HMQC spectrum, as shown in Table 2. Analysis of the ¹H-¹H COSY spectrum gave the 7 partial structures I (NH-1 to C-2), II (C-4 to C-7), III (C-10 to C-11), IV (C-14 to C-17), V (C-19 to NH-20), VI (C-22 to C-25) and VII (C-1' to C-2') drawn with the bold lines in Figure 2. The ¹H-¹³C long-

¹Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan and ²Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan

Correspondence: Professor H Tomoda, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan. E-mail: tomodah@pharm.kitasato-u.ac.jp

Received 16 February 2015; revised 3 March 2015; accepted 16 March 2015; published online 22 April 2015

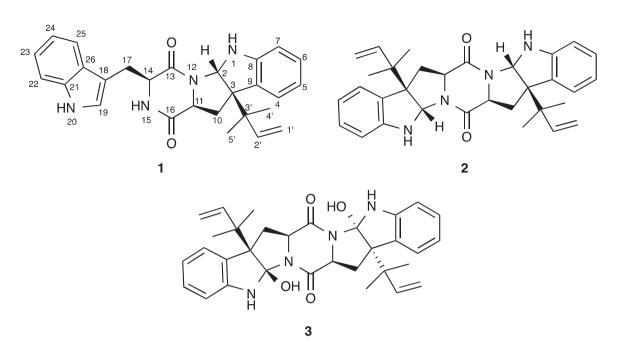


Figure 1 Structures of 1, amauromine (2) and gypsetin (3).

Table 1 Physico-chemical properties of 1 and 2

	1	2
Appearance	Colorless solid	Colorless solid
$[\alpha]_{D}^{24.1}$ (c = 0.1, MeOH)	-182.9	-558.7
Molecular weight	440	508
Melecular formula	$C_{27}H_{28}N_4O_2$	$C_{32}H_{36}N_4O_2$
HR-ESI-MS (m/z)		
Calcd	463.2110 (M + Na)+	509.2917 (M + H) ⁺
Found	463.2107 (M + Na)+	509.2913 (M + H)+
UV λ_{\max}^{MeOH} (log ε)	210 (3.0), 219 (3.0),	208 (3.1), 244 (2.5),
	244 (2.3)	300 (2.1)
	282 (2.2), 290 (2.2)	
IR $\nu_{\rm max}^{\rm KBr}$ cm ⁻¹	3276, 2970, 1664,	3386, 2972, 1661,
	1451, 1317	1462, 1423
CD (MeOH) λ nm	220 (3.7), 245 (–5.6),	222 (-0.37), 244 (-4.8),
(Mol. CD)	272 (-1.7), 300 (-2.8)	266 (-0.17), 301 (-1.0)

range couplings of ²*J* and ³*J* observed in the HMBC experiments gave the following information. (1) The cross-peaks were observed from 1-NH (δ 5.06) to C-3 (δ 61.6) and C-9 (δ 128.9), from 2-H (δ 5.55) to C-8 (δ 149.9), C-9, C-11 (δ 59.0) and C-13 (δ 166.0), from 4-H (δ 7.14) to C-3 and C-8, from 5-H (δ 6.76) to C-9, from 6-H (δ 7.11) to C-8, from 7-H (δ 6.61) to C-9, from 10-H₂ (δ 2.42, 2.51) to C-3, C-9 and C-16 (δ 168.9), from 11-H (δ 3.91) to C-10 and C-16, from 14-H (δ 4.30) to C-13, and from 15-NH (δ 5.69) to C-11, C-13, C-14, C-16 and C-17 (27.0), suggesting the presence of 6-, 5-, 5- and 6-membered ring systems (Part A), including indoline and diketopiperazine rings, which contained the partial structures **I**, **II**, **III** and **IV**. (2) The crosspeaks were observed from 19-H (δ 7.08) to C-18 (δ 109.7), C-21 (δ 136.6) and C-26 (δ 126.6), from NH-20 (δ 8.19) to C-18, C-21 and C-26, from 22-H (δ 7.38) to C-26, from H-23 (δ 7.22) to C-21, from 24-H (δ 7.12) to C-26 and from 25-H (δ 7.55) to C-18, C-21 and C-26, suggesting the presence of the indole ring (Part B) containing the partial structures **IV** and **V**. (3) The cross-peaks were observed from 1'-H₂ (δ 5.08, 5.12) to C-3' (δ 40.8), from 2'-H (δ 5.97) to C-3, C-4' (δ 22.8) and C-5' (δ 22.4), from 4'-H₃ (δ 1.01) to C-2' (δ 143.5), C-3' and C-5' and from 5'-H₃ (δ 1.11) to C-2', C-3' and C-4', suggesting the presence of the prenyl moiety (Part C) containing the partial structure **VII**. Finally, (4) the cross-peaks from 17-H₂ (δ 2.97, 3.74) to C-19 (δ 123.2) and C-26, from 19-H to C-17, from 2-H and 10-H₂ to C-3' and from 2'-H, 4'-H₃ and 5'-H₃ to C-3 indicated that Part A is attached to Parts B and C, as shown in Figure 2. The structure satisfied the degrees of unsaturation and the molecular formula.

The relative configurations of C-2, C-3, C-11 and C-14 were elucidated by NOE experiments. As shown in Figure 3, the cross-peaks between 2-H and 4'-H₃/5'-H₃ proved the relative configurations, $2S^*$ and $3R^*$. Furthermore, the correlation between H-11 and H-14 proved the relative configurations, $11S^*$ and $14R^*$. As shown in Table 1, the CD spectra of 1 showed positive Cotton effects at 272 and 220 nm and negative Cotton effects at 300 and 248 nm. These data suggested that 1 has the same absolute configurations, 2S, 3R, 11S and 14R, as 2.¹³

SOAT inhibitory activity of 1 and 2 was investigated in the enzyme assay using microsomes prepared from SOAT1- and SOAT2expressing CHO (hereafter referred to as SOAT1-CHO and SOAT2-CHO, respectively) cells.¹⁴ As summarized in Table 3, 1 and 2 are SOAT inhibitors rather selective toward SOAT2 isozyme in the enzyme assay. Furthermore, the SOAT inhibition was evaluated in a cell-based assay using SOAT1- and SOAT2-CHO cells.14 As shown in Table 3, 2 inhibited CE synthesis with an IC_{50} value of 0.45 μ M in SOAT2-CHO cells, and it became clear that 2 is a SOAT2-selective inhibitor with a selective index (SI) value of 62 in the cell-based assay. However, 1 showed no inhibition of SOAT1 and SOAT2 at 22 µm. It might be that 1 cannot penetrate CHO cells. Shinohara et al.¹⁵ reported that structurally related gypsetin (3), produced by the fungus Nannizzia gypsea var. incurvata IFO9228, inhibited rat liver microsomal SOAT activity (IC_{50}\text{, }18\,\mu\text{M}) and cholesteryl ester synthesis in macrophage J774 (IC50, 0.65 µM). Now it is known that J774 cells

Table 2 ¹H and ¹³C NMR chemical shifts of 1 (600 MHz for ¹H, 150 MHz for ¹³C)

	1					
Position	δ _C (p.p.m.)ª	δ_H (p.p.m.) ^b , multi, J in Hz	<i>НМВС</i> С-3, 9			
1	_	5.06, sd, 1.0				
2	77.7	5.55, s	C-8, 9, 11, 13, 3′			
3	61.6	_	_			
4	125.1	7.14 ^c	C-3, 6, 8			
5	118.9	6.76, td, 7.5, 0.8	C-4, 7, 9			
6	128.9	7.11 ^c	C-4, 8			
7	109.2	6.61, d, 7.5	C-5, 9			
8	149.9	_	_			
9	128.9	_	_			
10	36.0	2.42, t, 12.0	C-2, 3, 9, 11, 16, 3'			
		2.51, dd, 12.5, 6.0				
11	59.0	3.91, dd, 11.5, 6.0	C-10, 16			
12	_	_	_			
13	166.0	_	_			
14	54.6	4.30, d, 10.5	C-13, 17, 18			
15	_	5.69, s	C-11, 13, 14, 16, 17			
16	168.9	_	_			
17	27.0	2.97, dd, 10.8, 11.0	C-13, 14, 18, 19, 26			
		3.74, dd, 4.0				
18	109.7	—	_			
19	123.2	7.08, sd, 2.0	C-17, 18, 21, 26			
20	—	8.19, s	C-18, 19, 21, 26			
21	136.6	—	—			
22	115.5	7.38, d, 8.5	C-23, 24, 26			
23	122.9	7.22, td, 7.5, 1.0	C-22, 24, 25			
24	120.1	7.12 ^c	C-22, 23, 26			
25	118.4	7.55, d, 8.0	C-21, 23, 26			
26	126.6	—	—			
1′	114.5	5.08, dd, 13.5, 1.2	C-2′, 3′			
0.	140 5	5.12, dd, 10.5, 1.0				
2'	143.5	5.97, dd, 18.0, 10.5	C-3, 1′, 3′, 4′, 5′			
3′	40.8	_	—			
4′	22.8	1.01, s	C-3, 1′, 2′, 3′, 5′			
5′	22.4	1.11, s	C-3, 1', 2', 3', 4'			

^aChemical shifts are shown with reference to CDCl₃ as δ 77.0. ^bChemical shifts are shown with reference to CDCl₃ as δ 7.26.

^cSignals are overlapping.

exclusively express SOAT1 and rat liver mainly expresses SOAT2. Therefore, it will be worth testing 3 in our assay system to make the SOAT selectivity clear.

A number of indoline alkaloid-containing diketopiperazines carry a prenyl moiety at C3. For example, amauromine (2), gypsetin (3), epiamauromine,¹⁶ roquefortine C^{17} and fructigenines A and B^{18} were discovered as fungal metabolites, mainly produced by Penicillium and Aspergillus. In this study, we discovered 1 and 2 from a marine-derived actinomycete, Nocardiopsis sp. KM2-16. It will be worth comparing the biosynthetic genes from fungal and actinomycete strains.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

We thank Ms Noriko Sato and Dr Kenichiro Nagai (School of Pharmaceutical Sciences, Kitasato University) for measurements of NMR spectra and MS data.

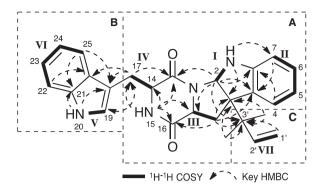


Figure 2 Key cross-peaks observed in ¹H-¹H COSY and ¹H-¹³C HMBC experiments of 1.

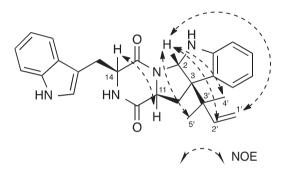


Figure 3 Key NOE experiment of 1.

Table 3 Effects of 1 and 2 on SOAT isozymes in cell-based and enzyme-based assays

Compound	Enzyme-based			Cell-based			Cytotoxicity ^a
	IC ₅₀ (µм)			IC ₅₀ (µм)			
	SOAT1	SOAT2	SI ^b	SOAT1	SOAT2	SI	IC ₅₀ (µм)
1 2	> 57 22	21 1.2	>2.7 18	> 22 > 28	> 22 0.45	1 >62	>22 >28

Abbreviations: SI, selective index; SOAT, sterol O-acyltransferase.

 6 Cytotoxicity of the compounds to CH-K1 cells was measured by the MTT assay. 19 b SI=IC₅₀ for SOAT1/IC₅₀ for SOAT2.

This work was supported by a Grant-in-aid for Scientific Research (A) 26253009 from the Ministry of Education, Culture, Sports, Science and Technology, Japan (to HT).

- 1 Chang, C. C., Huh, H. Y., Cadigan, K. M. & Chang, T. Y. Molecular cloning and functional expression of human acyl-coenzyme A:cholesterol acyltransferase cDNA in mutant Chinese hamster ovary cells. J. Biol. Chem. 268, 20747-20755 (1993).
- Anderson, R. A. et al. Identification of a form of acvI-CoA:cholesterol acvItransferase specific to liver and intestine in nonhuman primates. J. Biol. Chem. 273. 26747-26754 (1998)
- 3 Cases, S. et al. ACAT-2, a second mammalian acyl-CoA:cholesterol acyltransferase. Its cloning, expression, and characterization. J. Biol. Chem. 273, 26755-26764 (1998).
- Oelkers, P., Behari, A., Cromley, D., Billheimer, J. T. & Sturley, S. L. Characterization of Λ two human genes encoding acyl coenzyme A:cholesterol acyltransferase-related enzymes. J. Biol. Chem. 273, 26765-26771 (1998).
- 5 Yagyu, H. et al. Absence of ACAT-1 attenuates atherosclerosis but causes dry eye and cutaneous xanthomatosis in mice with congenital hyperlipidemia. J. Biol. Chem. 275, 21324-21330 (2000).

- 6 Accad, M. *et al.* Massive xanthomatosis and altered composition of atherosclerotic lesions in hyperlipidemic mice lacking acyl CoA:cholesterol acyltransferase 1. *J. Clin. Invest.* **105**, 711–719 (2000).
- 7 Fazio, S. *et al.* Increased atherosclerosis in LDL receptor-null mice lacking ACAT1 in macrophages. *J. Clin. Invest.* **107**, 163–171 (2001).
- 8 Buhman, K. K. *et al.* Resistance to diet-induced hypercholesterolemia and gallstone formation in ACAT2-deficient mice. *Nat. Med.* 6, 1341–1347 (2000).
- 9 Willner, E. L. *et al.* Deficiency of acyl CoA:choletsterol acyltransferase 2 prevents atherosclerosis in apolipoprotein E-deficient mice. *Proc. Natl. Acad. Sci. USA* 100, 1262–1267 (2003).
- 10 Takase, S. *et al.* Amauromine, a new vasodilator. Taxonomy, isolation and characterization. J. Antibiot. **37**, 1320–1323 (1984).
- 11 Yin, W. B., Xie, X. L., Matuschek, M. & Li, S. M. Reconstruction of pyrrolo[2,3-b]indoles carrying an alpha-configured reverse C3-dimethylallyl moiety by using recombinant enzymes. Org. Biomol. Chem. 8, 1133–1141 (2010).
- 12 Yin, W. B., Grundmann, A., Cheng, J. & Li, S. M. Acetylaszonalenin biosynthesis in *Neosartorya fischeri*. Identification of the biosynthetic gene cluster by genomic mining and functional proof of the genes by biochemical investigation. *J. Biol. Chem.* **284**, 100–109 (2009).

- 13 Takase, S., Kawai, Y., Uchida, I., Tanaka, H. & Aoki, H. Structure of amauromine, a new hypotensive vasodilator produced by *Amauroascus* sp. *Tetrahedron* 41, 3037–3048 (1985).
- 14 Ohshiro, T., Rudel, L. L., Ömura, S. & Tomoda, H. Selectivity of microbial acyl-CoA: cholesterol acyltransferase inhibitors toward isozymes. J. Antibiot. 60, 43–51 (2007).
- 15 Shinohara, C., Hasumi, K., Takei, Y. & Endo, A. Gypsetin, a new inhibitor of acyl-CoA: cholesterol acyltransferase produced by *Nannizzia gypsea* var. *incurvata* IFO9228. I. Fermentation, isolation, physico-chemical properties and biological activity. *J. Antibiot.* **47**, 163–167 (1993).
- 16 De Guzmann, F. S., Gloer, J. B., Wicklow, D. T. & Dowd, P. F. New diketopiperazine metabolites from the sclerotia of *Aspergillus ochraceus*. J. Nat. Prod. 55, 931–939 (1992).
- 17 Scott, P. M. & Kennedy, P. C. Analysis of blue cheese for roquefortine and other alkaloids from *Penicillium roqueforti. J. Agric. Food Chem.* 24, 865–868 (1976).
- 18 Arai, K., Kimura, K., Mushiroda, T. & Yamamoto, Y. Structures of fructigenines A and B, new alkaloids isolated from *Penicillium fructigenum* TAKEUCHI. *Chem. Pharm. Bull.* 37, 2937–2939 (1989).
- 19 Ohte, S. *et al.* Dinapinones, novel inhibitor of triacylglycerol synthesis in mammalian cells, produced by *Penicillium pinophilum* FKI-3864. *J. Antibiot.* **64**, 489–494 (2011).